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ABSTRACT
We model the strategic decisions of web sites in content markets,
where sites may reduce user search cost by aggregating content.
Example aggregations include political news, technology, and other
niche-topic websites. We model this market scenario as an exten-
sive form game of complete information, where sites choose a set
of content to aggregate and users associate with sites that are near-
est to their interests.

Thus, our scenario is a location game in which sites choose to
aggregate content at a certain point in user-preference space, and
our choice of distance metric, Jacquard distance, induces a lattice
structure on the game. We provide two variants of this scenario:
one where users associate with the first site to enter amongst sites
of equal distances, and a second where users choose uniformly be-
tween sites at equal distances. We show that Subgame Perfect Nash
Equilibria exist for both games. While it appears to be compu-
tationally hard to compute equilibria in both games, we show a
polynomial-time satisficing strategy called Frontier Descent for the
first game. A satisficing strategy is not a best response but ensures
that earlier sites will have positive profits, assuming all subsequent
sites also have positive profits. By contrast, we show that the sec-
ond game has no satisficing solution.

Categories and Subject Descriptors:J.4 [Computer Applica-
tions]: Social & Behavioral Sciences

General Terms: Economics

Keywords: Content aggregators, Game theory

1. INTRODUCTION
Browsing has moved through several historical phases starting

from early search engines (culminating in sites such as Google)
and directories (Jerry and David’s Guide which culminated in Ya-
hoo). In midlife, the idea of a favorite Portal took hold with sites
like AOL and Yahoo attempting to provide as much of what a user
needed by visiting a small set of portals. Recently, strategic be-
havior of some content providers and unabated growth of online
content started undermining the standard “Search for Topic” and
“Browse through Favorite Portal” paradigms. First, search engine
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optimization and spam make it hard to find what one wants when
searching for some topics such as “cameras.” Second, along with
the amount of bad content proliferating, niche and well-crafted sites
keep appearing such as StarFall (early reading) or MacRumors; the
illusion that one can satisfy oneself with a small set of portals is be-
coming harder to sustain. And yet user attention and clicks remain
a limited resource to discern the gems among the garbage.

This qualitative argument may explain why web site aggregators
have become such a powerful and rising phenomenon. Rather than
read thousands of individual technical sites or more general web
sites such as Yahoo and AOL, most software professionals get their
technical news from some combination of TechCrunch, SlashDot,
Ars Technica and AllThingsD (and the likes). There are subtle dif-
ferences between the offerings: AllThingsD appears to specialize
more in technical gossip (e.g. CEOs fired) while SlashDot seems
to specialize in technical ideas. There is further specialization: for
example, AppleInsider combs the web for Apple News and Mac
Software updates. Such catering to specific tastes is widespread:
for example, while many people consume news with broad sites
such as Yahoo! News and CNN News, a large constituency prefers
to consume “news with a conservative slant” at say Huffington Post
and Drudge Report. Aggregators exist for photography (Mashfot),
Nintendo fans (WiiNintendo), designers (MostInspired). If one be-
lieves in the phenomena of the long-tail that explains the success of
Amazon and Netflix, then it seems reasonable to posit that increas-
ingly specialized aggregators (e.g., Indian Immigrant children) will
keep appearing.

What incentives do aggregators have? Why do aggregators enter
some spaces and not others? At what point does specialization lead
to losses? In this paper, we attempt to answer these questions from
a game theoretic perspective. We develop a model where aggrega-
tors and users are modeled as subsets of a content universe. A “user
set” models user preferences, describing the content that a user at
a given point in time is interested in. An “aggregator set” models
the content the aggregator hosts. Users have a simple strategy: they
pick the “closest” aggregator (which we model as the Jacquard dis-
tance between their user set and the aggregator set). Aggregators
on the other hand seek to maximize users that pick them. We model
aggregators as having a fixed cost of entry and consider a sequen-
tial game in which aggregators enter serially if they can make profit
and position themselves on nodes in the content lattice. Aggrega-
tors have a fixed cost F to enter. After all entry decisions are made,
users make their choices.

The tension in the model is that specialization can decrease Jacquard
distance and cause some users to switch but generalization can cap-
ture a larger set because a user that cannot find “the perfect aggre-
gator” (one with a set exactly equal to the user’s taste) prefer to go
to an aggregator that has k additional content pieces than one that



is missing k pieces (a property of our distance measure that we find
realistic).

The questions we ask include: When and where should an aggre-
gator enter? In a game with infinite number of potential entrants,
is there a subgame perfect Nash equilibrium? Is it in pure strate-
gies? Under what conditions is there entry in equilibrium? What
is the maximum/minimum number of equilibrium entrants? Are
there reasonably computable strategies that an aggregator can use
to decide when and where to enter?

2. RELATED WORK
The phenomenon of specialization and strategic entry is certainly

present in other markets. The seminal early papers on location
games in one-dimentional taste space are Hotelling [6] and Salop
[9]. These models have been extended in many ways, see for ex-
ample Economides [5], Caplin and Nalebuff [3], Ansari, Econo-
mides and Steckel [2] among many others. While some of these
extensions consider multiple product characteristics, there are two
important differences from our model. First, the location space is
very different—to the best of our knowledge in all these papers lo-
cation is chosen on a subset ofRN . By contrast, we model content
aggregators as choosing subsets of the universe of available con-
tent, introducing a lattice structure to the location space and a dif-
ferent distance metric that is associated with it. Second, we do not
have prices (which play an important role in the models of product
differentiation) because most existing aggregators offer free access
to users1 (this second assumption makes our model closer to a
model of a strategic platform choice in political economy models,
but these also differ from our model with respect to the location
space and they typically look at a winner takes all competition).

Our model is also related to issues of product (or store) design. If
there is a universe of all features a product may have then each pro-
ducer designs its product expecting future competition with other
producers (who make their own designs). That problem is often
modeled as a quality choice problem (starting with Shaked and Sut-
ton [11]), but that makes it similar to the models of location choice.
We are not aware of any models of product design that would treat
the design as a selection of features and/or consumer preferences
to be characterized by Jacquard distance instead of the more usual
Euclidean distance. Additionally, for our model to be applied to
product design, it would be natural to allow for price competition
and for the costs of the product to depend on the number of fea-
tures. In contrast, it appears to us that the costs of aggregation of
online content increase much less with the amount of aggregated
content and hence we propose to assume these effects away.

