Lattice Games and the Economics of Aggregators

Patrick Jordan Uri Nadav Kunal Punera Andrzej Skrzypacz George Varghese
Yahoo! Research
701 First Ave.
Sunnyvale, CA 94089
{prjordan, urinadav, kpunera, skrz, georgev1}@yahoo-inc.com

ABSTRACT optimization and spam make it hard to find what one wants when
searching for some topics such as “cameras.” Second, along with

We model the strategic decisions of web sites in content markets, . . . .
he amount of bad content proliferating, niche and well-crafted sites

where sites may reduce user search cost by aggregating content’ i h I | di “th
Example aggregations include political news, technology, and other eep appearing such as StarFall (early reading) or MacRumors; the

niche-topic websites. We model this market scenario as an exten-”IUSion that one can satisfy oneself with a small set of portals is be-
sive form game of complete information, where sites choose a setcoming harder to sustain. And yet user attention and clicks remain

of content to aggregate and users associate with sites that are neaf I|m|_ted resource to discern the gems among the g_arbage.
est to their interests. This qualitative argument may explain why web site aggregators

Thus, our scenario is a location game in which sites choose to have become such a powerful and rising phenomenon. Rather than

aggregate content at a certain point in user-preference space, an&ead thousands of individual technical sites or more general web

our choice of distance metric, Jacquard distance, induces a latticeSIt€S SUCh as Yahoo and AOL, most software professionals get their

structure on the game. We provide two variants of this scenario: technical news from some combination of TechCrunch, SlashDot,

one where users associate with the first site to enter amongst sitefrs Technica and AllThingsD (and the likes). There are subtle dif-
of equal distances, and a second where users choose uniformly pel€rences betw_een the foerlngs: A”Th'.nQSD appears to specialize
tween sites at equal distances. We show that Subgame Perfect Nasf{'°"® " tephrpcal gossip .(e.g. CEOs f!red) while Sla.Sh.DOt. seems
Equilibria exist for both games. While it appears to be compu- to specialize in technlcal ideas. There is further specialization: for
tationally hard to compute equilibria in both games, we show a example, Applelnsider combs _the web f°T Apple News f"‘”d Mac
polynomial-time satisficing strategy called Frontier Descent for the SCftware updates. Such catering to specific tastes is widespread:
first game. A satisficing strategy is not a best response but ensured" €x@mple, while many people consume news with broad sites
that earlier sites will have positive profits, assuming all subsequent such as Yahf?O! NeW.S and CNN Ne.WS’ a Iar”ge constituency prefers
sites also have positive profits. By contrast, we show that the sec- [0 consume “news with a conservatlv_e slant” at say Huffington Post
ond game has no satisficing solution. ar_1d Drudge Repo__rt._Aggregators'exst for photogr_aphy (Mashfot),
Nintendo fans (WiiNintendo), designers (Mostlnspired). If one be-
lieves in the phenomena of the long-tail that explains the success of
Amazon and Netflix, then it seems reasonable to posit that increas-
General Terms: Economics ingly specialized aggregators (e.g., Indian Immigrant children) will
Keywords: Content aggregators, Game theory keep appearnng.
What incentives do aggregators have? Why do aggregators enter
some spaces and not others? At what point does specialization lead
1. INTRODUCTION to losses? In this paper, we attempt to answer these questions from
Browsing has moved through several historical phases starting @ game theoretic perspective. We develop a model where aggrega-
from early search engines (culminating in sites such as Google) tors and users are modeled as subsets of a content universe. A “user
and directories (Jerry and David’s Guide which culminated in Ya- Set” models user preferences, describing the content that a user at
hoo). In midlife, the idea of a favorite Portal took hold with sites @ given point in time is interested in. An “aggregator set” models
like AOL and Yahoo attempting to provide as much of what a user the content the aggregator hosts. Users have a simple strategy: they
needed by visiting a small set of portals. Recently, strategic be- pick the “closest” aggregator (which we model as the Jacquard dis-
havior of some content providers and unabated growth of online tance between their user set and the aggregator set). Aggregators
content started undermining the standard “Search for Topic” and on the other hand seek to maximize users that pick them. We model
“Browse through Favorite Portal” paradigms. First, search engine aggregators as having a fixed cost of entry and consider a sequen-
tial game in which aggregators enter serially if they can make profit
and position themselves on nodes in the content lattice. Aggrega-
tors have a fixed cost F to enter. After all entry decisions are made,
users make their choices.

Categories and Subject Descriptors:J.4 [Computer Applica-
tions]: Social & Behavioral Sciences
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is missing k pieces (a property of our distance measure that we find managing multiple aggregators (a recent AOL’s strategy). We leave

realistic). the first topic for future research and provide partial discussion of
The questions we ask include: When and where should an aggre-the case where one firm can enter with multiple aggregators.

gator enter? In a game with infinite number of potential entrants, In summary, even though there is a vast literature in economics

is there a subgame perfect Nash equilibrium? Is it in pure strate- (and political economics) on entry decisions with differentiated prod-

gies? Under what conditions is there entry in equilibrium? What ucts (differentiated by taste, location, features and bundling), we

is the maximum/minimum number of equilibrium entrants? Are believe that our (new) model of entry on a lattice has several ad-

there reasonably computable strategies that an aggregator can useantages over the existing models:

to decide when and where to enter?

2. RELATED WORK

The phenomenon of specialization and strategic entry is certainly
present in other markets. The seminal early papers on location
games in one-dimentional taste space are Hotelling [6] and Salop
[9]. These models have been extended in many ways, see for ex-
ample Economides [5], Caplin and Nalebuff [3], Ansari, Econo-
mides and Steckel [2] among many others. While some of these
extensions consider multiple product characteristics, there are two
important differences from our model. First, the location space is
very different—to the best of our knowledge in all these papers lo-
cation is chosen on a subset®? . By contrast, we model content
aggregators as choosing subsets of the universe of available con-

1. We believe Euclidean distance is a poor model (in any di-

mension) for content disparities between users and web sites.
In some simple cases (conservative versus liberal), a Eu-
clidean may be appropriate, but the nuances of taste such
as TechCrunch versus MacScour,Yahoo News versus Huff-
ington Post seems harder to capture. We believe Jacquard
distance is a better model.

. We model aggregators as having a fixed constant cost regard-

less of the size of content they host. This seems a reasonable
assumption for virtual goods such as content but is unrea-
sonable for physical goods such as furniture where there in
incremental stocking cost per SKU.

