Other Undecidable Problems

Strategy for more problems:

1. Assume for purpose of contradiction that problem P decid.
2. Show that if P were decidable, another problem Q (that we have shown undecidable) would be decidable. CONTR.

Th. $E_{TM} = \{<M> | M \text{ is a TM and } L(M) \text{ is empty}\}$ is undecidable.

Proof idea: We show if E_{TM} were decidable, then A_{TM} would be.

So suppose E_{TM} decided by R. We want decider S for A_{TM}.

Could we use R directly for S? R accepts $<M>$ iff $L(M) = \emptyset$.

So if $L(M) = \emptyset$, then S should reject w.

But if $L(M) \neq \emptyset$, then we’re stuck!!???

Other Undecidable Problems

Trick: Instead of running R on $<M>$, we run it on a different machine $<S^{M,w}>$ (defined for specific M and w). $S^{M,w}$ takes input x, and:

1. if $x \neq w$, it rejects.
2. if $x = w$, run M on input w, and accept if M does.

$S^{M,w}$ accepts at most one input, w; and it accepts w iff M accepts w.

so $L(S^{M,w}) = \emptyset$ iff M rejects w

so $L(S^{M,w}) \neq \emptyset$ iff M accepts w

This allows us to use problem E_{TM}!
E_{TM} is Undecidable

Proof: Suppose E_{TM} were decidable by R. We show that A_{TM} would be decidable, a contradiction.

We first define S^{M,w} for given M and w as:

- On input x
 1. if x ≠ w, reject.
 2. if x = w, run M on w and accept if M does.

We now define decider S for A_{TM} as follows:

- On input <M,w>
 1. use M to construct S^{M,w}
 2. Run R on <S^{M,w}>
 3. If R accepts, S rejects; if R rejects, S accepts.

Other Undecidable Problems

We can use other problems than A_{TM} to get a contradiction!

Th. EQ_{TM} = {<M1,M2> | M1 is a TM , L(M1) = L(M2)}

is undecidable.

Proof: We show if EQ_{TM} is decidable, E_{TM} is, Contr.

Proof idea: EQ_{TM} tests if 2 languages =, E_{TM} if language = ∅

So E_{TM} is a special case of EQ_{TM}.

Proof: Suppose R decides EQ_{TM}. Construct S to decide E_{TM} as follows.

S: on input <M>
 1. Run R on <M, Rej>, where Rej is TM with L(Rej) = ∅
 2. If R accepts, S accepts; if R rejects, S rejects.

CONTR.!
Mapping Reducibility

Intuition: to solve a problem, reduce it to another

Ex. to solve problem of getting A in course, reduce to
getting A on quizzes, on homework, and on final.

We’ve already used this idea to prove more
problems undecidable

Ex: If \(\text{HALT}_{TM} \) is decidable, then \(A_{TM} \) is decidable.

But \(A_{TM} \) already shown undecidable, CONTR.

Mapping reducibility makes reduction of problems precise

\(A \leq_m B \): intuitively, if B has a solution, can
use to solve for A.

We will use computable mapping \(m \) of \(A \) to B

Computable Functions

TM as computer of output, not recognizer

Output is what is on tape when halt

Def.: \(f : \Sigma^* \rightarrow \Sigma^* \) is a computable function if

there is some TM M which computes \(f \):

on input \(w \), M halts with just \(f(w) \) on its tape.

Note: \(M \) must always halt!

Ex. computable function: TM M that, with i and j on tape,
computes \([i\] (erases i and j, when done)
computes \([* \) function

Other computable functions: \(\text{factorial(<n>)} \)

\(\text{gcd(<m,n>)} \) \(\text{prime(<n>) = <nth prime no}> \)

Transformers of TM:

\(f(<M>) = <M’> \) where \(L(M) = L(M’), \) and \(M’ \) never
moves its tape off the left end
Mapping Reducibility

Def. Language A is *mapping reducible* to language B, written \(A \leq_{m} B \), if there is a computable function

\[f: \Sigma^* \rightarrow \Sigma^* \], where for every \(w \) in \(\Sigma^* \),

\[w \text{ in } A \quad \Rightarrow \quad f(w) \text{ in } B \]

\(f \) is called a reduction.

Can test membership in A by membership in B

Ex. \(E_{TM} \leq_{m} EQ_{TM} \)

\[f: \Sigma^* \rightarrow \Sigma^* \]

\[\langle M \rangle \quad \rightarrow \quad f(\langle M \rangle) = \langle M, \text{Rej} \rangle \quad \text{ (where } L(\text{Rej}) = \emptyset \text{)} \]

\(f \) appends to \(\langle M \rangle \) the repr. \(\langle \text{Rej} \rangle \); \(f(w) = w \) ow.

\[\langle M \rangle \text{ in } E_{TM} \quad \Rightarrow \quad f(\langle M \rangle) \text{ in } EQ_{TM} \]

\(f \) is computable:

Uses of Mapping Reducibility

Th: If \(A \leq_{m} B \) and B is decidable, then A is decid.