A final related literature is on bundling. These papers often fo-
cus on a question whether a particular producer should offer its
products separately or to bundle them (for example, sell individual-
game tickets separately, or sell them as season tickets2). Such
considerations may be relevant for publishers that introduce pay-
walls (and then allowing users to purchase subscription to multiple
websites or purchase them a la carte) as well to questions of firms

1Negative prices to attract users are impractical for obvious rea-
sons, but as long as advertising is perceived by users as negative
utility, aggregators could compete in the amount of advertising their
sites have. Yet, it is possible that at least for some small level of
advertising users do not mind advertising and competition between
aggregators could drive the advertising to that level. For simplicity
we abstract away from competition in the amount of advertising.
2That literature starts with Stigler [13] and includes, among many
others, Schmalensse [10], McAfee, McMillan and Whinston [7]
and Nalebuff [8]. The last paper studies how bundling can be used
to deter entry.

managing multiple aggregators (a recent AOL’s strategy). We leave
the first topic for future research and provide partial discussion of
the case where one firm can enter with multiple aggregators.

In summary, even though there is a vast literature in economics
(and political economics) on entry decisions with differentiated prod-
ucts (differentiated by taste, location, features and bundling), we
believe that our (new) model of entry on a lattice has several ad-
vantages over the existing models:

1. We believe Euclidean distance is a poor model (in any di-
mension) for content disparities between users and web sites.
In some simple cases (conservative versus liberal), a Eu-
clidean may be appropriate, but the nuances of taste such
as TechCrunch versus MacScour,Yahoo News versus Huff-
ington Post seems harder to capture. We believe Jacquard
distance is a better model.

2. We model aggregators as having a fixed constant cost regard-
less of the size of content they host. This seems a reasonable
assumption for virtual goods such as content but is unrea-
sonable for physical goods such as furniture where there in
incremental stocking cost per SKU.

3. Standard economic models also add the notion of prices and
competition for prices but for the most part most aggregation
sites today are free and are paid for by advertising. The few
sites that have attempted pricing (e.g., NYTimes) have un-
clear outcomes today. In the web world, aggregators attempt
to capture users (and hence ad revenues) by tailoring content
and not by lowering prices or reducing advertising below cer-
tain level needed for ease of use (with the notable exceptions
of websites like Wikipedia that are run not-for-profit).

Beyond a different model, some of our results also introduce a
new way of analyzing the problem. One way of analyzing such a
game is to characterize subgame perfect Nash equilibria (SPNE).
While we can do it in particular toy-examples, providing many
properties of SPNE outcomes is hard (and even computing SPNE
seems to be a difficult problem computationally). Therefore, after
we establish some basic results about SPNE, we then move to find-
ing a satisficing strategy, which we define as a strategy that given
the entry decisions of existing firms, a firm can take to guarantee
itself non-negative payoffs under a minimal assumption that future
entrants will take only strategies that would result for them in non-
negative payoffs. That strategy is neither a best-response (required
for equilibrium) nor it is a max-min strategy (which would allow
the following entrants to lose money), but it is somewhat in be-
tween: we allow the future entrants to take adversarial actions, but
constrain them not to lose money themselves. We prove for one of
the variants of the model (in which in case of ties consumers choose
aggregators who entered earlier) such a strategy exists and can be
found be a simple greedy algorithm. In that model, if all entrants
follow that algorithmic strategy, the final outcome is a limited en-
try with varied types of aggregators that all make positive profit.
We show that this strategy is not necessarily a part of a SPNE (i.e.
it is not a best response). Finally, we show that if ties are broken
symmetrically, this algorithm does not yield a satisficing strategy.

3. MOTIVATION
The goal of our model is to explain the evolution of content con-

sumption. Starting from impersonalized portals which tried to sat-
isfy every user to all possible pieces of content, there has been an
evolution to another extreme (search engines) that are very granu-
lar in topic. However, aggregators provide a middle ground where



Figure 1: Example to motivate the lattice model

users do not have to explicitly know what they want and yet do not
have to perform the manual search inherent in portals. We would
like to understand how these aggregators choose the sets of content
they provide. To do so we will model user preference ascontent
taste sets, the entrance of aggregators into the market as anexten-
sive form game, and the resultingpayoffsthat accrue to the aggre-
gators as their incentive to enter the market.

TASTE SETS. To motivate the model, consider Figure 1. The figure
represents sets of user tastes. For example, it posits a large set of
8 Million (8M) users who are interested in generic content. It also
assume that there are 4 million users interested in generic news,
6 million in generic sports. Finally, there are 2 Million users in-
terested in liberal news and 0.5 million interested in conservative
news. We draw an arrow from a more generic set of user tastes
to a more specific set of user tastes so the sets form a lattice—the
primary object we use to play our aggregator games.

Note, however, that the value of a “taste set” need not equal the
sum of the values of all its subsets in the lattice. For example, in our
example there are 4M users who are happy to view generic news but
there are 2M users who are only interested in news with a liberal
slant and 0.5M who are interested in news with a conservative slant.
Thus 4 is not equal to 2 + 0.5. This makes sense because the set
of users interested in generic news can be interpreted as the set
of users who are equally happy to consume both conservative or
liberal news. This is completely independent from the set of users
who overwhelmingly prefer liberal news.

One can assume that these content taste sets could be measured
by surveys and are common knowledge to all players (web site
providers) who choose to cater to certain taste sets. Let us also
assume that a web site must have 1 million users to break even. We
model that as a fixed cost of 1M assuming the currency is users.
More generally, the utility of a web is the the number of users that
choose the site less its fixed cost.

USERBEHAVIOR. Assume that initially player 1 in the game (e.g.,
Yahoo) may choose to provide a generic content site. At that point,
if Yahoo is the only site, all users will (in our model) flock to Ya-
hoo (because there are no competitors yet) so that Yahoo gets 20.5
Million users and a payoff of 20.5M - 1M = 19.5. However, this
could encourage a second player (say ESPN) to start a sports web
site. Now the users only interested in sports will switch to ESPN,
and so ESPN garners 6M users and Yahoo loses those users. We
model this mathematically by saying that the Jacquard distance of
the Generic Sports users is smaller to ESPN than to the generic
content site, and that users unilaterally switch to web sites have the
smallest Jacquard distance to their own taste set. Recall that the
Jacquard Distance between two sets is1 − R, where the resem-
blanceR is the size of intersection divided by the size of the union
of the two sets.

