CSE105 A Solutions to Quiz 3, Tuesday Nov. 27, 2001

1. State the Church-Turing Thesis:

 Intuitive notion of algorithms = Turing machine algorithms

2. Fill in the blanks in the following proof.

 Theorem If $A \leq_m B$ and B is Turing-recognizable, then A is Turing recognizable.

 Proof. Let M be the recognizer for B, and let f be the reduction from A to B. That is, $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function such that, for every $w \in \Sigma^*$,

 $$w \in A \iff f(w) \in B$$

 We define the recognizer N for A as follows:

 “On input w:

 (a) Compute $x = f(w)$.

 (b) Run M on x and output whatever M outputs."$

 N recognizes A because M is a recognizer for B.

3. Argue that the class of decidable languages is closed under complementation, by filling in the blanks in the following proof.

 Let $A \subseteq \Sigma^*$ be an arbitrary decidable language, and let N be a TM deciding A. That is, for every $w \in \Sigma^*$, the TM N on w outputs Accept if $w \in A$, and outputs Reject otherwise.

 Construct a decider M for the complement \overline{A} of A as follows:

 “On input w:

 (a) Run N on w.

 (b) If N accepts w, then reject; otherwise accept.

 M halts on every input w because N is a decider for A.

4. Give an example of a language that is not Turing-recognizable, but its complement is Turing-recognizable. (Just describe the language; you do not need to give any proofs.)

 $\overline{A_{TM}}$, (i.e., the complement of A_{TM}).

5. Show that the language $A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM and M accepts $w \}$ is undecidable by filling in the blanks in the following proof.

 Define a language D so that $D \neq L(N)$, for every TM N. Namely, for every string $\langle N \rangle$, where N is a TM, we define

 $$\langle N \rangle \in D \iff N \text{ on input } \langle N \rangle \text{ does not accept.}$$
For an arbitrary TM N, we have $L(N) \neq D$ because the string $\langle N \rangle$ is in one of the languages $L(N)$ and D, but not in the other.

Now, if A_{TM} is decidable by some TM H, then we obtain a decider K for the language D as follows:

“On input $\langle N \rangle$, where N is a TM:

(a) Run H on input $\langle N, \langle N \rangle \rangle$.
(b) If H accepts, then reject. Otherwise accept”

Thus, $D = L(K)$, which is a contradiction. Hence, A_{TM} is undecidable.

[12] 6. For each of the following statements, indicate if it is True or False. (No justification is necessary.)

(a) A_{TM} is Turing-recognizable. True
(b) A_{DFA} is undecidable. False
(c) A_{CFG} is undecidable. False
(d) Every CFL is decidable. True
(e) Every language accepted by a 2-stack PDA is decidable. False
(f) The complement of $HALT_{TM}$ is Turing-recognizable. False