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Learning as function approximation

Goal: Given sparse, noisy samples of a function f , how do we
recover f as accurately as possible?

Why is it hard? Infinitely many curves pass through the
samples. This problem is ill-posed. Prior knowledge about the
function must be introduced to make the solution unique.
Regularization is a theoretical framework to do this.
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Constraining the solution with “stablizers”

Let (x1, y1) . . . (xN , yN ) be the input data. In order to recover the
underlying function, we regularize the ill-posed problem by
choosing the function f that minimizes the functional H :

H [f ] = E[f ] + λφ[f ]

where λ ∈ R is a user chosen constant,

E[f ] represents the “fidelity” of the approximation,

E[f ] =
1
2

N∑
i=1

(f(xi)− yi)2

and φ[f ] represents a constraint on the “smoothness” of f . φ is
called the stablizer.
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The fidelity vs. smoothness trade-off

very small λ

intermediate λ

very big λ
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Math review: Calculus of variations

Calculus In order to find a number x̄ such that the function f(x)
is an extremum at x̄ , we first calculate the derivative of f ,
then solve for df

dx = 0

Calculus of variations In order to find a function f̄ such that
the functional H [f ] is an extremum at f̄ , we first calculate the
functional derivative of H , then solve for δH

δf = 0

Calculus Calculus of variations

Object for optimization function functional

Solution number function

Solve for df
dx = 0

δH
δf = 0
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An example of regularization

Consider a one-dimensional case. Given input data
(x1, y1) . . . (xN , yN ), we want to minimize the functional

H [f ] = E[f ] + λφ[f ]

E[f ] =
N∑

i=1

(f(xi)− yi)2

φ[f ] =
∫ (

d2f

d2x

)2

dx

To proceed,

δH

δf
=
δE

δf
+ λ

δφ

δf
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Regularization continued

δE
δf = 1

2
δ
δf

∑N
i=1(f(xi)− yi)2

= 1
2

δ
δf

∫ ∑N
i=1(f(x) − yi)2δ(x − xi)dx

= 1
2

∫
δ
δf

∑N
i=1(f(x) − yi)2δ(x − xi)dx

=
∫ ∑N

i=1(f(x) − yi)δ(x − xi)dx

δφ
δf = δ

δf

∫
(d2f

d2x )
2dx

=
∫

d4f
dx4 dx

δH
δf = δE

δf + λ δφ
δf

=
∫
(
∑N

i=1(f(x) − yi)δ(x− xi) + λd4f
dx4 )dx
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Regularization continued

To minimize H [f ],

δH
δf = 0

⇒
∑N

i=1(f(x) − yi)δ(x − xi) + λd4f
dx4 = 0

⇒ d4f
dx4 = 1

λ

∑N
i=1(yi − f(x))δ(x − xi)

To solve this differential equation, we calculate the Green’s function
G(x, ξ):

d4G(x,ξ)
dx4 = δ(x− ξ)

⇒ G(x, ξ) = |x− ξ|3 + o(x2)

We are almost there...
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Regularization continued

The solution to d4f
dx4 = 1

λ

∑N
i=1(yi − f(x))δ(x − xi) can now be

constructed from the Green’s function:

f(x) =
∫

1
λ

∑N
i=1(yi − f(ξ))δ(ξ − λ)G(x, ξ)dξ

=
∫

1
λ

∑N
i=1(yi − f(ξ))δ(ξ − λ)|x− ξ|3)dξ

= 1
λ

∑N
i=1(yi − f(xi))|x− xi|3

The solution turns out to be the cubic spline! Oh, one more thing:
we need to consider the null space of φ.

Nul(φ) = {ψ1, ψ2} = {1, x} (k = 2)

f(x) =
N∑

i=1

yi − f(xi)
λ

G(x, xi) +
k∑

α=1

dαψα(x)
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Solving for the weights

The general solution for minimizing H [f ] = E[f ] + λφ[f ] is:

f(x) =
N∑

i=1

wiG(x, xi) +
k∑

α=1

dαψα(x)

wi =
yi − f(xi)

λ
(∗)

where G is the Green’s function for the differential operator φ, k is
the dimension of the null space of φ, and ψα’s are the members of
the null space.

But how do we calculate wi?

(∗) ⇒ λwi = yi − f(xi)

⇒ yi = f(xi) + λwi
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Computing wi continued

yi = f(xi) + λwi




y1
...

yN


 =




∑N
i=1 wiG(x1, xi)

...∑N
i=1 wiG(xN , xi)


+ΨTd+ λ




w1

...

wN







y1
...

yN


 =




G(x1, x1) . . . G(x1, xN )
...

...

G(xN , x1) . . . G(xN , xN )







w1

...

wN


+ΨT d+ λw
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Computing wi continued

The last statement in matrix form:

y = (G+ λI)w +ΨTd

0 = Ψd

or,

 G+ λI Ψ

ΨT 0





 w

d


 =


 y

0




In the special case when the null space is empty (such as the
Gaussian kernel),

w = (G+ λI)−1y
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Interpretations of regularization

The regularized solutions can be understood as:

1. Interpolation with kernels

2. Neural networks (Regularization networks)

3. Data smoothing (equivalent kernels as convolution filters)
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More stablizers

Various interpolation methods and neural networks can be derived
from regularization theory:

• If we require that φ[f(x)] = φ[f(Rx)], where R is a rotation
matrix, G is radial symmetric. It is the Radial Basis Function
(RBF). This reflects a priori assumption that all variables have
the same relevance, and there are no priviledged directions.

• If
φ[f ] =

∫
e

|s|2
β

∣∣∣f̃(s)∣∣∣2 ds
we get Gaussian kernels.

• Thin plate splines, polynomial splines, multiquadric kernel
. . . etc.
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The probablistic interpretation of RN

Suppose that g is a set of random samples drawn from the function
f , in the presence of noise.

• P [f |g] is the probability of function f given the examples g.

• P [g|f ] is the the model of noise. We assume Gaussian noise, so
P [g|f ] ∝ e−

1
2σ2

∑
i
(yi−f(xi))

2

• P [f ] the a priori probability of f . This embodies our a priori
knowledge of the function. Let P [f ] ∝ e−αφ[f ].
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Probabilistic interpretation cont.

By the Bayes Rule,

P [f |g] ∝ P [g|f ]P [f ]
∝ e−

1
2α2 (

∑
i
(yi−f(xi))

2+2ασ2φ[f ])

The MAP estimate of f is therefore the minimizer of:

H [f ] =
∑

i

(yi − f(xi))2 + λφ[f ]

where λ = 2σ2α. It determines the trade-off between the level of
noise and the strength of the a priori assumption about the
solution.
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Generalized Regularization Networks

w = (G+ λI)−1y

but calculating (G+ λI)−1 can be costly, if the number of data
points is large. Generalized Regularization Networks approximates
the regularized solution by using fewer kernel functions.

17



Applications in early vision

Edge detection

Optical flow

Surface reconstruction

Stereo

...etc.
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