Girosi, Jones, and Poggio

REGULARIZATION THEORY AND NEURAL NETWORK ARCHITECTURES

presented by

Hsin-Hao Yu

Department of Cognitive Science

October 4, 2001

Learning as function approximation

Goal: Given sparse, noisy samples of a function f, how do we recover f as accurately as possible?

Why is it hard? Infinitely many curves pass through the samples. This problem is *ill-posed*. Prior knowledge about the function must be introduced to make the solution unique. Regularization is a theoretical framework to do this.

Constraining the solution with "stablizers"

Let $(x_1, y_1) \dots (x_N, y_N)$ be the input data. In order to recover the underlying function, we regularize the ill-posed problem by choosing the function f that minimizes the *functional* H:

 $H[f] = E[f] + \lambda \phi[f]$

where $\lambda \in \mathcal{R}$ is a user chosen constant,

E[f] represents the "fidelity" of the approximation,

$$E[f] = \frac{1}{2} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

and $\phi[f]$ represents a constraint on the "smoothness" of f. ϕ is called the *stablizer*.

Math review: Calculus of variations

Calculus In order to find a number \bar{x} such that the function f(x) is an extremum at \bar{x} , we first calculate the derivative of f, then solve for $\frac{df}{dx} = 0$

Calculus of variations In order to find a function \overline{f} such that the functional H[f] is an extremum at \overline{f} , we first calculate the functional derivative of H, then solve for $\frac{\delta H}{\delta f} = 0$

	Calculus	Calculus of variations
Object for optimization	function	functional
Solution	number	function
Solve for	$\frac{df}{dx} = 0$	$\frac{\delta H}{\delta f} = 0$

An example of regularization

Consider a one-dimensional case. Given input data $(x_1, y_1) \dots (x_N, y_N)$, we want to minimize the functional

$$H[f] = E[f] + \lambda \phi[f]$$

$$E[f] = \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

$$\phi[f] = \int \left(\frac{d^2f}{d^2x}\right)^2 dx$$

To proceed,

$$\frac{\delta H}{\delta f} = \frac{\delta E}{\delta f} + \lambda \frac{\delta \phi}{\delta f}$$

Regularization continued

$$\frac{\delta E}{\delta f} = \frac{1}{2} \frac{\delta}{\delta f} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

$$= \frac{1}{2} \frac{\delta}{\delta f} \int \sum_{i=1}^{N} (f(x) - y_i)^2 \delta(x - x_i) dx$$

$$= \frac{1}{2} \int \frac{\delta}{\delta f} \sum_{i=1}^{N} (f(x) - y_i)^2 \delta(x - x_i) dx$$

$$= \int \sum_{i=1}^{N} (f(x) - y_i) \delta(x - x_i) dx$$

$$\frac{\delta\phi}{\delta f} = \frac{\delta}{\delta f} \int (\frac{d^2f}{d^2x})^2 dx$$
$$= \int \frac{d^4f}{dx^4} dx$$

$$\frac{\delta H}{\delta f} = \frac{\delta E}{\delta f} + \lambda \frac{\delta \phi}{\delta f}$$
$$= \int \left(\sum_{i=1}^{N} (f(x) - y_i) \delta(x - x_i) + \lambda \frac{d^4 f}{dx^4}\right) dx$$

Regularization continued

To minimize H[f],

$$\frac{\delta H}{\delta f} = 0$$

$$\Rightarrow \sum_{i=1}^{N} (f(x) - y_i) \delta(x - x_i) + \lambda \frac{d^4 f}{dx^4} = 0$$

$$\Rightarrow \frac{d^4 f}{dx^4} = \frac{1}{\lambda} \sum_{i=1}^{N} (y_i - f(x)) \delta(x - x_i)$$

To solve this differential equation, we calculate the *Green's function* $G(x,\xi)$:

$$\frac{d^4 G(x,\xi)}{dx^4} = \delta(x-\xi)$$

$$\Rightarrow \quad G(x,\xi) = |x-\xi|^3 + o(x^2)$$

We are almost there...