. Standard economic models also add the notion of prices and

tent, introducing a lattice structure to the location space and a dif-
ferent distance metric that is associated with it. Second, we do not
have prices (which play an important role in the models of product
differentiation) because most existing aggregators offer free access
to users! (this second assumption makes our model closer to a
model of a strategic platform choice in political economy models,
but these also differ from our model with respect to the location
space and they typically look at a winner takes all competition).
Our model is also related to issues of product (or store) design. If
there is a universe of all features a product may have then each pro- Beyond a different model, some of our results also introduce a
ducer designs its product expecting future competition with other new way of analyzing the problem. One way of analyzing such a
producers (who make their own designs). That problem is often game is to characterize subgame perfect Nash equilibria (SPNE).
modeled as a quality choice problem (starting with Shaked and Sut- While we can do it in particular toy-examples, providing many
ton [11]), but that makes it similar to the models of location choice. properties of SPNE outcomes is hard (and even computing SPNE
We are not aware of any models of product design that would treat seems to be a difficult problem computationally). Therefore, after
the design as a selection of features and/or consumer preferencesve establish some basic results about SPNE, we then move to find-
to be characterized by Jacquard distance instead of the more usuaihg a satisficing strategy, which we define as a strategy that given
Euclidean distance. Additionally, for our model to be applied to the entry decisions of existing firms, a firm can take to guarantee
product design, it would be natural to allow for price competition itself non-negative payoffs under a minimal assumption that future
and for the costs of the product to depend on the number of fea- entrants will take only strategies that would result for them in non-
tures. In contrast, it appears to us that the costs of aggregation ofnegative payoffs. That strategy is neither a best-response (required
online content increase much less with the amount of aggregatedfor equilibrium) nor it is a max-min strategy (which would allow
content and hence we propose to assume these effects away. the following entrants to lose money), but it is somewhat in be-
A final related literature is on bundling. These papers often fo- tween: we allow the future entrants to take adversarial actions, but
cus on a question whether a particular producer should offer its constrain them not to lose money themselves. We prove for one of
products separately or to bundle them (for example, sell individual- the variants of the model (in which in case of ties consumers choose
game tickets separately, or sell them as season tiéketSuch aggregators who entered earlier) such a strategy exists and can be
considerations may be relevant for publishers that introduce pay-found be a simple greedy algorithm. In that model, if all entrants
walls (and then allowing users to purchase subscription to multiple follow that algorithmic strategy, the final outcome is a limited en-
websites or purchase them a la carte) as well to questions of firmstry with varied types of aggregators that all make positive profit.
- - . ) . We show that this strategy is not necessarily a part of a SPNE (i.e.
Negative prices to attract users are impractical for obvious rea- it is not a best response). Finally, we show that if ties are broken

sons, but as long as advertising is perceived by users as negativey mmetrically, this algorithm does not yield a satisficing strate
utility, aggregators could compete in the amount of advertising their Y Y. g y g ay-

sites have. Yet, it is possible that at least for some small level of
advertising users do not mind advertising and competition between3. MOTIVATION

aggregators could drive the advertising to that level. For simplicity . . . i
we abstract away from competition in the amount of advertising. Su'rl'nhe_goal of our model Isto exp|a|r_1 the evolution c_>f content con
ption. Starting from impersonalized portals which tried to sat-

2That literature starts with Stigler [13] and includes, among many . )
others, Schmalensse [10], McAfee, McMillan and Whinston [7] isfy every user to all possible pieces of content, there has been an

and Nalebuff [8]. The last paper studies how bundling can be used evolution to another extreme (search engines) that are very granu-
to deter entry. lar in topic. However, aggregators provide a middle ground where

competition for prices but for the most part most aggregation
sites today are free and are paid for by advertising. The few
sites that have attempted pricing (e.g., NYTimes) have un-
clear outcomes today. In the web world, aggregators attempt
to capture users (and hence ad revenues) by tailoring content
and not by lowering prices or reducing advertising below cer-
tain level needed for ease of use (with the notable exceptions
of websites like Wikipedia that are run not-for-profit).




Generic Content (8M) Player 1: Yahoo? imply sites with a large amount of content that a user does not
' \ want; in some sense, we are modeling user unhappiness by a large
Jacquard distance. Users thus maximize their utility by picking ag-
Generic Sports (6M) gregators with the smallest Jacquard distance from their own taste
) Player 2: ESPN? set. We note that we believe that Jacquard distance also makes
e sense for the standard economics of specialization in the physical
4 world. For instance, users prefer to go to a furniture store to buy
Liberal News (2M) Conservative News (0.5M) furniture rather than to a general purpose store such as Walmart.
Standard economic literature users Euclidean distance and location
games to model this phenomena; one of our contributions is sug-
gesting that Jacquard distance is a more accurate model to capture
the complexities of user tastes.

THE EXTENSIVE FORM GAME. Continuing with Figure 1, a player
3 (say CNN) may decide to enter the news market and claim 4M
users away from Yahoo. Further specialization is possible because
ere is a still attractive market of 2 million liberal news users.
hus a Player 4 (say Huffington Post) may enter which steals away
2M users from Player 3. At this point, there is no incentive for a
fifth player to enter because the liberal news market does not pro-
vide enough revenue (0.5M) to break even after a 1M fixed cost.
If we chose to model Generic Sports as having further subcate-
TASTE SETs. To motivate the model, consider Figure 1. The figure gories (e.g., Baseball, Football, Basketball) with sufficiently large
represents sets of user tastes. For example, it posits a large set ofevenue, then further players (e.g., MLB News, NBA News) could
8 Million (8M) users who are interested in generic content. It also also have incentives to enter the game if the number of sports fans
assume that there are 4 million users interested in generic news,in each category are sufficiently large.
6 million in generic sports. Finally, there are 2 Million users in-  We model the situation in Figure 1 more abstractly in Figure 2.
terested in liberal news and 0.5 million interested in conservative We represent by the string the set of users with liberal news taste,
news. We draw an arrow from a more generic set of user tastespy B the users with a conservative news bent, andiBythe set of
to a more specific set of user tastes so the sets form a lattice—theysers who are indifferent to the slant and can thus consume conser-
primary object we use to play our aggregator games. vative and liberal news with equal relish. Similarly, we represent
Note, however, that the value of a “taste set” need not equal the by ' the set of users who like sportd. BC then represents the set
sum of the values of all its subsets in the lattice. For example, in our of users who like generic content: these are users who are happy to
example there are 4M users who are happy to view generic news butconsume sports and news of any kind.
there are 2M users who are only interested in news with a liberal  Of course, generic content clearly includes other categories as
slantand 0.5M who are interested in news with a conservative slant.well such as Entertainment and Technology. These can be modeled
Thus 4 is not equal to 2 + 0.5. This makes sense because the seby extending our alphabet of characters but we have chosen not to
of users interested in generic news can be interpreted as the setio so in order to keep our example as simple as possible. There are
of users who are equally happy to consume both conservative oralso clearly other possible lattice nodes not shown in Figure 1, such
liberal news. This is completely independent from the set of users as users who like either conservative news or sports but not liberal
who overwhelmingly prefer liberal news. news (setBC). In all subsequent lattice diagrams, assume that any
One can assume that these content taste sets could be measurasgktice nodes not explicitly shown have zero users.
by surveys and are common knowledge to all players (web site  Define the Jacquard Distandé (X, Y") between two string&
providers) who choose to cater to certain taste sets. Let us alsoandy as1 — R(X,Y). The resemblanc&(X,Y) between two
assume that a web site must have 1 million users to break even. Westrings X andY is defined ad (X,Y)/U(X,Y). I(X,Y) is the
model that as a fixed cost of 1M assuming the currency is users.sjze of the intersection between the set of characte?$ and the
More generally, the utility of a web is the the number of users that set of characters iiy". U(X,Y) correspondingly represents the
choose the site less its fixed cost. size of the union between the set of character® iand the set of

