1. (a) Give a CFG generating the language \(L = \{a^m b^m \mid 0 \leq n \leq m \leq 3n\} \).

\[
S \rightarrow aSb \mid aSbb \mid aSbbb \mid \epsilon
\]

(b) Is your grammar ambiguous? Why or why not?
Yes, it is ambiguous. There are two different parse trees for deriving the same string \(aabbb \):

![Parse Trees](image-url)
2. Give the state diagram of a PDA that recognizes the language

\[M = \{ a^i b^j \mid i, j \geq 0 \text{ and } j < 2i \} \]

Note: your PDA is allowed to push more than one symbol onto the stack at a time; if it pushes a string \(a_1 a_2 \ldots a_k \), then the symbol \(a_1 \) will become the top of the stack.

Idea: for each input symbol \(a \), push two \(a \)'s onto the stack. When see the first \(b \), start popping \(a \)'s. Accept while the stack remains nonempty. Reject if the stack becomes empty.

3. (a) Complete the definition: A CFG \(G = (V; \Sigma; R, S) \) is in **Chomsky Normal Form** if each rule in \(R \) is of the form

\[A \rightarrow BC \]

or

\[A \rightarrow a. \]

where \(A \in V, B, C \in V - \{S\}, a \in \Sigma. \)

In addition, we allow the rule \(S \rightarrow \epsilon. \)

3. (b) Convert the following CFG into an equivalent CFG in Chomsky Normal Form. (The start variable is \(A \).)

\[A \rightarrow BAB \mid B \mid 000 \]

\[B \rightarrow 00 \mid AB \]

Solution:

\[S \rightarrow BX \mid ZZ \mid AB \mid ZY \]

\[A \rightarrow BX \mid ZZ \mid AB \mid ZY \]

\[B \rightarrow ZZ \mid AB \]

\[X \rightarrow AB \]

\[Y \rightarrow ZZ \]

\[Z \rightarrow 0 \]

The new start variable is \(S \).
4. Use the Pumping Lemma to show that the following language is not context-free:

\[L = \{ w \mid w \in \{ a, b, c \}^* \text{ and } w \text{ has equal number of } a \text{'s, } b \text{'s, and } c \text{'s} \} \]

Suppose \(L \) is a CFL. Then the Pumping Lemma holds for \(L \) with some pumping length \(p \). Consider the string \(s = a^p b^p c^p \). Clearly, \(s \in L \) and \(|s| > p \).

By the Pumping Lemma, there must be a partitioning of \(s = uvxyz \) such that \(|vy| > 0, |vxy| \leq p, \) and \(uv^i xy^i z \in L \) for every \(i \geq 0 \). Consider all possible cases: Since \(|vxy| \leq p \), \(v \) and \(y \) contain at most two different (consecutive) symbols: type 1 and type 2. Hence, if we take the string \(uvxyzz \), then it will contain more symbols of type 1 or of type 2, while it will still contain the same number of symbols of the remaining type (type 3). Hence, \(uvxyzz \notin L \). A contradiction.

5. Complete the following high-level description of a Turing machine recognizing the language

\[L = \{ w \mid w \in \{ a, b, c \}^* \text{ and } w \text{ has equal number of } a \text{'s, } b \text{'s, and } c \text{'s} \} \]

On input \(w \):

(a) If \(w = \epsilon \), then Accept.

(b) Scan the input and find the leftmost \(a \). Replace it by \(X \). If no \(a \) is found, Reject.

(c) Scan the input and find the leftmost \(b \). Replace it by \(Y \). If no \(b \) is found, Reject.

(d) Scan the input and find the leftmost \(c \). Replace it by \(Z \). If no \(c \) is found, Reject.

(e) Scan the input and check if any \(a \text{'s, } b \text{'s, or } c \text{'s are left. If none, then Accept}

Otherwise go to Step (b)