Lecture 8: Inter-domain Routing

Stefan Savage

(thanks to Tim Griffin for the use of some slides)
Today

- Inter-domain routing
 - Problems
 - BGP & mechanisms
 - Transit/Peering Policies

- We’re only going to scratch the surface here… could do a whole quarter on inter-domain routing
Recap

- Intra-domain routing
 - Determine where to send packets within a network
 - Optimize routes to follow *best* path according to some metric
 - Interior Gateway Protocols (IGPs)

- Options
 - Distance vector (RIP)
 » Tell everything to neighbors, maintain shortest paths
 » Convergence problems
 - Link state (OSPF, ISIS)
 » Advertise your neighbors to everyone (flooding), compute shortest path
 » Lots of state to maintain
Historic context

- Original ARPAnet had single routing protocol
 - Dynamic DV scheme, replaced with static metric LS algorithm

- New networks came on the scene
 - NSFnet, CSnet, DDN, etc…
 - With their own routing protocols (RIP, Hello, ISIS)
 - And their own rules (e.g. NSF AUP)

- Problem: how to deal with routing heterogeneity?
What to do?

- Some problems
 - **Consistency**: Network A uses hop count as a metric, Network B uses measured delay, Network C uses link capacity
 - **Policy**: Network A connects to Networks B and C. Network B is only allowed to carry network C’s traffic?

- How would you resolve these problems?
One solution: Inter-domain routing

- Exterior Gateway Protocols (EGPs)
 - Only exchange **reachability** information (no metrics)
 - Decide what to do based on local policy

- Autonomous Systems (ASs)
 - Unit of abstraction in interdomain routing
 - Roughly, a network with common administrative control, a coherent internal routing policy, and presenting a **consistent** external view of connectivity
 - Represented by a 16-bit number
 » Example: UUnet (701), Sprint (1239), UCSD (7377)
 - Run IGPs within an AS, EGPs between ASs
First attempt

- Protocol called EGP (can be confusing)
 - Connected NSFnet Backbone to regional networks, DDN/Milnet, etc..
 - EGP only provided reachability information (no metrics)
 - Assumed spanning tree topology based on single backbone
 » No loops

- In 1995 NSFnet got out of the backbone business
 - Many backbones (MCI, Sprint, AT&T…)
 - Multiconnected regional networks
 - Meshed topology, loops…

- Need a new protocol
What kind of protocol?

- Link state?
 - Too much state
 » Currently 11,000 ASs and > 100,000 networks
 - Relies on global metric & policy

- Distance vector?
 - May not converge; loops

- Solution: path vector
 - Reachability protocol, no metrics
 - Route advertisements carry list of ASs
 » “I can reach 128.95/16 through this path: AS73, AS703, AS1”
 » Automatic loop detection? How?
Border Gateway Protocol

- Principal protocol used for routing across the Internet
 - Relatively simple protocol, complex usage

- Path vector protocol
 - Explicitly announce or withdraw routes
 - Routes include attributes in addition to path vector
 - Incremental updates (stateful)

- Policy is not part of protocol, but is built on top by filtering/mapping on attributes
 - Which routes do you listen to?
 - Which routes do you put in forwarding table?
 - Which routes do you advertise?
Establish session on TCP port 179

Exchange all active routes

Exchange incremental updates

While connection is ALIVE exchange route UPDATE messages

Pros/Cons of using TCP?
Two types of BGP neighbor relationships

- External Neighbor (eBGP) in a different Autonomous Systems
- Internal Neighbor (iBGP) in the same Autonomous System

Why do we need iBGP?
iBGP keeps eBGP consistent

- iBGP is needed to avoid routing loops within an AS
- Injecting external routes into IGP does not scale and causes BGP policy information to be lost

iBGP neighbors do not announce routes received via iBGP to other iBGP neighbors.
Important BGP attributes