Intuitively, this makes sense because large Jacquard distances

imply sites with a large amount of content that a user does not
want; in some sense, we are modeling user unhappiness by a large
Jacquard distance. Users thus maximize their utility by picking ag-
gregators with the smallest Jacquard distance from their own taste
set. We note that we believe that Jacquard distance also makes
sense for the standard economics of specialization in the physical
world. For instance, users prefer to go to a furniture store to buy
furniture rather than to a general purpose store such as Walmart.
Standard economic literature users Euclidean distance and location
games to model this phenomena; one of our contributions is sug-
gesting that Jacquard distance is a more accurate model to capture
the complexities of user tastes.

THE EXTENSIVE FORM GAME . Continuing with Figure 1, a player
3 (say CNN) may decide to enter the news market and claim 4M
users away from Yahoo. Further specialization is possible because
there is a still attractive market of 2 million liberal news users.
Thus a Player 4 (say Huffington Post) may enter which steals away
2M users from Player 3. At this point, there is no incentive for a
fifth player to enter because the liberal news market does not pro-
vide enough revenue (0.5M) to break even after a 1M fixed cost.
If we chose to model Generic Sports as having further subcate-
gories (e.g., Baseball, Football, Basketball) with sufficiently large
revenue, then further players (e.g., MLB News, NBA News) could
also have incentives to enter the game if the number of sports fans
in each category are sufficiently large.

We model the situation in Figure 1 more abstractly in Figure 2.
We represent by the stringA the set of users with liberal news taste,
by B the users with a conservative news bent, and byAB the set of
users who are indifferent to the slant and can thus consume conser-
vative and liberal news with equal relish. Similarly, we represent
by C the set of users who like sports.ABC then represents the set
of users who like generic content: these are users who are happy to
consume sports and news of any kind.

Of course, generic content clearly includes other categories as
well such as Entertainment and Technology. These can be modeled
by extending our alphabet of characters but we have chosen not to
do so in order to keep our example as simple as possible. There are
also clearly other possible lattice nodes not shown in Figure 1, such
as users who like either conservative news or sports but not liberal
news (setBC). In all subsequent lattice diagrams, assume that any
lattice nodes not explicitly shown have zero users.

Define the Jacquard DistanceJD(X, Y ) between two stringsX
andY as1 − R(X, Y ). The resemblanceR(X, Y ) between two
stringsX andY is defined asI(X, Y )/U(X, Y ). I(X, Y ) is the
size of the intersection between the set of characters inX and the
set of characters inY . U(X, Y ) correspondingly represents the
size of the union between the set of characters inX and the set of
characters inY .

Based on these definitions, it is easy to see thatJD(C, C) = 0
while JD(ABC, C) = 2/3. In other words, users with a taste set
of generic sports will prefer a sports site like ESPN (in our model),
to a generic content site such as ABC which has been taken by say
Yahoo.

ATTRIBUTING REVENUE. We also have to make a major modeling
choice as to what to do when two sites have thesameJacquard dis-
tance to a user choice set. There are two simple possibilities. The
first is what we call FMT (First Movers Take Ties). In the FMT
game, the site which comes first in time (recall we are playing a
sequential game) wins all user choice sets of equal Jacquard dis-
tance. On the other hand, a more standard assumption in economic
theory is the ET game; in the ET game, if there are ties the revenue
is shared equally.

For example, in Figure 1 suppose that another liberal news site



Figure 2: The lattice structure for the motivating example in
Figure 1. Set sizes are shown in parentheses.

enters the fray. In the ET model, this is reasonable because a new
site competing for the conservative news taste set can get a million
users and break even. This is not true in the FMT model; the FMT
game models situations where users do not switch (because of say
intertia) if there is a new site that caters to exactly the same tastes.
The assumption is that if the new site has exactly the same set of
content users prefer to stay with the existing site. Of course, the
truth is more nuanced. Users may switch to the new site despite
inertia because the voice of the site is subtly different, something
that would be hard to model. We believe the real truth is somewhere
between both models. Thus we study both models in the sequel.

MODELING SUBTLETIES. We do not explicitly model the follow-
ing phenomena.

• Variable costs for players:In reality, the cost of a web site
varies depending on the number of users it serves if simply
in terms of the costs of servers and electricity. However, this
can easily be modeled by simply subtracting the variable cost
from the fixed revenue of a node before placing it in the lat-
tice.

• Multiple moves by a player:We allow a player to make only
1 move (to enter or not) and not to make further moves. To
some extent this models the fact that completely changing a
web site to fit a new set of tastes is tantamount to completely
restarting as a new player with a new fixed cost. Imagine
the difficulty of retooling The Huffington Post to become a
competitor to TechCrunch!

• Users choosing multiple aggregators:In practice users do
not visit just one site that is closest to their interests but a
small set of sites, while possibly minimizing a browsing bud-
get. Modeling this seems very hard because picking a union
of taste sets that minimize Jacquard distance seems akin to
set cover which is computationally hard. As we will see, even
with a simple single choice of web site the games are struc-
turally complex and appear to have hard to compute equi-
libria. Thus it makes sense to start with the simplest model
and add complexity later. Further, instead of modeling a user
as choosingB taste sets, we could alternately model an in-
dividual user as a probabilistic agent that chooses different
taste sets with defined probabilities. For example, a user at
any point in time may be in the mood for Sports with prob-
ability 0.8 and for news with probability0.2. In that case,

our simple model applies to some extent if the revenue num-
bers attached to the taste sets are interpreted as the expected
number of users.

• Sparse Lattices:In practice, the vast majority of combina-
tions of user taste sets will not be known and will be impos-
sible to survey. Thus, practical models will have most of their
weight(revenue) in the leaves of the lattice. We leave special-
izing our results to such “sparse” lattices as future work. For
this paper, they can be modeled as nodes with zero revenue.

4. FORMAL MODEL
We now proceed formally. We have a countably infinite set of

potential entrantsI (e.g., Players like Yahoo, ESPN etc) with typi-
cal elementi ∈ I. We have a latticeL of subsets of an underlying
Content setC with a typical elementS ⊆ C. We assume that every
subsetS in the lattice has a valuev(S) which represents the payoff
for capturing users with that set of tastes; the values ofv(S) are
weakly positive. For convenience, we will find it useful to define
the descendant revenueV (S) of a lattice node as the sum of the
revenues ofS and all descendants ofS in the lattice. For exam-
ple, in Figure 2,v(ABC) = 8M , the number of users who are
interested in generic content butV (ABC) = 20.5M .