USERBEHAVIOR. Assume that initially player 1 in the game (e.g., Ccharactersiry”. o o
Yahoo) may choose to provide a generic content site. At that point, Based on these definitions, it is easy to see #a{C, C) = 0
if Yahoo is the only site, all users will (in our model) flock to Ya- ~ While JD(ABC, C') = 2/3. In other words, users with a taste set
hoo (because there are no competitors yet) so that Yahoo gets 20.%f generic sports will prefer a sports site |I!<e ESPN (in our model),
Million users and a payoff of 20.5M - 1M = 19.5. However, this {0 @ generic content site such as ABC which has been taken by say
could encourage a second player (say ESPN) to start a sports webYahoo.
site. Now the users only interested in sports will switch to ESPN, ATTRIBUTING REVENUE. We also have to make a major modeling
and so ESPN garners 6M users and Yahoo loses those users. Wehoice as to what to do when two sites havesameJacquard dis-
model this mathematically by saying that the Jacquard distance oftance to a user choice set. There are two simple possibilities. The
the Generic Sports users is smaller to ESPN than to the genericfirst is what we call FMT (First Movers Take Ties). In the FMT
content site, and that users unilaterally switch to web sites have thegame, the site which comes first in time (recall we are playing a
smallest Jacquard distance to their own taste set. Recall that thesequential game) wins all user choice sets of equal Jacquard dis-
Jacquard Distance between two setd is R, where the resem- tance. On the other hand, a more standard assumption in economic
blanceR is the size of intersection divided by the size of the union theory is the ET game; in the ET game, if there are ties the revenue
of the two sets. is shared equally.

Intuitively, this makes sense because large Jacquard distances For example, in Figure 1 suppose that another liberal news site

Player 3: CNN>

Generic News (4M) .
Py

&

Player 4: Huffington Post?

Figure 1: Example to motivate the lattice model

users do not have to explicitly know what they want and yet do not
have to perform the manual search inherent in portals. We would
like to understand how these aggregators choose the sets of conte
they provide. To do so we will model user preferencecastent
taste setsthe entrance of aggregators into the market asxa@n-
sive form gamgeand the resultingayoffsthat accrue to the aggre-
gators as their incentive to enter the market.



ABC (8M) our simple model applies to some extent if the revenue num-
bers attached to the taste sets are interpreted as the expected

, number of users.
v \ e Sparse Latticesin practice, the vast majority of combina-
i tions of user taste sets will not be known and will be impos-
AB (4M) sible to survey. Thus, practical models will have most of their
yd weight(revenue) in the leaves of the lattice. We leave special-
P izing our results to such “sparse” lattices as future work. For
p this paper, they can be modeled as nodes with zero revenue.

A(ZM) ~a 4. FORMAL MODEL

B (0.5 M) We now proceed formally. We have a countably infinite set of

. potential entrantg (e.g., Players like Yahoo, ESPN etc) with typi-
Fixed cost F = 1M cal element € I. We have a lattice. of subsets of an underlying
Content seC with a typical elemens C C. We assume that every
subsetS in the lattice has a valug(S) which represents the payoff
for capturing users with that set of tastes; the values(sf) are
weakly positive. For convenience, we will find it useful to define
the descendant reveni€(S) of a lattice node as the sum of the
enters the fray. In the ET model, this is reasonable because a newevenues ofS and all descendants &f in the lattice. For exam-
site competing for the conservative news taste set can get a millionple, in Figure 2u0(ABC) = 8M, the number of users who are
users and break even. This is not true in the FMT model; the FMT interested in generic content Bi{ ABC') = 20.5M.
game models situations where users do not switch (because of say Playeri at timei observes the history of the game and decides
intertia) if there is a new site that caters to exactly the same tastes.whether to enter and where to enter. The location of entry (player
The assumption is that if the new site has exactly the same set ofi action) is a node (a taste set) in the lattice, and the empty set if
content users prefer to stay with the existing site. Of course, the there is no entry. A history (¢) is the sequence of the actions of
truth is more nuanced. Users may switch to the new site despiteall players< ¢. H(0), the history at timé) is the empty sequence.
inertia because the voice of the site is subtly different, something A strategy of playet, ; is a mapping from histories of lengthio
that would be hard to model. We believe the real truth is somewhere actions. We say that a history is finite with lengthif after T’ no
between both models. Thus we study both models in the sequel. players enter. For a finite history of lengthwe define the payoff

MODELING SUBTLETIES. We do not explicitly model the follow-  Of playerd, w(H (t)) for two kinds of games as :
ing phenomena. a) First Movers Take Ties (FMTGiven the locations of all play-
) ) . ers in the historyH (7'), compute the Jacquard distance between
* Variable costs for playersin reality, the cost of a web site 5.1 player and each set on the lattice, allocatif) based on the
varies depending on the number of users it serves if simply gmajest distance and in case of ties allocatit§) to the player

in terms of the costs of servers and electricity. However, this \:th the smallest index. The payoff of playet is then the sum of
can easily be modeled by simply subtracting the variable cost allocatedv(S) less a fixed CosF .

from the fixed revenue of a node before placing it in the lat- ) . L .