- **Local pref**: Statically configured ranking of routes within AS
- **AS path**: ASNs the announcement traversed
- **Origin**: Route came from IGP or EGP
- **Multi Exit Discriminator**: preference for where to exit
- **Community**: opaque data used for inter-ISP policy
- **Next-hop**: where the route was heard from
Example: local pref

Local preference only used in iBGP

Higher Local preference values are more preferred

13.13.0.0/16
Example: AS Path

Shorter AS Paths are More preferred

```
128.2/16 9
AS9
CMU (128.2/16)

AS7018
AT&T

128.2/16 9 7018
AS1239
Sprint

128.2/16 9 7018
AS7018

128.2/16 9
AS73
Univ of Wash

128.2/16 9 701
AS701
UU-net
```
Shortest AS path doesn’t mean best path

Mr. BGP says that path 4 1 is better than path 3 2 1.
Example: Using IGP cost for Hot potato routing

This Router has two BGP routes to 192.44.78.0/24.

Hot potato: get traffic off of your network as soon as possible. Go for egress 1!
Problems with hot potato

Many customers want their provider to carry the bits!
BGP Decision process

- Default decision for route selection
 - Highest local pref, shortest AS path, lowest MED, prefer eBGP over iBGP, lowest IGP cost, router id

- Many policies built on default decision process, but...
 - Possible to create arbitrary policies
 » Any criteria: BGP attributes, source address, port # is prime, ...
 » Can have separate policy for inbound routes, installed routes and outbound routes
 - Limited only by power of vendor-specific routing language

- Try to influence decision process at other ASs
 - AS padding, MEDs, Communities
 - More specific routes
BGP+policy does not arrive at shortest path

- Measured round-trip times between sites
- Pythagoras would have wept

(Times in milliseconds)
General Problems w/BGP

- Instability
 - Route flapping
 - Long AS-path decision criteria defaults to DV-like behavior (bouncing)
 - Not guaranteed to converge, NP-hard to tell if it does

- Scalability
 - ~100,000 network prefixes in default-free table today
 - Tension: Want to manage traffic to very specific networks (eg. multihomed content providers) but also want to aggregate information.
Routing policy

- So far we’ve discussed mechanism…

- How and why are basic routing policies decided?
History

- First policies for political reasons
 - NSFnet AUP (even today Internet2)

- Emergence of commercial policies
 - 1994-1995 NSFnet transition
 - NSF ceases to run Internet backbone
 - Commercial carrier (MCI, Sprint, ANS) start selling IP backbone service
 - Interconnected with each other and regional networks at several public NAPs
 - Everyone talks to everyone
 - Then five years went by…
Background – Settlement

- The telephone world
 - LECs (local exchange carriers)
 - IXCs (inter-exchange carriers)
- LECs MUST provide IXCs access to customers; regulation
- When a call goes from one phone company to another:
 - Call billed to the caller
 - The money is split up among the phone systems – this is called “settlement”
On the Internet...

- No regulation
 - One ISP doesn’t have to talk to another

- Founded on “shared goodwill”
 - Pay for connectivity, not per packet
 - Not clear who should pay anyway

- No standard settlement
Peering vs Transit

- **Peering**
 - Two ISPs provide connectivity to each others customers (traditionally for free)
 - Non-transitive relationship

- **Transit**
 - One ISP provides connectivity to every place it knows about (usually for money)
Example: peering

WestNet -- USNet -- EastNet

Routing Tables
Example: transit

By EastNet purchasing transit, Eastnet is announced by USNet to USNet peering and transit interconnections alike.
The value of transit

- Not just paying for the fiber, but the connectivity
 - Remember, there is no single “backbone”
 - If you’re an ISP, how do your customers get to yahoo.com?

- Means big ISPs have more value to offer small ISPs than vice-versa
The value of transit (2)

Thousands of other Int’l ISPs

The entire Internet as known by USNet
Aside...

- Peering and transit are really two popular points on a continuum
- Some places sell “partial transit”
- Other places sell “usage-based” peering
- Principle issue is:
 - Which routes do you give away and which do you sell? To whom? Under what conditions?
Terminology 101:
What's a Tier-1 ISP?

