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Wrote language for zero-knowledge proofs

Removes obstacle, easy to translate from description to implementation

Wrote library for e-cash using this language/interpreter framework
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Zero-knowledge proofs have applications, but can be complex
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Our first attempt: write library from scratch
P2P file sharing
e Not reusable

e Time-consuming

® Error prone



Implementing zero knowledge (take 1)



Implementing zero knowledge (take 1)

¢ | esson learned: even though you know the math, coding can get messy



Implementing zero knowledge (take 1)

¢ | esson learned: even though you know the math, coding can get messy

Coin::Coin(const BankParameters *params, int stat, int 1x,
hashalg t hashAlg, const ZZ &coinIndex, const ZZ
&walletSize, int coinDenom, const ZZ &sk u, const ZZ &s,
const ZZ &t, const vec ZZ &clSig, const vector<SecretValue>
&clPrivateSecrets, const vector<SecretValue>
&clPrivateRandoms, const ZZ &r) { ...



Implementing zero knowledge (take 1)

¢ | esson learned: even though you know the math, coding can get messy

Coin::Coin(const BankParameters *params, int stat, int 1x,
hashalg t hashAlg, const ZZ &coinIndex, const ZZ
&walletSize, int coinDenom, const ZZ &sk u, const ZZ &s,
const ZZ &t, const vec ZZ &clSig, const vector<SecretValue>
&clPrivateSecrets, const vector<SecretValue>
&clPrivateRandoms, const ZZ &r) { ...

¢ Functionality is there, but not easy to use
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e Build an interpreter to automatically translate from ZKPDL to proofs
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How can we lighten the implementation load?

e Design a language: ZKPDL (Zero Knowledge Proof Description Language)

e Build an interpreter to automatically translate from ZKPDL to proofs
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Description in paper

Algorithm 3.1: CalcCoin
Input: pk, € {0,1}" merchant’s public key,
contract € {0,1}"
User Data: u private key, g* public key,
(s,t,0,J) a wallet coin
R « H(pk4||info) ;
S gl/(a+z.+l);
T ‘_gu(gl/(t+x+l))R;
Calculate ZKPOK & of (J,u, s,t,0) such that:

0<J<n
S = gl/(a+z+l)

T = gu(gl/(t+z+l))R
VerifySig(pks, (u, s,t),0) = true
return (S,7,9, R)
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High-level language, goal was to mirror theoretical descriptions

Description in paper Description in ZKPDL
Algorithm 3.1: CalcCoin computation:
Input: pk,, € {0,1}" merchant’s public key, compute:
contract € {0,1}" . S := g*(1/(s+x+1))
User Data: u private key, g* public key, T := g*u * (g (1/(t+x+1)))"R
(s,t,0,J) a wallet coin proof:
R « H(pk y|info) ; ven:

S gl/(s«}-z‘d-l);
T ‘_gu(gl/(t+r+l))k;
Calculate ZKPOK @ of (J,u, s,t,o) such that:

0<J<n
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VerifySig(pks, (u, s,t),0) = true
return (5,7, 9, R)

group: G = <g,h>
elements in G: S, T
prove knowledge of:
exponents in G: u,s,t,x
integer: J
such that:
range: 0 <= J < n
S = g*(l/(s+x+1l))
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Algorithm 3.1: CalcCoin computation:
Input: pk, € {0,1}" merchant’s public key, compute:

contract € {0,1}"
User Data: u private key, g* public key,
(s,t,0,J) a wallet coin
R « H(pk4||info) ;
S gl/(s+-z+l);
T ‘_gu(gl/(t+r+l))k;
Calculate ZKPOK @ of (J,u, s,t,o) such that:

0<J<n
S = gl/(a+1‘+l)

T = gu(gl/(t+r+l))R
VerifySig(pks, (u, 8,t),0) = true
return (S,7,9, R)

S := g"(1/(s+x+1))

T := g'u * (g"(1/(t+x+1l)))"R

proof:

given:
group: G = <g,h>
elements in G: S, T

prove knowledge of:

