CSE105 Section B Sample Questions

1. Give the state diagram of an NFA over the alphabet \{ a, b \} that accepts

\{ w | w has each a immediately followed by b \}

2. Give the state diagram of a DFA over the alphabet \{ 0, 1 \} that accepts

\{ w | w has \((3m + 1)\) 1's for some integer \(m \geq 0\)\}

3. Give the state diagram of an NFA over the alphabet \{ a, b \} that accepts

\{ w | w has either aa or bb as substring \}
4. Give the state diagram of a DFA over the alphabet \{ 0, 1 \} that accepts

\{ w \mid w \text{ has } 5m \text{ 1's for some integer } m \geq 0 \}

5. Reserved XML names begin with the string xml (where any letter may be lower or upper case), and contain any number of letters, digits, hyphens, underscores or colons. Write a regular expression for Reserved XML names.

Please use \Sigma to stand for the alphabet \{ A-Z, a-z \} of upper and lower-case letters, \Delta for the alphabet of digits \{ 0-9 \}, - for hyphen, _ for underscore, and : for colon.

6. Construct a state diagram of an NFA accepting the set described by the following regular expression over the alphabet \{ 0, 1 \}, indicating the start and final state(s) of the NFA:

\(((00)^*11) \mid 111\)
7. Construct the state diagram of a DFA that accepts the language over \(\{a, b\} \) such that any string in \(L \) has an even number of \(a \)'s and an odd number of \(b \)'s. Indicate the start and final state(s) of the DFA.

8. Write a regular expression over the alphabet \(\{a-z, \%, /\} \) that describes *simple comments*. A *simple comment* is any string which starts with /\%, ends with %/, and has only lower-case letters (a through z) in between.

9. Construct an NFA that recognizes the language described by the regular expression

\[(a \circ b)^* \cup (a \circ a^*)\]

where \(\circ \) is the concatenation operator.
10. Write a regular expression over the alphabet Σ of lower-case letters $\{ a-z \}$ to describe the language that consists of all strings containing exactly one occurrence of each vowel, such that the vowels appear in alphabetical order $a \ e \ i \ o \ u$. (For example the string $xyaxyewhyiwhyou$ is in the language, but $eioubxyz$ and $aeiouxyz$ are not.)

Please use Σ to stand for the alphabet $\{ a-z \}$ of lower-case letters. You can then use $\Sigma - \{ x \}$ to stand for the alphabet of lower-case letters minus letter x, and $\Sigma - \{ x, y \}$ to stand for the alphabet of lower-case letters minus x and y, and so forth.

11. Construct an NFA that recognizes the language described by the regular expression

$$(c^* \circ d) \cup (c \circ c^*)$$

where \circ is the concatenation operator.