tice. b) Equal Tie-breaking (ET)ET is similar to FMT, except in case
of ties, ET allocate®(S) equally among all the players with the

e Multiple moves by a playeiVe allow a player to make only ~ smallest Jacquard distanceSo

1 move (to enter or not) and not to make further moves. To  In both games, we add a small technicality to allow for the fact

some extent this models the fact that completely changing a that our games are potentially infinite, especially off the equilib-

web site to fit a new set of tastes is tantamount to completely rium path. For histories that are not finite, the payoffs-a€ for

restarting as a new player with a new fixed cost. Imagine all players that enter ar@ifor the rest.

the difficulty of retooling The Huffington Post to become a

competitor to TechCrunch! 5. FRONTIER DESCENT STRATEGY

e Users choosing multiple aggregator$n practice users do In this section, we describe an easily computable strategy for
not visit just one site that is closest to their interests but a the FMT game called Frontier Descent. Intuitively, this strategy
small set of sites, while possibly minimizing a browsing bud- descends the lattice starting from the top of the lattice until it finds
get. Modeling this seems very hard because picking a union that going any lower would drop revenue below the fixed dost
of taste sets that minimize Jacquard distance seems akin toThis creates a “frontier” of lattice nodes; the algorithm then picks
set cover which is computationally hard. As we will see, even the "best candidate" in the frontier. This algorithm is linear in the
with a simple single choice of web site the games are struc- size of the lattice while standard backtracking algorithms [1] take
turally complex and appear to have hard to compute equi- time that is exponential in the size of the game.
libria. Thus it makes sense to start with the simplest model  Unfortunately, we can prove that the Frontier descent algorithm,
and add complexity later. Further, instead of modeling a user while faster, does not compute an equilibirium strategy. Instead,
as choosingB taste sets, we could alternately model an in- we prove it provides a positive payoff for all players who enter
dividual user as a probabilistic agent that chooses different such that they all break even. Note that this is akin to the concept
taste sets with defined probabilities. For example, a user at of satisficing proposed by Simon [12] but its use in game theory (a
any point in time may be in the mood for Sports with prob- satisficing strategy) may be new. From the perspective of algorith-
ability 0.8 and for news with probability).2. In that case, mic game theory, this can be considered to be a fast approximation

Figure 2: The lattice structure for the motivating example in
Figure 1. Set sizes are shown in parentheses.



ABC (0.1M) ABC l:F ~ 1}
_ v N ;
.. AB(0.9Mm) BC (0.8M)-------— frontier
ﬁ"/. .L'J: .{. N '-\. o 3
A(0.3M) B(0.2M) C(0.3M) = BC |[|: _ 2}
Fixed cost F = 1M
Figure 3: An example that shows that later players can use H'_
specialization to undercut the moves of earlier players.
B (3) frontier
algorithm. While FMT has a fast safe satisficing strategy, we will i -
show that ET has no safe satisficing strategy; even more surpris- leEd cost F
ingly, ET has the property that even with an infinite amount of po-
tential revenue in the lattice there are equilibria in whidplayer Figure 4: An example that shows how a lower cardinality set
enters. can allow a later player to steal from an earlier player
More formally, we use the standard definition of a Subgame Per-

fect Nash Equilibrium (SPNE) and add the following definitions to
capture satisficing in our context: 1M.
DEFINITION:. A history H (t) is blockading if a player at timehas Reflecting on this example, we see that by picking nade,

no profitable location to enter even if no player would enter after Player 1 exposed itself to more specialized players who leave Player

him. (Note that iff7 (¢) is blockading therf (¢ + 1) is blockading 1 with its original node and no descendants. (The original node is
t00). impossible to steal away in the FMT game because no other node

can have smaller Jacquard distance).

This suggests that instead of aspiring to optimality — which ex-
ists but is most likely hard to compute — Frontier Descent merely
¢ g ’ g . tries to protect its descendants against future entrants to ensure a
contlnuat_lpn histories that have the property that all players ¢ positive payoff. A simple way to do this is to descend the lattice
earn positive payoffs. N , , in all directions and keep doing so until one finds a seftaitier

Why do we add the condition that all playeisubsequent to nodes Each nodeS in the frontier must satisfyl) V(S) > F
have positive payoffs? We clearly must add some restrictions on 5 g 2) no descendart’ of S hasV (C') > F. Recall thatV/(S)
subsequent players because otherwise there can be no defense {@¢ gescendant revenue also includes the revenues from all descen-
any move of an earlier player. If playémoves to some nod§ — gants of a node while(S) includes onlyS's revenue. The frontier
with descendant revenue(s), if we have no restrictions an infi- ¢ Figure 3 is shown as a dashed line with the nodes immediately

nite number of players could then perch Sras well. This will abovethe dashed line in the set of frontier nodes. The two frontier
makei's payoff negative. Of course, it will make the payoff for |, 4es are thud B and BC.

subsequent players ("suicide bombers™) negative as well. The re- \yhich frontier node should the algorithm pick? It is tempting to
striction that the payoff of subsequent players be positive removes try the greedy strategy:
these trivial counterexamples and allows reasonable strategies. ) )

Note that the standard definition of an SPNE and Nash Equilibria GREEDY STRATEGY ATTEMPT. The first player picks the largest
disallow suicide bombers because they require that all subsequenf&/€nue node in the frontier. _ )
players make their best response. However, these are also hard to FOr €x@mple, in the Greed Strategy the first player would pick
compute which is why we are motivated to define a safe satisficing Nd& AB in Figure 3. This strategy, however, can fail in other
strategy which weakens the standard definition of rationality for €x@mples as shown in Figure 4. Here, the two frontier nodes are
subsequent players but precludes complete irrationality. ABC andBC and the greedy strategy should pi¢k3C for Player

With our definition of safe satisficing strategies (SSS) behind us, | Pecause it has higher descendant revenug @sBC) = I —
we now motivate our Frontier Descent algorithm — which is an | +3 = F +2 compared t0/(BC) = F' =2 +3 = F + 1.
SSS — by a series of examples. In all examples, assume we areJnfortunately, Player 2 can pick nodeC' and simply steal away
dealing with the First Mover (FMT) game. We will return to the ~descendanB! This is because the Jacquard distance of player
ET game at the end of the section. frpm setB, JD(BC,B) =1/2 WhICh.IS smaller than the Jacquard

