Section B, quiz 1 solutions

1. The grammar A for the language \(L = \{ w \# Z \mid w \in \{a, b\}^+, Z \in \{d, c\}^+, |W| = |Z| \} \) is shown as following:
 \[
 S \rightarrow aRc \mid bRc \mid aRd \mid bRd \\
 R \rightarrow aRc \mid bRc \mid aRd \mid bRd \mid #
 \]

2. a
 1) For each \(i \geq 0 \), \(uv^i xy^i z \in A \)
 2) \(|v| > 0 \)
 3) \(|vxy| < p \)

 b
 Consider a string \(s = a^{1000} \# b^{1000} \in A \). We divide \(s \) into \(uvxyz \), where \(u = a^{999} \), \(v = a \), \(x = \# \), \(y = b \), \(z = b^{999} \). Then we show all above three conditions hold for this division of \(s \).
 i) for any \(i \geq 0 \), \(a^{999} a^i \# b^{999} b^i = a^{999+i} \# b^{999+i} \in A \), condition 1) holds.
 ii) \(|vy| = |ab| = 2 > 0 \), condition 2) holds.
 iii) \(|vxy| = |a#b| = 3 < 1000 \), condition 3) holds.

3. Create PDA for \(L = \{a^m b^m \mid 0 \leq n < m \leq 3n \} \)

4. (c) replace 2 b’s with Z
 (e) c’s or b’s

5.
a) This CFG is ambiguous, for there is more than one way to derive the same string $a \cup b \cup a$.

b) The following is the CFG in CNF:

$$
S \rightarrow RA_1 | RA_2 | A_3 A_4 | a | b
$$

$$
R \rightarrow RA_4 | RA_2 | A_5 A_4 | a | b
$$

$$
A_1 \rightarrow BR
$$

$$
B \rightarrow \cup | \circ
$$

$$
A_2 \rightarrow \star
$$

$$
A_3 \rightarrow \{
$$

$$
A_4 \rightarrow RA_5
$$

$$
A_5 \rightarrow)
$$