Playeri at timei observes the history of the game and decides
whether to enter and where to enter. The location of entry (player
i action) is a node (a taste set) in the lattice, and the empty set if
there is no entry. A historyH(t) is the sequence of the actions of
all players< t. H(0), the history at time0 is the empty sequence.
A strategy of playeri, Σi is a mapping from histories of lengthi to
actions. We say that a history is finite with lengthT if after T no
players enter. For a finite history of lengthT we define the payoff
of playeri, π(H(t)) for two kinds of games as :

a)First Movers Take Ties (FMT): Given the locations of all play-
ers in the historyH(T ), compute the Jacquard distance between
each player and each set on the lattice, allocatingv(S) based on the
smallest distance and in case of ties allocatingv(S) to the player
with the smallest indexi. The payoff of playeri is then the sum of
allocatedv(S) less a fixed costF .

b) Equal Tie-breaking (ET): ET is similar to FMT, except in case
of ties, ET allocatesv(S) equally among all the players with the
smallest Jacquard distance toS.

In both games, we add a small technicality to allow for the fact
that our games are potentially infinite, especially off the equilib-
rium path. For histories that are not finite, the payoffs are−F for
all players that enter and0 for the rest.

5. FRONTIER DESCENT STRATEGY
In this section, we describe an easily computable strategy for

the FMT game called Frontier Descent. Intuitively, this strategy
descends the lattice starting from the top of the lattice until it finds
that going any lower would drop revenue below the fixed costF .
This creates a “frontier” of lattice nodes; the algorithm then picks
the "best candidate" in the frontier. This algorithm is linear in the
size of the lattice while standard backtracking algorithms [1] take
time that is exponential in the size of the game.

Unfortunately, we can prove that the Frontier descent algorithm,
while faster, does not compute an equilibirium strategy. Instead,
we prove it provides a positive payoff for all players who enter
such that they all break even. Note that this is akin to the concept
of satisficing proposed by Simon [12] but its use in game theory (a
satisficing strategy) may be new. From the perspective of algorith-
mic game theory, this can be considered to be a fast approximation



Figure 3: An example that shows that later players can use
specialization to undercut the moves of earlier players.

algorithm. While FMT has a fast safe satisficing strategy, we will
show that ET has no safe satisficing strategy; even more surpris-
ingly, ET has the property that even with an infinite amount of po-
tential revenue in the lattice there are equilibria in whichno player
enters.

More formally, we use the standard definition of a Subgame Per-
fect Nash Equilibrium (SPNE) and add the following definitions to
capture satisficing in our context:

DEFINITION:. A historyH(t) is blockading if a player at timet has
no profitable location to enter even if no player would enter after
him. (Note that ifH(t) is blockading thenH(t + 1) is blockading
too).

DEFINITION:. A safe satisficing strategy (SSS) is a strategy that for
any historyH(t) that is not blockading finds a location to enter on
the lattice for playert such that playert has positive payoff for all
continuation histories that have the property that all playersj > t
earn positive payoffs.

Why do we add the condition that all playersj subsequent toi
have positive payoffs? We clearly must add some restrictions on
subsequent players because otherwise there can be no defense to
any move of an earlier player. If playeri moves to some nodeS
with descendant revenueV (S), if we have no restrictions an infi-
nite number of players could then perch onS as well. This will
makei’s payoff negative. Of course, it will make the payoff for
subsequent players ("suicide bombers") negative as well. The re-
striction that the payoff of subsequent players be positive removes
these trivial counterexamples and allows reasonable strategies.

Note that the standard definition of an SPNE and Nash Equilibria
disallow suicide bombers because they require that all subsequent
players make their best response. However, these are also hard to
compute which is why we are motivated to define a safe satisficing
strategy which weakens the standard definition of rationality for
subsequent players but precludes complete irrationality.

With our definition of safe satisficing strategies (SSS) behind us,
we now motivate our Frontier Descent algorithm — which is an
SSS — by a series of examples. In all examples, assume we are
dealing with the First Mover (FMT) game. We will return to the
ET game at the end of the section.

The first example shown in Figure 3 motivates the need for de-
scent in the lattice because positioning a player too high in the lat-
tice can sometimes be a poor long-term strategy. In the figure, sup-
pose Player1 decides to move to the topmost nodeAB. In lieu of
other player moves, Player1 can collect2.1M . But in that case,
later players, Player 2 and Player 3 can move to nodesA andB
respectively. Not only is this not an optimal strategy for Player1,
but this is a losing strategy as well! This is because at the end of
this history, Player1 has0.1M which is less than the fixed cost of

Figure 4: An example that shows how a lower cardinality set
can allow a later player to steal from an earlier player

1M .
Reflecting on this example, we see that by picking nodeAB,

Player 1 exposed itself to more specialized players who leave Player
1 with its original node and no descendants. (The original node is
impossible to steal away in the FMT game because no other node
can have smaller Jacquard distance).

This suggests that instead of aspiring to optimality — which ex-
ists but is most likely hard to compute — Frontier Descent merely
tries to protect its descendants against future entrants to ensure a
positive payoff. A simple way to do this is to descend the lattice
in all directions and keep doing so until one finds a set offrontier
nodes. Each nodeS in the frontier must satisfy:1) V (S) > F
and2) no descendantC of S hasV (C) > F . Recall thatV (S)
the descendant revenue also includes the revenues from all descen-
dants of a node whilev(S) includes onlyS’s revenue. The frontier
for Figure 3 is shown as a dashed line with the nodes immediately
abovethe dashed line in the set of frontier nodes. The two frontier
nodes are thusAB andBC.

Which frontier node should the algorithm pick? It is tempting to
try the greedy strategy:

GREEDY STRATEGY ATTEMPT. The first player picks the largest
revenue node in the frontier.

For example, in the Greed Strategy the first player would pick
NodeAB in Figure 3. This strategy, however, can fail in other
examples as shown in Figure 4. Here, the two frontier nodes are
ABC andBC and the greedy strategy should pickABC for Player
1 because it has higher descendant revenue asV (ABC) = F −
1 + 3 = F + 2 compared toV (BC) = F − 2 + 3 = F + 1.
Unfortunately, Player 2 can pick nodeBC and simply steal away
descendantB! This is because the Jacquard distance of player2
from setB, JD(BC, B) = 1/2 which is smaller than the Jacquard
distance of player1 from setB which isJD(ABC, B) = 2/3.