The first example shown in Figure 3 motivates the need for de- distance of playet from setB which 'S_JD_(AEfC’ B) =2/3. §
scent in the lattice because positioning a player too high in the lat- 1S besides the threat of specialization ( attacks"from below")
tice can sometimes be a poor long-term strategy. In the figure, sup-°"¢ z_als? has to worry about lower cardinality sets (“attacks from
pose Playet decides to move to the topmost nadé. In lieu of the side”). This suggests a simple modification.
other player moves, Playédrcan collect2.1M. But in that case, FIRST PLAYER FRONTIER DESCENT. The first player picks the
later players, Player 2 and Player 3 can move to notlesxd B largest revenue nod& among all the smallest cardinality sets in
respectively. Not only is this not an optimal strategy for Player the frontier.
but this is a losing strategy as well! This is because at the end of In the analysis, we prove that the first player is immune to all
this history, Playeil has0.1M which is less than the fixed cost of  future attacks on its descendant reveiugs); while the player

DEFINITION:. A safe satisficing strategy (SSS) is a strategy that for
any historyH (t) that is not blockading finds a location to enter on
the lattice for playet such that playet has positive payoff for all



* frontier ABC (0)

. ABC (F-1) _.
L s » " L, r \}J .\
4 ™, AB (0} BC (0) CD (0)
L{ ’ ’ 4 _‘,_--"J..-. __!. ‘:_,--"'J = 3 ‘;-,,--' - ..\"‘-.\..,..\_,_
AE (0) BC (3) A (59) B (60) C (60) D (59)
,L et " Fixed cost F = 80
A {F + 2} B ':F"' 1}' ¢ {1} Figure 6: An example that shows that the frontier descent does
. not produce a satisficing strategy for the ET game.
Fixed cost F

while Playerl gets a payoff of.

On the other hand, it is easy to see that there is an SPNE in
which Playerl moves toABC, Player 2 moves tal, and Player
3 moves toB, leading to payoffs 08, 2, and1 respectively. Thus
the frontier descent algorithm does not produce an SPNE because
Player 1 can improve his lot by playing first at the topmost node.
In some sense, Frontier Descent leaves some revenue on the table
both from nodes on the top (e.g BC') and nodes at the side (e.g.,

; ; ; : i ; BC andC).
This guarantee suggests a simple iterative satisficing algorithm. So far we have been talking about the FMT game. It is natural

Once a player has picked a noflave simply removeS and all its K h h . lqorithm d h
descendants from the lattice and iterate. This suggests the generaﬁg ask how the Erontler Desc_ent Algorithm does on the ET game.
algorithm: efore even asking the question, we need to modify the FMT fron-
o tier descent algorithm. Recall that in the FMT version, after each
GENERAL FRONTIER DESCENT. Playeri picks the largest rev-  plaver Jocated at at a nod# the algorithm deletes all descendants
enue nodes among all the smallest cardinality sets in the frontier ot g This can no longer be done because descendants can now be

of the lattice it starts with (Playdr starts with the original lattice). shared by later players with the same Jacquard distance.
S and all its descendants are deleted from the lattice and Player Thysin ET Frontier Descent, we retain all nodes till the end but

Figure 5: An example that shows that frontier descent does not
always compute a SPNE for the FMT game

may get other revenue from other lattice nodes as a bonus it canno
count on such revenue. However, the descendant revetisg

at the time the player located ¢his guaranteed at the end of the
game.

i + 1 repeats the algorithm on the reduced lattice. Playstarts add a bookkeeping variable to each node with the set of current
with the original lattice. The iterations continue until there are N0 gyners, When a new playérdescends the lattice, playemust
nodes in the frontier of the final reduced lattice. account for the potential descendant revenue of a Scai@ong all

_ There are important questions about the efficiency of this algo- jis gescendants by sharing equally among all descendants that have
rithm but we can see that even a naive version of this algorithm (he same Jacquard distance. Subject to this modification, a frontier
costs no more thaW(EN) where E is the number of edges in ¢4 he calculated for each player, and once again each player can
the lattice andV is the number of lattice nodes. We will see later ek the largest revenue node among the smallest cardinality sets in

that computational efficiency can be improved6E) which can its frontier. Then the ownership sets are updated.
be exponentially better than the size of the game tree, whichis the  gyen with these modifications, ET Frontier Descent does rather
standard way to compute an optimal SPNE. badly — in fact, it can lose money as shown in Figure 6. According

To gain intuition, we examine the General Frontier Descent Al- 15 frontier descent, node$B, BC, andC'D are part of the fron-
gorithm in action on Figure 3. The frontier for the first player is as ier for Player1. However, all nodes in the frontier have the same
shown. We pick nodet B (highest payoff withl’ (AB) = 1.4M) cardinality of 2, andBC has the highest value &f(BC) = 120.
for Playerl. When we do so, we deletdB, A, and B. This So Frontier Descent pickBC. But picking BC is a bad idea be-
leaves a reduced lattice withBC, BC andC'. The new frontier cause Playe? can subsequently locate ohB, and Player 3 can
for the reduced lattice is onl8C' and this is the node picked for  |5cate onC'D. This causes Player a net loss because in the ET
Player2. The final reduced lattice is only BC' with reduced value  game B is now shared with Player, andC is shared with Player

V(ABC) = 0.1. The final lattice does not possess a frontier and 3 g Playel gets a total revenue 60 (30 + 30) which does not

so the algorithm terminates. The final payoff for Playewill be recompense Playarfor its fixed cost 0f80. We will show in the
1.5M because Player 1 takes the revenueiafC as first mover. analysis that the ET game has even more unusual properties even
Player 2 gets a revenue df3\/. in equilibria.

We can also quickly show that General Frontier Descent does
not always compute an equilibrium as shown in Figure 5. The
frontier is as shown. Note that NodéBC' is not on the frontier 6. ANALYSIS
because it has a descendant (NotB) whose descendant value We start by showing existence of equilibria for both FMT and
V(AB) > F by the definition of a frontier. Recall that this was a ET,; in particular we show that both games possess not just a Nash
design decision meant to forestall the threat of specialization! Thus Equilibrium but also a Subgame Perfect Nash Equilibrium or SPNE.
Player 1 picks Nodel. Even in the reduced latticel BC' is not on For readers unfamiliar with the definition of an SPNE, in an SPNE
the frontier and so Playérpicks NodeB. But in the final reduced every possible subgame (or subtree in the game tree rerpresenting
lattice, ABC becomes part of the frontier and so Plagepicks the strategy) of the SPNE is also a Nash Equilibrium.
Node ABC'. Hence in the final payoffs, Play8rgets a payoff o The reasoning for the existence of an SPNE in both games is



similar to the standard proofs for finite extensive form games. A
slight difficulty is that our games have an infinite sequence of po-

LEMMA 2. Common descendant distancH two setsS1 and
52 have a common descendsft in the lattice, then]S1| < |S2]

tential entrants and hence does not have a finite tree. In fact (see théf and only if JD(S1, S3) < JD(S2, S3).

