Introduction to the Theory of Computation

What’s a computer? a computation?
Ans1: What current machines are, and what they can do.
 Changes over time. Doesn’t give us LIMITS.
 Ex. Can machines ever......?

What problems are computers capable of solving?
 (Computability)

How easy/hard is a problem?
 (Complexity)

What resources are needed to solve a problem?
 (Computational Models)

CSE 105: Introduction to the Theory of Computation

Instructor: Professor Jeanne Ferrante, CSE
TA’s: Vagelis Hristidis, Min Qian, Dan Liu, Eric Wierwora

Class home page:
http://www-cse.ucsd.edu/classes/fa01/cse105_B

What is the class about?
How will it be run?
Why should you take it?

Finite automata, Ch. 1.1
Reading asst.: Ch 0, 1
Course Organization

Lectures: core material

Discussion sections: Questions

Readings: Text book and web

Exams:
3 scheduled in class, closed book quizzes (60%)
Final exam, Monday, Dec 3 (40%)

3 Homeworks (ungraded, solutions provided)

Class Web Pages: give essential info

WHY SHOULD YOU TAKE THIS COURSE?**>##?

1. It’s fun stuff.

2. It will give you new insights into computers/computation.

3. It will give you knowledge essential to a computer scientist.

4. It will stretch your brain.

5. Its essential for compilers (CSE 131A)
 Regular expressions, finite automata, context-free grammars
A computational model: Finite Automaton (Finite State Machine)

A finite automaton models a computer with no separate memory.

Ex: State diagram of finite automaton that accepts only the key word 'MAIN', alphabet {A-Z}

Kudo Machine

Warning: Accepts only nickels and dimes!

alphabet {5, 10, 15}
What are Finite Automata (FA) good for?

Recognize patterns in strings
- e.g. keywords, constants (integers, reals, strings,...),
- variable names, ... in programming languages

Used in

Compilers, lexical analysis phase
- string of symbols → tokens of language
 - \(\text{const } x = 5 \rightarrow \text{const } x = 5 \)

Text Editors, ex. EMACS

Scripting languages, ex. Perl

Unix tools, ex. grep

What are Finite Automata good for?

Keeping track of limited state information
- e.g. coin vending machine

Used in

Hardware description languages
- Ex. VHDL

Control systems
- Ex. control refrigerator light, automatic door

Games Programming
- Ex. Half-Life, Quake
But first, a break for some definitions....

Alphabet \(\Sigma \) : any finite set of symbols
Ex. \(\{0,1\} \)

String over \(\Sigma \) : any finite sequence of symbols
Exs. \(01 \quad 0 \quad 111 \)

Empty string \(\varepsilon \)

Concatenation of strings: Given \(x \) and \(y \), \(xy \)
\(x \varepsilon = \varepsilon \quad x = x \)
Ex. \(x = \) dog, \(y = \) house, \(xy = \) doghouse
\(x^2 = \) dogdog
\(x^3 = \) dogdogdog

Language over \(\Sigma \) : any set of strings over \(\Sigma \)
Ex. \(\{\varepsilon, 0, 01, 10\} \)
Ex. set of all strings over \(\{0,1\} \)

Formal Defintion of Finite Automaton

A finite automaton \(M \) is a 5-tuple \((Q, \Sigma, \delta, q_0, F) \) where,

1. \(Q \) is a finite set of states
2. \(\Sigma \) is a finite set called the alphabet
3. \(\delta : Q \times \Sigma \rightarrow Q \) the transition function
4. \(q_0 \) in \(Q \), the start state
5. \(F \subseteq Q \), set of accept (final) states

The language accepted by \(FA \ M \) is \(L(M) \). We say that \(M \) accepts \(L(M) \).

Previous ex:
\(Q = \{q_0, q_1, q_2, q_3, q_4, q_5\} \quad \Sigma = \{A, B, C, ... Z\} \)
\(\delta(q,a) = ... \quad q_0 \text{ start} \quad F = \{q_4\} \quad L(M) = \)
Formal Definition of Computation on FA

\[M = (Q, \Sigma, \delta, q_0, F) \]
\[w = w_1 w_2 w_3 \ldots w_n, \text{ a string over} \]

We say \(M \) accepts \(w \) if there is a sequence of states \(r_0, r_1, \ldots, r_n \) in \(Q \), such that

1. \(r_0 = q_0 \) \hspace{1cm} (starts correctly)
2. \(\delta (r_i, w_{i+1}) = r_{i+1}, \text{ for } i = 0, \ldots, n-1 \) \hspace{1cm} (moves correctly)
3. \(r_n \) is in \(F \) \hspace{1cm} (ends in accept state)

\(L(M) = \{ w \mid M \text{ accepts } w \} \)

A language is **regular** if some FA accepts it.

Some examples of FA

1. \(Q = \{ q_0, q_1 \} \quad \Sigma = \{a, b\} \quad q_0 \text{ start } F = \{ q_1 \} \)
 \[\delta \text{ given by} \]
 \[
 \begin{array}{c|cc}
 \delta & a & b \\
 \hline
 q_0 & q_0 & q_1 \\
 q_1 & q_1 & q_0 \\
 \end{array}
 \]

2. \(M = (\{ q_1, q_2 \}, \{0,1\}, \ 0, \ q_1, \{ q_2 \}) \quad (\text{Ex. } 1.2, \ p. \ 37) \)
 \[\delta \text{ given by} \]
 \[
 \begin{array}{c|cc}
 \delta & 0 & 1 \\
 \hline
 q_1 & q_1 & q_2 \\
 q_2 & q_1 & q_2 \\
 \end{array}
 \]

State diagram? \(L(M) = \)

Change accept state of 2?
More examples of FA

3. \(Q = \{ q_0, q_1, q_2 \} \) \(\Sigma = \{ \text{reset}, 0, 1, 2 \} \) (Ex. 1.5, p. 39)

\[
\begin{align*}
q_0 & \xrightarrow{0} q_0 \\
q_0 & \xrightarrow{1} q_1 \\
q_0 & \xrightarrow{2, \text{reset}} q_2 \\
q_1 & \xrightarrow{0} q_0 \\
q_1 & \xrightarrow{1} q_1 \\
q_1 & \xrightarrow{2, \text{reset}} q_2 \\
q_2 & \xrightarrow{1} q_2 \\
q_2 & \xrightarrow{2} q_2
\end{align*}
\]

\(L(M) = \)

4. Construct a FA to accept the language over \{a, b\} which contains an odd number of b's.

What info is needed about input string in order to accept/reject?

Make states of FA to keep track of that info.

5. \(L = \{ w \mid w \text{ does not contain 3 b's as a substring} \} \)

2-bit saturating counter state transition diagram

\[Q = \{ \text{SPT, WPT, SPN, WPN} \} \quad \Sigma = \{ T, N \} \]

Used in branch prediction

Keep track of last 2 branch outcomes, use to predict next

Final state(s) not important; start state can vary