
Girosi, Jones, and Poggio

Regularization theory and neural network

architectures

presented by

Hsin-Hao Yu

Department of Cognitive Science

October 4, 2001



Learning as function approximation

Goal: Given sparse, noisy samples of a function f , how do we
recover f as accurately as possible?

Why is it hard? Infinitely many curves pass through the
samples. This problem is ill-posed. Prior knowledge about the
function must be introduced to make the solution unique.
Regularization is a theoretical framework to do this.
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Constraining the solution with “stablizers”

Let (x1, y1) . . . (xN , yN ) be the input data. In order to recover the
underlying function, we regularize the ill-posed problem by
choosing the function f that minimizes the functional H :

H [f ] = E[f ] + λφ[f ]

where λ ∈ R is a user chosen constant,

E[f ] represents the “fidelity” of the approximation,

E[f ] =
1
2

N∑
i=1

(f(xi)− yi)2

and φ[f ] represents a constraint on the “smoothness” of f . φ is
called the stablizer.
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The fidelity vs. smoothness trade-off

very small λ

intermediate λ

very big λ
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Math review: Calculus of variations

Calculus In order to find a number x̄ such that the function f(x)
is an extremum at x̄ , we first calculate the derivative of f ,
then solve for df

dx = 0

Calculus of variations In order to find a function f̄ such that
the functional H [f ] is an extremum at f̄ , we first calculate the
functional derivative of H , then solve for δH

δf = 0

Calculus Calculus of variations

Object for optimization function functional

Solution number function

Solve for df
dx = 0

δH
δf = 0
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An example of regularization

Consider a one-dimensional case. Given input data
(x1, y1) . . . (xN , yN ), we want to minimize the functional

H [f ] = E[f ] + λφ[f ]

E[f ] =
N∑

i=1

(f(xi)− yi)2

φ[f ] =
∫ (

d2f

d2x

)2

dx

To proceed,

δH

δf
=
δE

δf
+ λ

δφ

δf
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Regularization continued

δE
δf = 1

2
δ
δf

∑N
i=1(f(xi)− yi)2

= 1
2

δ
δf

∫ ∑N
i=1(f(x) − yi)2δ(x − xi)dx

= 1
2

∫
δ
δf

∑N
i=1(f(x) − yi)2δ(x − xi)dx

=
∫ ∑N

i=1(f(x) − yi)δ(x − xi)dx

δφ
δf = δ

δf

∫
(d2f

d2x )
2dx

=
∫

d4f
dx4 dx

δH
δf = δE

δf + λ δφ
δf

=
∫
(
∑N

i=1(f(x) − yi)δ(x− xi) + λd4f
dx4 )dx
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Regularization continued

To minimize H [f ],

δH
δf = 0

⇒
∑N

i=1(f(x) − yi)δ(x − xi) + λd4f
dx4 = 0

⇒ d4f
dx4 = 1

λ

∑N
i=1(yi − f(x))δ(x − xi)

To solve this differential equation, we calculate the Green’s function
G(x, ξ):

d4G(x,ξ)
dx4 = δ(x− ξ)

⇒ G(x, ξ) = |x− ξ|3 + o(x2)

We are almost there...
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Regularization continued

The solution to d4f
dx4 = 1

λ

∑N
i=1(yi − f(x))δ(x − xi) can now be

constructed from the Green’s function:

f(x) =
∫

1
λ

∑N
i=1(yi − f(ξ))δ(ξ − λ)G(x, ξ)dξ

=
∫

1
λ

∑N
i=1(yi − f(ξ))δ(ξ − λ)|x− ξ|3)dξ

= 1
λ

∑N
i=1(yi − f(xi))|x− xi|3

The solution turns out to be the cubic spline! Oh, one more thing:
we need to consider the null space of φ.

Nul(φ) = {ψ1, ψ2} = {1, x} (k = 2)

f(x) =
N∑

i=1

yi − f(xi)
λ

G(x, xi) +
k∑

α=1

dαψα(x)
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Solving for the weights

The general solution for minimizing H [f ] = E[f ] + λφ[f ] is:

f(x) =
N∑

i=1

wiG(x, xi) +
k∑

α=1

dαψα(x)

wi =
yi − f(xi)

λ
(∗)

where G is the Green’s function for the differential operator φ, k is
the dimension of the null space of φ, and ψα’s are the members of
the null space.

But how do we calculate wi?

(∗) ⇒ λwi = yi − f(xi)

⇒ yi = f(xi) + λwi
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Computing wi continued

yi = f(xi) + λwi




y1
...

yN


 =




∑N
i=1 wiG(x1, xi)

...∑N
i=1 wiG(xN , xi)


+ΨTd+ λ




w1

...

wN







y1
...

yN


 =




G(x1, x1) . . . G(x1, xN )
...

...

G(xN , x1) . . . G(xN , xN )







w1

...

wN


+ΨT d+ λw
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Computing wi continued

The last statement in matrix form:

y = (G+ λI)w +ΨTd

0 = Ψd

or,

 G+ λI Ψ

ΨT 0





 w

d


 =


 y

0




In the special case when the null space is empty (such as the
Gaussian kernel),

w = (G+ λI)−1y
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Interpretations of regularization

The regularized solutions can be understood as:

1. Interpolation with kernels

2. Neural networks (Regularization networks)

3. Data smoothing (equivalent kernels as convolution filters)
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More stablizers

Various interpolation methods and neural networks can be derived
from regularization theory:

• If we require that φ[f(x)] = φ[f(Rx)], where R is a rotation
matrix, G is radial symmetric. It is the Radial Basis Function
(RBF). This reflects a priori assumption that all variables have
the same relevance, and there are no priviledged directions.

• If
φ[f ] =

∫
e

|s|2
β

∣∣∣f̃(s)∣∣∣2 ds
we get Gaussian kernels.

• Thin plate splines, polynomial splines, multiquadric kernel
. . . etc.
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The probablistic interpretation of RN

Suppose that g is a set of random samples drawn from the function
f , in the presence of noise.

• P [f |g] is the probability of function f given the examples g.

• P [g|f ] is the the model of noise. We assume Gaussian noise, so
P [g|f ] ∝ e−

1
2σ2

∑
i
(yi−f(xi))

2

• P [f ] the a priori probability of f . This embodies our a priori
knowledge of the function. Let P [f ] ∝ e−αφ[f ].
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Probabilistic interpretation cont.

By the Bayes Rule,

P [f |g] ∝ P [g|f ]P [f ]
∝ e−

1
2α2 (

∑
i
(yi−f(xi))

2+2ασ2φ[f ])

The MAP estimate of f is therefore the minimizer of:

H [f ] =
∑

i

(yi − f(xi))2 + λφ[f ]

where λ = 2σ2α. It determines the trade-off between the level of
noise and the strength of the a priori assumption about the
solution.

16



Generalized Regularization Networks

w = (G+ λI)−1y

but calculating (G+ λI)−1 can be costly, if the number of data
points is large. Generalized Regularization Networks approximates
the regularized solution by using fewer kernel functions.
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Applications in early vision

Edge detection

Optical flow

Surface reconstruction

Stereo

...etc.
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