—  exponents in G: u,s,t,x
integer: J

such that:

range: 0 <= J < n
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Step 1: writing programs in ZK

High-level language, goal was to mirror theoretical descriptions

Description in paper Description in ZKPDL
Algorithm 3.1: CalcCoin computation:
Input: pk, € {0,1}" merchant’s public key, compute:

contract € {0,1}"
User Data: u private key, g* public key,
(s,t,0,J) a wallet coin
R Hiphlin)
« ’ =
T ._30(91/(Hz+1))1i’. group: G = <g,h>

’ elements in G: S, T
Calculate ZKPOK & of (J,u, s,t,0) such that: !
prove knowledge of:

(;‘5:.217(:1““) — gxponents in G: u,s,t,x

T = gu(gl/(t+z+l))R
VerifySig(pks, (u, s,t),0) = true
return (S,7,9, R)

S @
T :
proof:

g~ (1/(s+x+1))
g’u * (g"(1l/(t+x+1)))"R

range: 0 <= J < n
S = g*(1l/(s+x+1)

Currently support four ZKP types, enough for vast majority of applications

Should also be easy to add new types if they’re needed
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Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
p.check(program) ;
p.compute(g,Vv);
return p.prove();
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Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
—> p.Ccheck (program) ;
p.compute(g,Vv);
return p.prove();

}
e Specify crypto protocol of choice in the program string
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Step 2: using the interpreter to write a library '

Use simple procedure to create wrapper classes for interpreter

Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
—> p.check(program) ;
—>» p.compute(g,v);
—>» return p.prove();

}
e Specify crypto protocol of choice in the program string

* Feed numeric values in and you're donel!

Solves issues of reusability and of time

Took 3-4 months to build interpreter, then one month to reconstruct library

10
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Optimizations: caching

In addition to usability, can achieve improvements in efficiency

Have optimizations built into the interpreter

e Cache powers of bases used for modular exponentiation

Often have g”"x*h”r mod N, numbers are 1000 bits long!

Use common single- and multi-exponentiation techniques

e Save copy of interpreter state after compilation

11



Did caching help?

Program type Prover (ms) Verifier (ms) Proof size Cache size Multi-exps
With cache | Without | With cache | Without (bytes) (Mbytes) Prover | Verifier
DLR proof 3.07 3.08 1.26 1.25 511 0 2 1
Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2
Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11
CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39
CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1
CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42
Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)
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Case study: using ZKPDL for e-cash
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E-cash was originally developed [Ch82] as replacement for currency

Now, view e-cash in context of token systems

e QOur usage in P2P file-sharing schemes [BCE+07]

e Provides anonymous transportation ticketing (future work)
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How e-cash works [Ch82, CHLOS5, CLMO7]
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Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

Untraceability: Bank cannot trace the deposited coins back to Alice
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How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers
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CashLib: integrating e-cash into a P2P system

Operations:

° Buyf§;

e Barter

e Withdraw

e Deposit

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers
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CashLib: integrating e-cash into a P2P system
Operations: \'1 t’ Actors:
. Buy%% » e S e Buyer 3‘
" ) % Py
e Barter - e Seller
N e ot
o Withdraw e Bank .\
e Deposit e Peer t

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers

¢ Allows bank to monitor upload/download ratio without sacrificing privacy
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So what aren’t we doing?

e Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]
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Related work

So what aren’t we doing?

e Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]

e As application of zero knowledge, provide library only for e-cash

ldemix project [CHO02, BBC+09] provides anonymous credentials
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IN summary...

¢ \Wrote interpreter to make cryptographer’s job easier

e Demonstrated efficiency and usability

e \Wrote library to make programmer’s job easier

e All source code and documentation available freely online:

e http://github.com/brownie/cashlib
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Any guestions?
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/ero knowledge proof types

e \What types of proofs do we support?

e Proof of discrete log representation (DLR): given c, provec = g"x*h"r

e Equality of DLR: givencand d, provec = g"x*h"randd = g"x*h”"s

e Multiplication: prove x = y*z for secret values x, vy, z

e Range: for secret x and public lo, hi, prove 1o <= x < hi