Thus besides the threat of specialization ("attacks from below")
one also has to worry about lower cardinality sets ("attacks from
the side"). This suggests a simple modification.

FIRST PLAYER FRONTIER DESCENT:. The first player picks the
largest revenue nodeS among all the smallest cardinality sets in
the frontier.

In the analysis, we prove that the first player is immune to all
future attacks on its descendant revenueV (S); while the player



Figure 5: An example that shows that frontier descent does not
always compute a SPNE for the FMT game

may get other revenue from other lattice nodes as a bonus it cannot
count on such revenue. However, the descendant revenueV (S)
at the time the player located onS is guaranteed at the end of the
game.

This guarantee suggests a simple iterative satisficing algorithm.
Once a player has picked a nodeS we simply removeS and all its
descendants from the lattice and iterate. This suggests the general
algorithm:

GENERAL FRONTIER DESCENT:. Playeri picks the largest rev-
enue nodeS among all the smallest cardinality sets in the frontier
of the lattice it starts with (Player1 starts with the original lattice).
S and all its descendants are deleted from the lattice and Player
i + 1 repeats the algorithm on the reduced lattice. Player1 starts
with the original lattice. The iterations continue until there are no
nodes in the frontier of the final reduced lattice.

There are important questions about the efficiency of this algo-
rithm but we can see that even a naive version of this algorithm
costs no more thanO(EN) whereE is the number of edges in
the lattice andN is the number of lattice nodes. We will see later
that computational efficiency can be improved toO(E) which can
be exponentially better than the size of the game tree, which is the
standard way to compute an optimal SPNE.

To gain intuition, we examine the General Frontier Descent Al-
gorithm in action on Figure 3. The frontier for the first player is as
shown. We pick nodeAB (highest payoff withV (AB) = 1.4M )
for Player1. When we do so, we deleteAB, A, andB. This
leaves a reduced lattice withABC, BC andC. The new frontier
for the reduced lattice is onlyBC and this is the node picked for
Player2. The final reduced lattice is onlyABC with reduced value
V (ABC) = 0.1. The final lattice does not possess a frontier and
so the algorithm terminates. The final payoff for Player1 will be
1.5M because Player 1 takes the revenue ofABC as first mover.
Player 2 gets a revenue of1.3M .

We can also quickly show that General Frontier Descent does
not always compute an equilibrium as shown in Figure 5. The
frontier is as shown. Note that NodeABC is not on the frontier
because it has a descendant (NodeAB) whose descendant value
V (AB) > F by the definition of a frontier. Recall that this was a
design decision meant to forestall the threat of specialization! Thus
Player 1 picks NodeA. Even in the reduced lattice,ABC is not on
the frontier and so Player2 picks NodeB. But in the final reduced
lattice, ABC becomes part of the frontier and so Player3 picks
NodeABC. Hence in the final payoffs, Player3 gets a payoff of3

Figure 6: An example that shows that the frontier descent does
not produce a satisficing strategy for the ET game.

while Player1 gets a payoff of2.
On the other hand, it is easy to see that there is an SPNE in

which Player1 moves toABC, Player 2 moves toA, and Player
3 moves toB, leading to payoffs of3, 2, and1 respectively. Thus
the frontier descent algorithm does not produce an SPNE because
Player 1 can improve his lot by playing first at the topmost node.
In some sense, Frontier Descent leaves some revenue on the table
both from nodes on the top (e.g.,ABC) and nodes at the side (e.g.,
BC andC).

So far we have been talking about the FMT game. It is natural
to ask how the Frontier Descent Algorithm does on the ET game.
Before even asking the question, we need to modify the FMT fron-
tier descent algorithm. Recall that in the FMT version, after each
player located at at a nodeS, the algorithm deletes all descendants
of S. This can no longer be done because descendants can now be
shared by later players with the same Jacquard distance.

Thus in ET Frontier Descent, we retain all nodes till the end but
add a bookkeeping variable to each node with the set of current
owners. When a new playeri descends the lattice, playeri must
account for the potential descendant revenue of a nodeS among all
its descendants by sharing equally among all descendants that have
the same Jacquard distance. Subject to this modification, a frontier
can be calculated for each player, and once again each player can
pick the largest revenue node among the smallest cardinality sets in
its frontier. Then the ownership sets are updated.

Even with these modifications, ET Frontier Descent does rather
badly — in fact, it can lose money as shown in Figure 6. According
to frontier descent, nodesAB, BC, andCD are part of the fron-
tier for Player1. However, all nodes in the frontier have the same
cardinality of 2, andBC has the highest value ofV (BC) = 120.
So Frontier Descent picksBC. But pickingBC is a bad idea be-
cause Player2 can subsequently locate onAB, and Player 3 can
locate onCD. This causes Player1 a net loss because in the ET
game,B is now shared with Player2, andC is shared with Player
3. Thus Player1 gets a total revenue of60 (30 + 30) which does not
recompense Player1 for its fixed cost of80. We will show in the
analysis that the ET game has even more unusual properties even
in equilibria.

6. ANALYSIS
We start by showing existence of equilibria for both FMT and

ET; in particular we show that both games possess not just a Nash
Equilibrium but also a Subgame Perfect Nash Equilibrium or SPNE.
For readers unfamiliar with the definition of an SPNE, in an SPNE
every possible subgame (or subtree in the game tree rerpresenting
the strategy) of the SPNE is also a Nash Equilibrium.

The reasoning for the existence of an SPNE in both games is



similar to the standard proofs for finite extensive form games. A
slight difficulty is that our games have an infinite sequence of po-
tential entrants and hence does not have a finite tree. In fact (see the
Snowflake example in Figure 7), the threat of an infinite number of
entrants makes the equilibrium outcomes quite different from the
case when the players know there are a bounded number of en-
trants.

We surmount this small difficulty by observing that even with
an infinite number ofpotentialentrants, the number ofactual en-
trants must be bounded in any equilibrium and instead of backward
induction on the sequence of players we use backward induction
over possible entry locations on the lattice.

THEOREM 1. Equilibrium Existence: For either of the two
games FMT or ET there exists a (generically unique) subgame per-
fect equilibrium in pure strategies (SPNE).