Snowflake example in Figure 7), the threat of an infinite number of
entrants makes the equilibrium outcomes quite different from the
case when the players know there are a bounded number of en
trants.

We surmount this small difficulty by observing that even with
an infinite number opotentialentrants, the number efctual en-
trants must be bounded in any equilibrium and instead of backward
induction on the sequence of players we use backward induction
over possible entry locations on the lattice.

THEOREM 1. Equilibrium Existence For either of the two
games FMT or ET there exists a (generically unique) subgame per-
fect equilibrium in pure strategies (SPNE).

PROOF Consider any historyd (¢). For any playet the payoff
from entering at locatiors on the lattice is bounded from above
by the payoff that player would obtain if there was no more entry
after him. If that payoff bound is negative, entry at that location is a
dominated strategy (by the action of no entry). For the FMT game
any setS which already has one player has the lower bound equal to
—F. For the ET game, however, even a “copy-cat” strategy (which
locates in a node chosen by an earlier player) can yield a positive
payoff. We distinguish two cases.

FMT game

For any historyH (t), let v (H (t)) be the number of locations
on the lattice that have a strictly positive upper bourd.H ())
is bounded byy (@) which in turn is smaller than the size of the
lattice.~ (H (t)) decreases over time (on and off equilibrium path).
When~ (H (t)) = 0 there is a unique continuation SPNE in which
no more players enter. Now we use an induction argument. Sup-
pose that for any and H (¢t) such thaty (H (t)) < M there exists
a SPNE in pure strategies. For each of these histories select on
of these SPNE. Consider any histdi(t') such thaty (H (t'))
M + 1. If a playert’ does not enter, he gets a payoff 0. If that
player enters at any of the locations with a positive payoff bound,
then~ (H(t')) < M and we have selected a unique SPNE, which
allows us to uniquely compute continuation payoffs of plagfer
upon entry. Entry in any other location is dominated. Since player
t' chooses from a finite set of entry locations (plus the option to not
enter), there exists an action with a maximum payoff. Pick any of
these best response actions as the equilibrium strategy for player
after historyH (¢'). That implies that for every histordf (t') such
thaty (H(t')) = M + 1 there exists a pure-strategy continuation
SPNE. By induction, it is true also for the empty history, and that
is the SPNE for the whole game.

ET game:

We need to modify slightly the definition of (H (¢)) since a
player entering in se$ does not exclude the possibility that addi-
tional players would enter in that location. Therefore, if given a
history H (t¢) the upper payoff bound for entry in nodeis more
thanF, let the contribution of this node tp(H (t)) be equal to the
number of players that can enter in that node and make a positive
profit assuming no entry enywhere else. That still leayéH (¢))
to be decreasing over time and boundedAbi)) which in turn
is smaller than the number of nodes in the lattice times the ratio
v (L) /F. The rest of the argument follows without changé.]

We now show that Frontier Descent is a safe satisficing strat-
egy as define earlier. Doing so requires the following lemma that
shows that lower cardinality sets can defend against “attacks from
the side” from higher cardinality sets.

€

PROOF. Let x be the cardinality 051, y the cardinality 0fS2,
andc the cardinality of common descendafg. We know thatS3

is a subset 051 and S3 is a subset of52. ThusJD(S1,S) =
(x —¢)/z =1—c¢/z. Similarly, JD(52,S) = 1 — ¢/y. Clearly,
if z < y, andz,y,c > 0, thenc/z > ¢/y andl —c/z < 1 —c¢/y.
The converse holds similarly.[]

THEOREM 3. FMT safe satisficing In the FMT game, Fron-
tier Descent produces a safe satisficing strategy.

PrROOF We claim that the Frontier Descent Algorithm described
above is a safe satisficing strategy. We need to show that when
playeri makes a move there is a continuation History in which, re-
gardless of the moves of subsequent players i, the payoff of
Playeri remains positive. At the timemade its movey (S) > F.

We now show that Playergets a revenue no less th&i{.S) and a
payoff no less thav’ (S) — F. Note thatV (S) is the value at the
time ¢ made its move. Suppose that some other later player:
causes Playei's descendant revenue to drop bel®S). This
can only happen if Playef steals a descendant of .S, But that
can only happen iD is also a descendant 6f that nodej moves
to andJD(S’, D) < JD(S, D). Butin that case (by the Com-
mon descendant distance lemma), tt#8rhas smaller cardinality
thanS. But in that case Playarwould have chosels’ instead of
S when Player: evaluated its frontier becausewould have had
payoff greater thak” and smaller cardinality thaf’. This contra-
dicts the fact that Playerpicked the smallest cardinality set in its
frontier.

There are two subtleties to this argument. First, the argument
tacitly assumes that’ would have been in the frontier when player
¢ evaluated its options. This follows because as the lattice reduces
at each stage of the algorithm, nodes |&ecan only lower their
values of descendant reventi§S’) (monotonicity). Thus ifS’
was on the frontier at a later stage, it must have been on the frontier
at an earlier stage. Second, the argument assumes that Rlayer
cannot pick some descendaRtof S. In this casej will steal R
away from:. But by the definition of the frontier, we know that
V(R) < F. Hence,j will have a negative payoff which implies
this is not a satisficing strategy[]

It is well known [1] that for extended games, one can calculate
SPNE using a traversal of the game tree from the bottom up. Since,
we know that FMT has an SPNE and it can be calculated, why
bother with a satisficing strategy. This is because the best known
general algorithm is linear in the size of the game tree. But the
game tree is exponential in the number of nodesf the latticeL.

This is because the first level haschildren (Player 1 can move to
any node), each child has at ledét1 children (Player 2 can move

to any nodes not taken by player 1) and so on. Thus the game tree
hasN*(N—1)x(N—2)... = N! nodes which by Stirlings Formula

is O((N/e)™) By contrast, we can show that Frontier Descent can
be made to run ifO(E), whereE is the number of edges in the
lattice which isO(N log N).

THEOREM 4. Frontier descent is polynomial time Frontier
descent for FMT can be implemented to rurfiV log N)time.

PROOF We consider a worst-case complete lattice inisamari-
ables and first calculate the number of direct edffebetween
nodes and immediate descendants. The lattichas N nodes.
Observe that sets of sizdave: links to all immediate descendants



of sizei — 1. Thus the total number of links iB = Xi_yiC(n, i)
whereC(n, i) is thei-th binomial coefficient. By the binomial the-
orem, (z + 1) = X7C(n,7)z". By differentiating both sides
and settinge = 1 we get the required sud = X7 ,iC(n, )
n2"~! But sincen = log N, E = O(N log N).