Regularization continued

The solution to $\frac{d^4f}{dx^4} = \frac{1}{\lambda} \sum_{i=1}^{N} (y_i - f(x)) \delta(x - x_i)$ can now be constructed from the Green's function:

$$f(x) = \int \frac{1}{\lambda} \sum_{i=1}^{N} (y_i - f(\xi)) \delta(\xi - \lambda) G(x, \xi) d\xi$$

=
$$\int \frac{1}{\lambda} \sum_{i=1}^{N} (y_i - f(\xi)) \delta(\xi - \lambda) |x - \xi|^3) d\xi$$

=
$$\frac{1}{\lambda} \sum_{i=1}^{N} (y_i - f(x_i)) |x - x_i|^3$$

The solution turns out to be the *cubic spline*! Oh, one more thing: we need to consider the *null space* of ϕ .

$$Nul(\phi) = \{\psi_1, \psi_2\} = \{1, x\} \quad (k = 2)$$
$$f(x) = \sum_{i=1}^{N} \frac{y_i - f(x_i)}{\lambda} G(x, x_i) + \sum_{\alpha=1}^{k} d_{\alpha} \psi_{\alpha}(x)$$

Solving for the weights

The general solution for minimizing $H[f] = E[f] + \lambda \phi[f]$ is:

$$f(x) = \sum_{i=1}^{N} w_i G(x, x_i) + \sum_{\alpha=1}^{k} d_\alpha \psi_\alpha(x)$$
$$w_i = \frac{y_i - f(x_i)}{\lambda} \quad (*)$$

where G is the Green's function for the differential operator ϕ , k is the dimension of the null space of ϕ , and ψ_{α} 's are the members of the null space.

But how do we calculate w_i ?

$$(*) \Rightarrow \lambda w_i = y_i - f(x_i)$$
$$\Rightarrow y_i = f(x_i) + \lambda w_i$$

Computing w_i continued

 $y_i = f(x_i) + \lambda w_i$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N w_i G(x_1, x_i) \\ \vdots \\ \sum_{i=1}^N w_i G(x_N, x_i) \end{bmatrix} + \Psi^T d + \lambda \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} G(x_1, x_1) & \dots & G(x_1, x_N) \\ \vdots & & \vdots \\ G(x_N, x_1) & \dots & G(x_N, x_N) \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} + \Psi^T d + \lambda w$$

Computing w_i continued

The last statement in matrix form:

$$y = (G + \lambda I)w + \Psi^T d$$
$$0 = \Psi d$$

or,

$$\begin{pmatrix} \begin{array}{c|c} G+\lambda I & \Psi \\ \hline \Psi^T & 0 \end{pmatrix} \begin{pmatrix} \hline w \\ \hline d \end{pmatrix} = \begin{pmatrix} \hline y \\ \hline 0 \end{pmatrix}$$

In the special case when the null space is empty (such as the Gaussian kernel),

$$w = (G + \lambda I)^{-1} y$$

Interpretations of regularization

The regularized solutions can be understood as:

- 1. Interpolation with kernels
- 2. Neural networks (Regularization networks)
- 3. Data smoothing (equivalent kernels as convolution filters)

More stablizers

Various interpolation methods and neural networks can be derived from regularization theory:

If we require that φ[f(x)] = φ[f(Rx)], where R is a rotation matrix, G is radial symmetric. It is the Radial Basis Function (RBF). This reflects a priori assumption that all variables have the same relevance, and there are no priviledged directions.

If
$$\phi[f] = \int e^{\frac{|s|^2}{\beta}} \left| \tilde{f}(s) \right|^2 ds$$

we get Gaussian kernels.

• Thin plate splines, polynomial splines, multiquadric kernel ... etc.

The probablistic interpretation of RN

Suppose that g is a set of random samples drawn from the function f, in the presence of noise.

- P[f|g] is the probability of function f given the examples g.
- P[g|f] is the model of noise. We assume Gaussian noise, so $P[g|f] \propto e^{-\frac{1}{2\sigma^2} \sum_i (y_i - f(x_i))^2}$
- P[f] the *a priori* probability of f. This embodies our *a priori* knowledge of the function. Let $P[f] \propto e^{-\alpha \phi[f]}$.

Probabilistic interpretation cont.

By the Bayes Rule,

$$P[f|g] \propto P[g|f]P[f]$$

$$\propto e^{-\frac{1}{2\alpha^2} \left(\sum_i (y_i - f(x_i))^2 + 2\alpha\sigma^2\phi[f]\right)}$$

The MAP estimate of f is therefore the minimizer of:

$$H[f] = \sum_{i} (y_i - f(x_i))^2 + \lambda \phi[f]$$

where $\lambda = 2\sigma^2 \alpha$. It determines the trade-off between the level of noise and the strength of the *a priori* assumption about the solution.

Generalized Regularization Networks

$$w = (G + \lambda I)^{-1}y$$

but calculating $(G + \lambda I)^{-1}$ can be costly, if the number of data points is large. *Generalized Regularization Networks* approximates the regularized solution by using fewer kernel functions.

Applications in early vision

Edge detection

Optical flow

Surface reconstruction

Stereo

...etc.