PROOF. Consider any historyH(t). For any playert the payoff
from entering at locationS on the lattice is bounded from above
by the payoff that player would obtain if there was no more entry
after him. If that payoff bound is negative, entry at that location is a
dominated strategy (by the action of no entry). For the FMT game
any setS which already has one player has the lower bound equal to
−F. For the ET game, however, even a “copy-cat” strategy (which
locates in a node chosen by an earlier player) can yield a positive
payoff. We distinguish two cases.

FMT game:
For any historyH(t), let γ (H(t)) be the number of locations

on the lattice that have a strictly positive upper bound.γ (H(t))
is bounded byγ (∅) which in turn is smaller than the size of the
lattice.γ (H(t)) decreases over time (on and off equilibrium path).
Whenγ (H(t)) = 0 there is a unique continuation SPNE in which
no more players enter. Now we use an induction argument. Sup-
pose that for anyt andH(t) such thatγ (H(t)) ≤ M there exists
a SPNE in pure strategies. For each of these histories select one
of these SPNE. Consider any historyH(t′) such thatγ (H(t′)) =
M + 1. If a player t′ does not enter, he gets a payoff 0. If that
player enters at any of the locations with a positive payoff bound,
thenγ (H(t′)) ≤ M and we have selected a unique SPNE, which
allows us to uniquely compute continuation payoffs of playert′

upon entry. Entry in any other location is dominated. Since player
t′ chooses from a finite set of entry locations (plus the option to not
enter), there exists an action with a maximum payoff. Pick any of
these best response actions as the equilibrium strategy for playert′

after historyH(t′). That implies that for every historyH(t′) such
thatγ (H(t′)) = M + 1 there exists a pure-strategy continuation
SPNE. By induction, it is true also for the empty history, and that
is the SPNE for the whole game.

ET game:
We need to modify slightly the definition ofγ (H(t)) since a

player entering in setS does not exclude the possibility that addi-
tional players would enter in that location. Therefore, if given a
history H(t) the upper payoff bound for entry in nodeS is more
thanF , let the contribution of this node toγ (H(t)) be equal to the
number of players that can enter in that node and make a positive
profit assuming no entry enywhere else. That still leavesγ (H(t))
to be decreasing over time and bounded byγ (∅) which in turn
is smaller than the number of nodes in the lattice times the ratio
v (L) /F. The rest of the argument follows without change.

We now show that Frontier Descent is a safe satisficing strat-
egy as define earlier. Doing so requires the following lemma that
shows that lower cardinality sets can defend against “attacks from
the side” from higher cardinality sets.

LEMMA 2. Common descendant distance: If two setsS1 and
S2 have a common descendantS3 in the lattice, then:|S1| < |S2|
if and only ifJD(S1, S3) < JD(S2, S3).

PROOF. Let x be the cardinality ofS1, y the cardinality ofS2,
andc the cardinality of common descendantS3. We know thatS3
is a subset ofS1 andS3 is a subset ofS2. ThusJD(S1, S) =
(x− c)/x = 1− c/x. Similarly,JD(S2, S) = 1− c/y. Clearly,
if x < y, andx, y, c > 0, thenc/x > c/y and1− c/x < 1− c/y.
The converse holds similarly.

THEOREM 3. FMT safe satisficing: In the FMT game, Fron-
tier Descent produces a safe satisficing strategy.

PROOF. We claim that the Frontier Descent Algorithm described
above is a safe satisficing strategy. We need to show that when
playeri makes a move there is a continuation History in which, re-
gardless of the moves of subsequent playersj > i, the payoff of
Playeri remains positive. At the timei made its move,V (S) > F .
We now show that Playeri gets a revenue no less thanV (S) and a
payoff no less thanV (S) − F . Note thatV (S) is the value at the
time i made its move. Suppose that some other later playerj > i
causes Playeri’s descendant revenue to drop belowV (S). This
can only happen if Playerj steals a descendantD of S, But that
can only happen ifD is also a descendant ofS′ that nodej moves
to andJD(S′, D) < JD(S, D). But in that case (by the Com-
mon descendant distance lemma), thenS′ has smaller cardinality
thanS. But in that case Playeri would have chosenS′ instead of
S when Playeri evaluated its frontier becauseS would have had
payoff greater thanF and smaller cardinality thanS′. This contra-
dicts the fact that Playeri picked the smallest cardinality set in its
frontier.

There are two subtleties to this argument. First, the argument
tacitly assumes thatS′ would have been in the frontier when player
i evaluated its options. This follows because as the lattice reduces
at each stage of the algorithm, nodes likeS′ can only lower their
values of descendant revenueV (S′) (monotonicity). Thus ifS′

was on the frontier at a later stage, it must have been on the frontier
at an earlier stage. Second, the argument assumes that Playerj
cannot pick some descendantR of S. In this case,j will steal R
away fromi. But by the definition of the frontier, we know that
V (R) < F . Hence,j will have a negative payoff which implies
this is not a satisficing strategy.

It is well known [1] that for extended games, one can calculate
SPNE using a traversal of the game tree from the bottom up. Since,
we know that FMT has an SPNE and it can be calculated, why
bother with a satisficing strategy. This is because the best known
general algorithm is linear in the size of the game tree. But the
game tree is exponential in the number of nodesN of the latticeL.
This is because the first level hasN children (Player 1 can move to
any node), each child has at leastN−1 children (Player 2 can move
to any nodes not taken by player 1) and so on. Thus the game tree
hasN∗(N−1)∗(N−2)... = N ! nodes which by Stirlings Formula
is O((N/e)N ) By contrast, we can show that Frontier Descent can
be made to run inO(E), whereE is the number of edges in the
lattice which isO(N log N).

THEOREM 4. Frontier descent is polynomial time: Frontier
descent for FMT can be implemented to run inO(N log N)time.

PROOF. We consider a worst-case complete lattice in sayn vari-
ables and first calculate the number of direct edgesE between
nodes and immediate descendants. The lattice has2n = N nodes.
Observe that sets of sizei havei links to all immediate descendants



of sizei− 1. Thus the total number of links isE = Σn
i=0iC(n, i)

whereC(n, i) is thei-th binomial coefficient. By the binomial the-
orem, (x + 1)n = Σn

0 C(n, i)xn. By differentiating both sides
and settingx = 1 we get the required sumE = Σn

i=0iC(n, i) =
n2n−1 But sincen = log N , E = O(N log N).

The straightforward implementation of FMT Frontier Descent is
O(EN). This is because each descent of the lattice can at most
visiting each edges once to compute theV (S) values and the fron-
tier. It can at most do at mostN descents for at mostN players
because there can be at most 1 player per node.