The straightforward implementation of FMT Frontier Descent is

O(EN). This is because each descent of the lattice can at most

visiting each edges once to compute theS) values and the fron-
tier. It can at most do at mosY descents for at mosy players
because there can be at most 1 player per node.

The running time can be improved by having back pointers from

descendants to immediate ancestors and by incrementally recom-

puting the frontier when a Playéris assigned to a node. We still

delete all the player's descendants. However, we also follow the up-

e Player1 picks a doubleton. By symmetry assume Player 1
enters on Nodel B. After the first player enters at B there
is a continuation history in which Playe?sand 3 enter at
DA andBC respectively. If they do, they each get a revenue
of 60 + 30, so they make a payoff of0 each. But Player
1 loses money because it now has revenugOof- 30 and a
payoff of —20. Again, this history is blockading because of
a similar case analysis to the one done above.

Playerl picks a tripleton set. In this case, Plagavicks AB

and Playen picks C'D. Playerl gets a payoff of~80 and
Player2 and3 get a payoff o410 each. Again, it is easy that
this history is blockading. The analysis for the fourth case
(when Playen picks ABC'D) is identical.

pointers to adjust the descendant revenues of all immediate ances-

tors. If some such ancestors were in the earlier frontier for Player
but are no longer in the frontier for Player 1, the algorithm has to
go further up to “repair” the frontier by following more up-pointers.
But once a node is not part of the frontier, it will not re-enter at a
later stage of the algorithm.

Thus the frontier repair operation visits every node and every
edge at most once. Thus the initial descer®{&) and the repair
is O(F) and so the final algorithm i© (E) which isNlogN. [

We now turn our attention to the ET game. Given that the FMT

Thus for latticeL there is no possible first move of Playethat
can guarantee positive profits in blockading continuation histories
of the ET game. [J

Interestingly, there is an equilibrium strategy in the ET game for
lattice L in which Playerl would enter atAB and only Playee
would enter in equilibrium in the locatio’ D and consquently
Player 1 and 2 would both get a payoff of 120. Note that our
counterexample lattic& is similar to the one in Figure 6. How-
ever, while there we simply needed a counterexample for Frontier

game may be hard to compute an equilibrium for, it seems reason-Descent, here we need a counterexample for any algorithm. The
able to believe that ET is even harder. Thus it makes sense to looksymmetry in the counterexample is thus crucial. Note that philo-

for a satisficing strategy for the ET game. Unfortunately, we can sophically it is “attacks from the side” that one has to worry about

show that:

THEOREM 5. ET is not safe satisficing In the ET game, in
general there does not exist a SSS.

PrROOF For our proof we will exhibit a specific latticé for
which there exists no SSS. More specifically, we will show that for
any choice of the location of Playérthere exists a continuation
strategy that is:

e Blockading (recall that a blockading history in one which
there is no location at which a player can enter, and still re-
cover its fixed costs, assuming no future moves).

e All players after Playeit make positive payoffs
e Playerl makes a negative payoff.

The latticeL consists of 4 locations/noded;, B, C andD. No
other lattice nodes have any value. ThereGirasers in each node.
The fixed cost i0.

There are 4 cases for the first move of PlayeA location can
either be a singleton (sets such 4y a doubleton (sets such as
AB), atripleton (sets such asBC) or the ground set{ BC' D).

e Playerl picks a singleton set. By symmetry, assume Player
locates on Nodel. Consider the continuation strategy where
Player2 locates onBC and PlayeB locates orC'D. Player
1's payoff is—20 (revenue 00 less a fixed cost &0) while
Players2 and3 have a payoff ob0 — 80 = 10. It is easy
to see that this history is blockading. This is because Player
4 cannot locate on any singleton (because Pldysould at
most get60 from say locating afB); cannot locate on any
doubleton (because Playtcan at most take half of two ex-
isting singletons resulting in a revenue of at m@®t; cannot

from nodes who originally have lower value when the frontier is
first evaluated.

A natural question is how many players will enter each game.
The following theorem is immediate for the FMT game:

THEOREM 6. In the FMT game there exists a satisficing strat-
egy in which at least one player will enter and all revenue will be
assigned to some player (i.e, no revenue is "left on the table").

PrRoOOF We know that if V(L) > 0, there exists a frontier for
at least the first player in the Frontier Descent algorithm. This is
because either the top of the lattice is a frontier node or both its
descendants are greater thBn In the latter case, we keep de-
scending but maintain the invariant that all ances®sf visited
nodes havd/(S) > F. But descent must terminate (because we
cannot descend beyond the bottom of the lattice). Assume descent
terminates at some nodé Then (by the terminiation condition)
none of the immediate descendahtof £ haveV (D) > F. But
by the invariant/ (E) > F. ThusE is a frontier node. Since there
must be at least one frontier node, Player 1 will always enter. We
have already shown that Frontier Descent is safe satisficing. Fi-
nally, note that if at least one player enters, the definition of FMT
assigns all revenue to the players who have entered at the end of the
game. Thus no revenue is "left on the table["]

Note that it is not possible to provide good bounds omtinaber
of players who enter in the FMT game without making further as-
sumptions on the distribution of total lattice reveridéL) among
individual lattice nodes. For example, consider the lattice where
only a single node has valug” for any value ofc. No other node
has revenue. It is easy to see that only one player enters and takes
all the revenue. A slightly less trivial example is where a single
nodeS has valueF’ and S hasc immediate descendants of value

locate on either any tripleton or the ground set because the F — 1 and no other lattice nodes have any value. In this case as

distance to any singleton is larger than that of existing play-
ers.

well, the first player will clean up, accruing revenHet c(F — 1)
for any value ofc.
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Figure 7: An example that suggests that even large amount of
potential revenue there may exist equilibria in the ET game in
which no player will enter

7. OPEN PROBLEMS

We list some interesting open problems suggested by our work.
1. How many players can enter in an SPNE of the ET gaiie?

last theorem in the analysis shows that at least one player can ente
in the FM game using Frontier Descent. Imagine an ET instance
in which the total revenue of the lattice summed across all nodes

V(L) is 100 times the fixed codf. Potentially there is room for

100 entrants. However, we conjecture that there exists ET game
instances in which the total potential revenue is arbitrarily high and

yet there are SPNESs in whicto playerenters the game. Further,

if a player deviates and enters, that player could have a negative

payoff.