- My definition:
 - ISP big enough that they don’t have to buy transit
 - AT&T, Sprint, Uunet, Genuity, etc.
- Tier-2 buy transit from Tier-1, etc.

- Increasingly worthless terms
 - Everyone claims to be Tier-1
 - More complicated forms of settlement
 - Leverage depends on business model
Terminology 101: Public vs private peering

- **Public peering**
 - Connection via shared switch or network at “public” exchange point (place anyone can be if they pay money)
 - Still negotiated bilaterally

- **Private peering**
 - Private point-to-point link between peers
Why peer?

- Transit is very expensive
 - Was $150,000 for an OC3 (155Mbps) transit link

- Peering with other ISPs can reduce the amount of traffic sent on transit link
 - Also lower latency?

- Communication patterns aren’t uniform
 - More of your traffic is exchanged with some networks than others
 - Try to peer with other ISPs whose customers exchange traffic frequently with your customers…
Why not peer?

- Traffic asymmetry
 - More traffic goes one way than the other
 - Peer who carries more traffic feels cheated
- Hassle
- Top tier (big) ISPs have no interest in helping lower tier ISPs compete
 - The “Big Boys” all peer with each other at no/little cost
- Harder to deal with problems without strong financial incentive
Who to peer with?

- Technical issues
 - Where does my traffic go? Biggest benefit?
- Business issues
 - Other partnerships/deals
 - Peering policies (once shrouded in mystery, now becoming more open)
 - Cost of exchanging traffic (i.e. where do we peer)
Model for Tier-2 ISPs

1. Buy transit from big provider
2. Peer at public exchange points to reduce transit cost
3. Establish private point-to-point peering with key ISPs
4. When you’re big enough, negotiate peering with transit provider
Negotiating peering... (ugh)

Phase 2

- Contact with Peering@ or personal Contact?
 - Yes
- Contact with Exchange Point contact List?
 - Yes
- Contact Using DNS/ASN Registry?
 - Yes
- Contact at Trade Shows?
 - Yes
- Contact at Operations Forums?
 - Yes
- Contact via Sales Force?
 - Yes

- (optionally) Sign NDA
- Share traffic statistics, Policies, BLPA, i.e., justification why they should both peer

- Do both parties find motivation to continue peering discussion?
 - Yes
 - Proceed to Phase 3
 - No
 - End Peering Discussion
How to interconnect?

- Direct connection
 - Cost of circuit lease ($$$)

- Exchange-based interconnect
 - Exchange: place that houses equipment from multiple networks to exchange traffic
 - If you both already have equipment in the same building somewhere, then just run a cable between your machines (cheap)
 - Neutral exchanges vs affiliated exchanges
Summary

- Interdomain-routing
 - Exchange reachability information (plus hints)
 - Local policy to decide which path to follow

- Traffic exchange policies are a big issue $$$
 - Complicated by lack of compelling economic model (who creates value?)
 - Very hard to be a small ISP

- Business issues can have serious operational/performance impact on the Internet
Discussion

- Performance impact peering vs transit and ratio-based peering
 - I have a funny story about @Home
- How do CDNs affect peering/transit issue?
- Implicit trust issues in transit routes
 - Will X really get my packets to Y who isn’t X’s customer?
- What if someone lies?
For next time...

- Multicast routing…
- Read Deering and Cheriton 90 and Almeroth 2000
- Chapter 4.4
Recap: Classless IP addressing

- Routes represented by tuple (network prefix/mask)
 - Allows arbitrary allocation between network and host address
 - e.g. 10.95.1.2/8: 10 is network and remainder (95.1.2) is host

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Mask = # significant bits representing prefix</td>
</tr>
</tbody>
</table>

- Route lookup: *longest prefix match*
 - For a given destination, find entry in route table that matches the most number of bits (i.e. with the largest mask)
 - Example: 128.95.4.1
 - One route for 128.95.0.0/16 (CMU)
 - One route for 128.95.4.0/24 (CMU SCS)