The running time can be improved by having back pointers from
descendants to immediate ancestors and by incrementally recom-
puting the frontier when a Playeri is assigned to a node. We still
delete all the player’s descendants. However, we also follow the up-
pointers to adjust the descendant revenues of all immediate ances-
tors. If some such ancestors were in the earlier frontier for Playeri
but are no longer in the frontier for Playeri+1, the algorithm has to
go further up to “repair” the frontier by following more up-pointers.
But once a node is not part of the frontier, it will not re-enter at a
later stage of the algorithm.

Thus the frontier repair operation visits every node and every
edge at most once. Thus the initial descent isO(E) and the repair
is O(E) and so the final algorithm isO(E) which isNlogN .

We now turn our attention to the ET game. Given that the FMT
game may be hard to compute an equilibrium for, it seems reason-
able to believe that ET is even harder. Thus it makes sense to look
for a satisficing strategy for the ET game. Unfortunately, we can
show that:

THEOREM 5. ET is not safe satisficing: In the ET game, in
general there does not exist a SSS.

PROOF. For our proof we will exhibit a specific latticeL for
which there exists no SSS. More specifically, we will show that for
any choice of the location of Player1 there exists a continuation
strategy that is:

• Blockading (recall that a blockading history in one which
there is no location at which a player can enter, and still re-
cover its fixed costs, assuming no future moves).

• All players after Player1 make positive payoffs

• Player1 makes a negative payoff.

The latticeL consists of 4 locations/nodes:A, B, C andD. No
other lattice nodes have any value. There are60 users in each node.
The fixed cost is80.

There are 4 cases for the first move of Player1. A location can
either be a singleton (sets such asA), a doubleton (sets such as
AB), a tripleton (sets such asABC) or the ground set (ABCD).

• Player1 picks a singleton set. By symmetry, assume Player1
locates on NodeA. Consider the continuation strategy where
Player2 locates onBC and Player3 locates onCD. Player
1’s payoff is−20 (revenue of60 less a fixed cost of80) while
Players2 and3 have a payoff of90 − 80 = 10. It is easy
to see that this history is blockading. This is because Player
4 cannot locate on any singleton (because Player4 would at
most get60 from say locating atB); cannot locate on any
doubleton (because Player4 can at most take half of two ex-
isting singletons resulting in a revenue of at most60); cannot
locate on either any tripleton or the ground set because the
distance to any singleton is larger than that of existing play-
ers.

• Player1 picks a doubleton. By symmetry assume Player 1
enters on NodeAB. After the first player enters atAB there
is a continuation history in which Players2 and3 enter at
DA andBC respectively. If they do, they each get a revenue
of 60 + 30, so they make a payoff of10 each. But Player
1 loses money because it now has revenue of30 + 30 and a
payoff of−20. Again, this history is blockading because of
a similar case analysis to the one done above.

• Player1 picks a tripleton set. In this case, Player2 picksAB
and Player3 picksCD. Player1 gets a payoff of−80 and
Player2 and3 get a payoff of40 each. Again, it is easy that
this history is blockading. The analysis for the fourth case
(when Player1 picksABCD) is identical.

Thus for latticeL there is no possible first move of Player1 that
can guarantee positive profits in blockading continuation histories
of the ET game.

Interestingly, there is an equilibrium strategy in the ET game for
latticeL in which Player1 would enter atAB and only Player2
would enter in equilibrium in the locationCD and consquently
Player 1 and 2 would both get a payoff of 120. Note that our
counterexample latticeL is similar to the one in Figure 6. How-
ever, while there we simply needed a counterexample for Frontier
Descent, here we need a counterexample for any algorithm. The
symmetry in the counterexample is thus crucial. Note that philo-
sophically it is “attacks from the side” that one has to worry about
from nodes who originally have lower value when the frontier is
first evaluated.

A natural question is how many players will enter each game.
The following theorem is immediate for the FMT game:

THEOREM 6. In the FMT game there exists a satisficing strat-
egy in which at least one player will enter and all revenue will be
assigned to some player (i.e, no revenue is "left on the table").

PROOF. We know that ifV (L) > 0, there exists a frontier for
at least the first player in the Frontier Descent algorithm. This is
because either the top of the lattice is a frontier node or both its
descendants are greater thanF . In the latter case, we keep de-
scending but maintain the invariant that all ancestorsS of visited
nodes haveV (S) > F . But descent must terminate (because we
cannot descend beyond the bottom of the lattice). Assume descent
terminates at some nodeE Then (by the terminiation condition)
none of the immediate descendantsD of E haveV (D) > F . But
by the invariantV (E) > F . ThusE is a frontier node. Since there
must be at least one frontier node, Player 1 will always enter. We
have already shown that Frontier Descent is safe satisficing. Fi-
nally, note that if at least one player enters, the definition of FMT
assigns all revenue to the players who have entered at the end of the
game. Thus no revenue is "left on the table".

Note that it is not possible to provide good bounds on thenumber
of players who enter in the FMT game without making further as-
sumptions on the distribution of total lattice revenueV (L) among
individual lattice nodes. For example, consider the lattice where
only a single node has valuecF for any value ofc. No other node
has revenue. It is easy to see that only one player enters and takes
all the revenue. A slightly less trivial example is where a single
nodeS has valueF andS hasc immediate descendants of value
F − 1 and no other lattice nodes have any value. In this case as
well, the first player will clean up, accruing revenueF + c(F − 1)
for any value ofc.



Figure 7: An example that suggests that even large amount of
potential revenue there may exist equilibria in the ET game in
which no player will enter

7. OPEN PROBLEMS
We list some interesting open problems suggested by our work.
1. How many players can enter in an SPNE of the ET game?The

last theorem in the analysis shows that at least one player can enter
in the FM game using Frontier Descent. Imagine an ET instance
in which the total revenue of the lattice summed across all nodes
V (L) is 100 times the fixed costF . Potentially there is room for
100 entrants. However, we conjecture that there exists ET game
instances in which the total potential revenue is arbitrarily high and
yet there are SPNEs in whichno playerenters the game. Further,
if a player deviates and enters, that player could have a negative
payoff.