Proof: Let \(D \) be the decider for B, and \(f \) the reduc.

\(A \rightarrow_{m} B \). We define decider \(D' \) for A as follows:

\(D' \): on input \(w \)

1. compute \(f(w) \)

2. Run \(D \) on input \(f(w) \); if \(D \) accepts, \(D' \) accepts.

 if \(D \) rejects, \(D' \) rejects.

 Since \(w \) in \(A \rightarrow f(w) \) in B by def. map. reduc.,

 and \(D' \) accepts \(w \rightarrow D \) accepts \(f(w) \),

 we conclude \(D' \) accepts A.

Since \(D \) is a decider, \(D' \) is a decider.

Therefore, \(A \) is decidable.
Uses of Mapping Reducibility

Cor: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Proof: Suppose B were decidable. By the prev. Th., since $A \leq_m B$, then A would be decidable. Contradiction.

Ex. If $A_{TM} \leq_m HALT_{TM}$ and A_{TM} undecidable

\Rightarrow $HALT_{TM}$ undecidable

To show $A_{TM} \leq_m HALT_{TM}$, need computable f:

\[
\begin{align*}
\text{Ex. if } A_{TM} & \leq_m HALT_{TM} \text{ and } A_{TM} \text{ undecidable} \\
\text{To show } A_{TM} & \leq_m HALT_{TM}, \text{ need computable } f : <M,w> & \mapsto <M',w'> \\
\text{Then } <M,w> & \text{ in } A_{TM} \iff <M',w'> \text{ in } HALT_{TM}
\end{align*}
\]

Uses of Mapping Reducibility

TM F computes f as follows:

F: on input $<M,w>$

1. Construct M':

 M': on input x

 1. Run M on x.

 2. If M accepts, M' accepts.

 If M rejects, loop infinitely.

2. Output $<M',w>$

Then $<M,w> \in A_{TM} \iff M$ accepts $w \iff M'$ halts on $w \iff <M',w> \in HALT_{TM}$
Uses of Mapping Reducibility

Th. E_{TM} is undecidable \textit{(revisited)}

A reduced to E_{TM}

Qu: is it a mapping reducibility?

$<M,w> \rightarrow <M'>$

M accepts w $\iff L(M') \neq \phi$

$<M,w>$ in A $\iff <M'>$ in E_{TM}

so we showed $A_{TM} \leq_{m} E_{TM}$

not $A_{TM} \leq_{m} E_{TM}$ \textit{(can't be done)}

We could still prove the th., because

E_{TM} decidable $\iff E_{TM}$ decidable

Turing-Recognizability & Mapping Reducibility

Th. If $A \leq_{m} B$ and B Turing-recognizable, then A is Turing-recognizable.

Proof: Suppose B is recognized by TM R, and f: $A \rightarrow B$ is a reduction. We define recognizer TM M for A as follows:

M: on input w
1. compute f(w)
2. run R on input f(w); \text{ if R accepts, M acc.}
 \text{if R rejects, M rejects.}
Since w in $A \iff f(w)$ in B, by def. map. reduc., and M accepts w \iff R accepts f(w)
we conclude M accepts A. M is certainly a recognizer. Therefore, A is Turing-recognizable.
Turing-Recognizability & Mapping Reducibility

<table>
<thead>
<tr>
<th>Cor. If $A \leq^m_B$ and A not Turing-recognizable, then B is not Turing-recognizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof: Suppose B were T. R. By the previous th., since $A \leq^m_B$, then A would be T.R. Contradiction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Th. EQ_{TM} is not Turing-recognizable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof: We show that $A_{TM} \leq^m_{TM} EQ_{TM}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F: on input $<M,w>$ construct Rej and M2 so that $L(Rej) = \emptyset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2: on input x, run M on w. If M accepts, accept. $L(M2)$ is either Σ^* (if M accepts w) or \emptyset (ow)</td>
</tr>
</tbody>
</table>

| M accepts $w \iff \emptyset = L(Rej) \equiv L(M2)$ |
Turing-Recognizability & Mapping Reducibility

Th. $\overline{EQ_{TM}}$ is not Turing-recognizable.

Proof: We show that $A_{TM} \leq_m EQ_{TM}$

Want $<M,w> \rightarrow <M_1,M_2>

M accepts w \iff $L(M_1) = L(M_2)$

G: on input $<M,w>$ construct Acc and M2 so

that $L(Acc) = \Sigma^*$

M2: on input x, run M on w. If M accepts, accept.

$L(M_2)$ is either Σ^* (if M accepts w) or ϕ (ow)

M accepts w \iff $\Sigma^* = L(Acc) = L(M_2)$

EQ_{TM} and $\overline{EQ_{TM}}$ are both Turing-unrecognizable