Variants of TM's

Many different ways to define TM model:
- multiple tapes, 2-way tapes, nondeterminism

Our model, and all reasonable variants, have same power (i.e., accept same class of languages)

So the model is robust

Ex. \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R,S\} \) \hspace{1cm} (S for stay)

Is this class of TM more powerful? NO!

Given any TM M' in extended class, can define
a regular TM M that does 2 moves (R,L)
for every S move of M', and acts exactly like M' otherwise

Two-way tapes

Lemma: If L is accepted by a TM M with a 2-way tape, then L is accepted by a TM M' with 1-way tape.

Proof idea: Use 2 tracks:

\[
\begin{array}{c|c}
A_0 & A_1 \\
\hline
$ & A_1 \\
A_0 & $ \\
\end{array}
\]

for single 2-way:

\[
\begin{array}{c|c|c}
A_1 & A_0 & A_1 \\
\hline
\ldots
\end{array}
\]

M' must keep track of whether scanning symbol on top or bottom track, build into state:

\(Q' = \{q_1\} \cup \{Q \times \{\bot\}\} \) \hspace{1cm} \(\Gamma' = \{[x,y] | x, y \in \Gamma \text{ or } y = $\} \)

\(\Sigma' = \{[a\square] | a \in \Sigma \} \)
Multiple tapes

\[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]

Lemma: If L is accepted by a multitape TM, then L is accepted by a single tape TM.
Proof idea: use tracks, with special markers for each tape head.

<table>
<thead>
<tr>
<th>w</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>m n</td>
</tr>
</tbody>
</table>

M' will simulate M by making multiple passes over tape, 1 for each track. First, it needs to determine all the symbols being read, in order to determine the next move. So \(k \) symbols must be stored in state. Then, once the next move is determined, it must update each track with new symbol and new tape head position.

Nondeterministic TM's

\[\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\}) \]

Lemma: If L is accepted by a nondet. TM N, then L is accepted by some deterministic TM D.
Proof idea: D will simulate N by trying all possible branches of N's computation on input w. If D finds an accept state on some branch, it accepts. Otherwise, D does not accept.

QU: How should D search the computation tree??

How represent a branch?
<table>
<thead>
<tr>
<th>Robustness of TM's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is this surprising??</td>
</tr>
<tr>
<td>TM's ←→ "Idealized" programming languages</td>
</tr>
<tr>
<td>Programming languages, if sufficiently general, can do the same computations</td>
</tr>
<tr>
<td>Ex. C, Lisp, Java</td>
</tr>
<tr>
<td>TM's make formal our informal notion of algorithm</td>
</tr>
<tr>
<td>Church-Turing Thesis: The Turing machine model</td>
</tr>
<tr>
<td>(and any reasonable variant of it) embodies our informal notion of algorithm.</td>
</tr>
<tr>
<td>Can’t be proved!</td>
</tr>
<tr>
<td>From now on, TM ↔ Algorithms</td>
</tr>
</tbody>
</table>