Decidable Problems

Represent problem using language

Problem: Is \(w \) accepted by DFA \(B \)?

\[
A_{DFA} = \{ <B, w> \mid B \text{ is a DFA that accepts } w \}
\]

\(<>\) denotes encoding as string

Th. \(A_{DFA} \) is a decidable language.

Proof idea: Decider \(M \) will simulate \(D \) on input \(w \).
If \(D \) would accept \(w \), then \(M \) accepts; \(D \) rejects, \(M \) rejects.

<table>
<thead>
<tr>
<th>q0</th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
</tr>
</thead>
</table>
| 011 | 1# | \(q_0 \) | | 0111 | \(q_0 \) | | | 1

Decidable Problems

\[
A_{NFA} = \{ <B, w> \mid B \text{ is an NFA, } B \text{ accepts } w \}
\]

Th. \(A_{NFA} \) is decidable.

Proof idea: Define \(N \) to use TM \(M \) (last th) as subroutine.
1. Convert NFA \(B \) to DFA \(D \).
2. Run TM \(M \) on input \(<D, w> \)
3. If \(M \) accepts, then \(N \) accepts; \(M \) rejects, \(N \) rejects.

<table>
<thead>
<tr>
<th>q0</th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
</tr>
</thead>
</table>
| 011 | 1# | \(q_0 \) | | 0111 | \(q_0 \) | | | 1

| \{\(q_0 \) \} \{\(q_0 \) \(q_1 \) \} \text{......} | <\text{det. table}> |
Decidable Problems

E_DFA = \{ | B is a DFA, L(B) is nonempty\}

Th. E_DFA is decidable.

Lemma: For DFA B, L(B) is nonempty if and only if B accepts a string of length at most |Q|.

Trivial.

Suppose B accepts some word. Let w be a shortest word accepted by B.

If |w| is < |Q|, then we are done. So suppose |w| > |Q|. Consider the sequence of states of B on w.

Decidable Problems

w = w_1 w_2 w_3 \ldots w_m, \quad m > |Q|\]

\begin{align*}
 &w_1 \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \ldots \rightarrow q_m
\end{align*}

Since there are more than |Q| states in this sequence, there must be a repetition of states, by the pigeonhole principle. But then we can take a snippet z out of w, and get a shorter string that is accepted by B.

Contradiction. Therefore w is of length |Q|.

Back to Theorem:

Decider D will, on input , simulate B on inputs of length 0 to |Q|. If B accepts any string of that length, D accepts. If no such string is found, D rejects. By the Lemma, D accepts E_DFA.
Decidable Problems

\[\text{EQ}_{\text{DFA}} = \{ \langle A, B \rangle \mid A, B \text{ are DFA, and } L(A) = L(B) \} \]

Th: \(\text{EQ}_{\text{DFA}} \) is decidable.

Proof: We construct a DFA \(C \) with

\[
L(C) = (L(A) \mathbin{\mathbf{\setminus}} L(B)) \mathbin{\mathbf{\cup}} (L(A) \mathbin{\mathbf{\setminus}} L(B))
\]

(symmetric difference)

\[
\begin{array}{c}
L(A) \\
\cap \\
\downarrow \\
L(B)
\end{array}
\]

\(C \) can be constructed by TM \(M \) using algorithms we developed for closure under \(\mathbin{\mathbf{\cup}}, \mathbin{\mathbf{\setminus}}, \mathbin{\mathbf{\cap}} \).

Since \(L(C) \) is empty iff. \(L(A) = L(B) \), we can use previous theorem for deciding \(L(C) \) nonempty.

Decidable Problems for CFG’s

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG, } G \text{ generates } w \} \]

Th. \(A_{\text{CFG}} \) is decidable.

Proof idea: TM could start with start var. \(S \) and try all derivations. If \(w \) is not in \(L(G) \), there will be none!

So trying all derivations to see if \(w \) would not yield decider.