Consider the example in Figure 7. We have shown the lattice

using circular rings for each level to show the circularity of the

configuration which we refer to as our snowflake example. The

lattice on 6 nodes A through F. All lattice nodes not shown have

zero value. The fixed cost is 1100. Assume for a start that Player

1 can only enter at the nodes AB, BC, CD, DE, EF, and AF. By
symmetry, assume playérenters at AB. In that case, a possible

power laws. Given such an assumption it seems possible to prove
stronger bounds on the number of entrants.

3. Are there polynomial time algorithms to compute SPNEs for
the FMT or ET games®e have seen that Frontier Descent takes
O(N log N) but does not guarantee to find the best response. Are
there other polynomial time algorithms that either find the best
response or find a response that strictly dominates (for the FMT
game) Frontier Descent?

4. Is there a stronger definition of “satisficing” that allows a
satisficing strategy for the ET gameWe have proved that that
there exists lattices for which the ET game has no satisficing strat-
egy. But our definition of satisficing only requires future players to
make money in a continuation history that is blockading. We did
not require that the future players also (recursively) play a satisfic-
ing strategy. This stronger definition of satisficing — that we call
strong satisficing— may allow ET to have a satisficing strategy.

5. What is the relation between strategies that are satisficing and
Nash Equilibria?Consider the following transformed game where
we transform the payoff function to =’ = 1 if # > 0 and0 oth-
erwise. In some sense, the new payoff functidris a first order
approximation to the original payoff function. Then it appears that
a satisficing solution to the original game is a Nash equilibirum of
the transformed game. It also appears that a strong satisficing so-
lution of the original game is an SPNE of the transformed game.
These correspondences may make the notion of satisficing less for-
eign as a notion.

6. What happens if players could enter in multiple locatiohs?
the extreme case where each player can enter in an unlimited num-
Per of locations, it appears that in any SPNE there would be at most
one player earning a strictly positive profit (for generic games). The
reasoning is by contradiction: suppose playets. ., t, > 1 get
a positive profit in an equilibrium. Then player 1 could enter in the
locations of these players and simply transfer their profits to him-
self (and at the same time not being threatened by additional entry
since we start with an equilibrium).

8. CONCLUSIONS AND FUTURE WORK

This paper has four contributions:

e Modeling AggregatorsAggregation is an important and grow-
ing phenomenon in the web milieu. We provide the first
model of aggregator incentives. The only earlier paper we
know of [4] is a paper on the interaction between aggregators
and content providers. While this is important, it does not

best response for Player 2 is node ED, for player 3 is AF and for
player 4 is BC. No more entrants are possible in this history. But in
that case AB loses money because his final payoff is 1080 which is
less than the fixed cost of 1100. Unfortunately, the complete proof
that this is indeed the best response requires arguing over a much
larger number of cases. For example, we also need to consider the
case when Playdrenters at nodel. We invite the reader to find a
proof or a counterexample for our snowflake example!

Note that it is crucial for this example that ET has a possibly
infinite set of players who can enter. If we knew that there were
only 100 possible players, Player 100, for example, is guaranteed
to enter if Players 1 through 99 do not as there can be no subsequent
threats from future players. By contrast, FMT has no such problem.

2. How many players can enter in the FMT gam@®& have
seen that at least one player can enter in the FMT game and that
better bounds are hard to guarantee without further assumptions on
how revenue is distributed among nodes. For example, it appears
reasonable to assume that interests are distributed according to a
power law; this implies that revenues from taste sets also follow

provide insight into why aggregators enter. The two games
are orthogonal and should ideally be combined.

e Jacquard distance for location gaméa/hile we fundemen-

tally model the entrance of aggregators and users as a lo-
cation game, we are the first to model distance as Jacquard
distance and not Euclidean distance. This is not merely an
esoteric choice for novelty but we believe a more realistic
model of user taste sets than Euclidean distance in any di-
mensional space. We believe our location game, invented
to model aggregators, applies to other parts of economics as
well in which specialized stores (e.g., grocery stores) steal
users from general stores (e.g., Walmart).

Safe satisficing strategiedn the course of this paper, we

found it natural to invent safe satisficing strategies. Satisfic-
ing is well known in economics; so also are extensive form
games. We claim that it is perfectly natural to marry these
two concepts. In particular, this is because computing an
SPNE is typically exponential in the size of the lattice. To put



this into perspective, even for the simple snowflake example
with 12 nodes, the size of the lattice is 1024 and the size of
the game tree is 1024 factorial (the amount of time required
to search the game tree), an astronomically large number.
While in practice, there are heuristics such as branch-and-
bound, computing SPNEs with the best known algorithms
appears very hard. By contrast, we have shown a non-trivial
algorithm for the FMT game that is very fag¥(og N ver-

sus N!) that at least prevents loss if all subsequent players
also have positive profits. Could there be simpler game tree
strategies for other games as well that are safe satisficing?
Recall also our conjecture that a satisficing strategy is a Nash
equilibrium of a game with modified payoffs — that are a
first order approximation, the sign function, of the original
payoff function.
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(whose best known solutions are exponential in the input), 1151 H. A. Simon. Rational choice and the structure of the

perhaps satisficing algorithms introduce the notion of "ap-
proximation" to "algorithmic game theory".

e FMT and ET gamesWe have made progress on the analysis
of aggregator games. We have shown that the FMT game
has anN log N satisficing solution which is not an SPNE.
At least one player will enter if the revenue is more than the
fixed cost, and no revenue is wasted. We have shown by
contrast that the ET game has no satisficing solution.

In conclusion, we note that Frontier Descent provides some in-
tuition into the evolution of aggregation on the real web. In some
sense, the sequence of entries from say Yahoo to TechCrunch to
Applelnsider is a form of descent. And yet large aggregators such
as Yahoo remain profitable (as do general stores like Walmart) per-
haps because they aggregate the "long tail" of content that does not
warrant a sufficiently large market for a more specialized aggrega-
tor.

Frontier descent also suggests that as the fixedicgstes down,
more aggregators will enter in more specific niches because play-
ers can descend lower in the lattice and still make a profit. Ar-
guably, fixed costg” have reduced over the last 5 years because of
cloud services and better abstractions for building web sites. This
may explain the recent emergence of a large number of aggregators
catering to more specific tates. More importantly, it suggests an
interesting business opportunity. A vendor that can provide good
tools for to reduce the cost of doing businésss likely to open the
floodgates for new small aggregators to cater to the long tail of user
interests — and reap a rich reward in doing so.
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