Consider the example in Figure 7. We have shown the lattice
using circular rings for each level to show the circularity of the
configuration which we refer to as our snowflake example. The
lattice on 6 nodes A through F. All lattice nodes not shown have
zero value. The fixed cost is 1100. Assume for a start that Player
1 can only enter at the nodes AB, BC, CD, DE, EF, and AF. By
symmetry, assume player1 enters at AB. In that case, a possible
best response for Player 2 is node ED, for player 3 is AF and for
player 4 is BC. No more entrants are possible in this history. But in
that case AB loses money because his final payoff is 1080 which is
less than the fixed cost of 1100. Unfortunately, the complete proof
that this is indeed the best response requires arguing over a much
larger number of cases. For example, we also need to consider the
case when Player1 enters at nodeA. We invite the reader to find a
proof or a counterexample for our snowflake example!

Note that it is crucial for this example that ET has a possibly
infinite set of players who can enter. If we knew that there were
only 100 possible players, Player 100, for example, is guaranteed
to enter if Players 1 through 99 do not as there can be no subsequent
threats from future players. By contrast, FMT has no such problem.

2. How many players can enter in the FMT game?We have
seen that at least one player can enter in the FMT game and that
better bounds are hard to guarantee without further assumptions on
how revenue is distributed among nodes. For example, it appears
reasonable to assume that interests are distributed according to a
power law; this implies that revenues from taste sets also follow

power laws. Given such an assumption it seems possible to prove
stronger bounds on the number of entrants.

3. Are there polynomial time algorithms to compute SPNEs for
the FMT or ET games?We have seen that Frontier Descent takes
O(N log N) but does not guarantee to find the best response. Are
there other polynomial time algorithms that either find the best
response or find a response that strictly dominates (for the FMT
game) Frontier Descent?

4. Is there a stronger definition of “satisficing” that allows a
satisficing strategy for the ET game?We have proved that that
there exists lattices for which the ET game has no satisficing strat-
egy. But our definition of satisficing only requires future players to
make money in a continuation history that is blockading. We did
not require that the future players also (recursively) play a satisfic-
ing strategy. This stronger definition of satisficing — that we call
strong satisficing— may allow ET to have a satisficing strategy.

5. What is the relation between strategies that are satisficing and
Nash Equilibria?Consider the following transformed game where
we transform the payoff functionπ to π′ = 1 if π ≥ 0 and0 oth-
erwise. In some sense, the new payoff functionπ′ is a first order
approximation to the original payoff function. Then it appears that
a satisficing solution to the original game is a Nash equilibirum of
the transformed game. It also appears that a strong satisficing so-
lution of the original game is an SPNE of the transformed game.
These correspondences may make the notion of satisficing less for-
eign as a notion.

6. What happens if players could enter in multiple locations?In
the extreme case where each player can enter in an unlimited num-
ber of locations, it appears that in any SPNE there would be at most
one player earning a strictly positive profit (for generic games). The
reasoning is by contradiction: suppose playerst1, . . . , tn > 1 get
a positive profit in an equilibrium. Then player 1 could enter in the
locations of these players and simply transfer their profits to him-
self (and at the same time not being threatened by additional entry
since we start with an equilibrium).

8. CONCLUSIONS AND FUTURE WORK
This paper has four contributions:

• Modeling Aggregators:Aggregation is an important and grow-
ing phenomenon in the web milieu. We provide the first
model of aggregator incentives. The only earlier paper we
know of [4] is a paper on the interaction between aggregators
and content providers. While this is important, it does not
provide insight into why aggregators enter. The two games
are orthogonal and should ideally be combined.

• Jacquard distance for location games:While we fundemen-
tally model the entrance of aggregators and users as a lo-
cation game, we are the first to model distance as Jacquard
distance and not Euclidean distance. This is not merely an
esoteric choice for novelty but we believe a more realistic
model of user taste sets than Euclidean distance in any di-
mensional space. We believe our location game, invented
to model aggregators, applies to other parts of economics as
well in which specialized stores (e.g., grocery stores) steal
users from general stores (e.g., Walmart).

• Safe satisficing strategies:In the course of this paper, we
found it natural to invent safe satisficing strategies. Satisfic-
ing is well known in economics; so also are extensive form
games. We claim that it is perfectly natural to marry these
two concepts. In particular, this is because computing an
SPNE is typically exponential in the size of the lattice. To put



this into perspective, even for the simple snowflake example
with 12 nodes, the size of the lattice is 1024 and the size of
the game tree is 1024 factorial (the amount of time required
to search the game tree), an astronomically large number.
While in practice, there are heuristics such as branch-and-
bound, computing SPNEs with the best known algorithms
appears very hard. By contrast, we have shown a non-trivial
algorithm for the FMT game that is very fast (N log N ver-
susN !) that at least prevents loss if all subsequent players
also have positive profits. Could there be simpler game tree
strategies for other games as well that are safe satisficing?
Recall also our conjecture that a satisficing strategy is a Nash
equilibrium of a game with modified payoffs — that are a
first order approximation, the sign function, of the original
payoff function.

Satisficing strategies can also be viewed from the lens of
computer science. Just as there exist polynomial time ap-
proximation algorithms for so-called NP complete algorithms
(whose best known solutions are exponential in the input),
perhaps satisficing algorithms introduce the notion of "ap-
proximation" to "algorithmic game theory".

• FMT and ET games:We have made progress on the analysis
of aggregator games. We have shown that the FMT game
has anN log N satisficing solution which is not an SPNE.
At least one player will enter if the revenue is more than the
fixed cost, and no revenue is wasted. We have shown by
contrast that the ET game has no satisficing solution.

In conclusion, we note that Frontier Descent provides some in-
tuition into the evolution of aggregation on the real web. In some
sense, the sequence of entries from say Yahoo to TechCrunch to
AppleInsider is a form of descent. And yet large aggregators such
as Yahoo remain profitable (as do general stores like Walmart) per-
haps because they aggregate the "long tail" of content that does not
warrant a sufficiently large market for a more specialized aggrega-
tor.

Frontier descent also suggests that as the fixed costF goes down,
more aggregators will enter in more specific niches because play-
ers can descend lower in the lattice and still make a profit. Ar-
guably, fixed costsF have reduced over the last 5 years because of
cloud services and better abstractions for building web sites. This
may explain the recent emergence of a large number of aggregators
catering to more specific tates. More importantly, it suggests an
interesting business opportunity. A vendor that can provide good
tools for to reduce the cost of doing businessF is likely to open the
floodgates for new small aggregators to cater to the long tail of user
interests — and reap a rich reward in doing so.
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