To define a decider, we first put \(G \) in Chomsky normal form.

Then we can bound the number of steps in a derivation TM needs to try to \(2 |w| - 1 \).

QU: WHY?

The decider \(D \) will then list all derivations of length 0 to \(2 |w| - 1 \). If any derivation generates \(w \), \(D \) accepts; \(\omega w \), reject.
Decidable Problems on CFG's

\[E_{\text{CFG}} = \{<G> \mid G \text{ is a CFG, } L(G) \text{ is nonempty}\} \]

Th. \(E_{\text{CFG}} \) is decidable.

Proof idea: Can’t try all strings (won’t be decidable).
Consider any parse tree for a string \(w \).

\[
\begin{array}{c}
S \\
\Downarrow \\
\text{If parse tree has path of length } |V|,
\end{array}
\]

then there is a repetition of variables along that path, and we can produce a shorter parse tree. We can repeat this process so that there is a parse tree with no path of length \(|V| \). Therefore, if \(G \) generates any string, it generates a string whose parse tree has no path \(|V| \).

Decidable Problems on CFG's

Th. \(E_{\text{CFG}} \) is decidable. **(continued)**

A decidер \(D \) for this problem will generate a collection \(C \) of parse trees on its tape. \(C \) will initially contain \(S \).

\(D \) repeatedly adds to \(C \) any tree that can be obtained from one already in \(C \) by applying a single rule, such that

1. the new tree is not in \(C \)
2. the new tree does not have any path of length \(|V| \)

Since there are only a finite number of trees of fixed length, the TM \(D \) will eventually complete \(C \). \(L(G) \) is nonempty iff at least one tree in \(C \) has only terminals as leaves.
Decidable Problems for CFG’s

\[\text{EQ}_{\text{CFG}} = \{ \langle G, H \rangle \mid G, H \text{ are CFG, and } L(G) = L(H) \} \]

\[\text{EQ}_{\text{CFG}} \text{ decidable??} \]

Can’t use same idea we used for DFA’s (symmetric diff.) because CFL’s are NOT closed under complement.

Turns out \(\text{EQ}_{\text{CFG}} \) is NOT decidable. We can’t prove it yet.

Th. Every CFL is decidable. (HW 3)

Undecidable Problems

Showed these problems for FA and CFG’s decidable: Acceptance, Emptiness, Equivalence

Qu: What about for TM?

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]

Will show that \(A_{\text{TM}} \) is not decidable (ie, undecidable)

What’s wrong with:

Define TM \(U \) (Universal TM) on input \(\langle M, w \rangle \)

1. Simulate \(M \) on input \(w \)
2. If \(M \) accepts, \(U \) accepts; if \(M \) rejects, \(U \) rejects.

\(U \) can act like any TM on any input

Is \(U \) a decider????
Universal TM U is not a decider

U has no way to determine if M halts on input w.

Lemma: A_{TM} is Turing-recognizable.

Proof: U is the recognizer.

Halting Problem: $A_{HALT} = \{ <B,w> \mid B \text{ halts on input } w \}$

A_{HALT} is decidable \iff A_{TM} is decidable

We show A_{TM} is undecidable (then A_{HALT})

Doesn’t mean that we CAN’T determine for a particular $<B,w>$ whether B halts (accepts) on input w.

Does mean that there is no algorithm that works for all input $<B,w>$. Gives fundamental limitation of Algorithms/TM.

Diagonalization for TM

Suppose there was a super-diagonalizer TM D on input $<M>$:

1. Simulate M on input $<M>$
2. If M accepts, D rejects; if M rejects, D accepts.

 If M never halts, D accepts.

Note D has power to decide if M halts or not on $<M>$.

QU: Can D be in the list (ie = M_i for some i)?

$$ M_1 \quad M_2 \quad M_3 \quad \ldots $$

$<M_1>$

$<M_2>$

$<M_3>$

\vdots