/KPDL: A Language-Based System for Zero-
Knowledge Proofs and Electronic Cash

Sarah Meiklejohn (UC San Diego)
C. Chris Erway (Brown University)
Alptekin Kupcl (Brown University)
Theodora Hinkle (UW Madison)

Anna Lysyanskaya (Brown University)

Bridging the gap

Crypto Systems

Bridging the gap

Crypto Systems

R « H(pk q||contract) ;
IL1,T2,T3 ¢ Zq 3

Yy« &(z1,%2,23) ;

S" « F,(J)g™

T « g“F,(J)"g™ ;

Bridging the gap

Crypto Systems

R « H(pk || contract) ;
IL1,T2,T3 ¢ Zq 3

Y O(z,Z2,23) ;

S' « Fo(J)g™

T g“F,(J)“g"" :

ap
3ridging the g

Crypto

Systems
ract) ;
H (pk || cont
R o«

Ly ;
v ‘—-
r,r2,T3

: 11:3) ;
‘9(1'1,-’52
Yy

J)QI' ;I:)
o et
! g
T

Bridging the gap

Crypto Systems

R « H(pk q||contract) ;
IL1,T2,T3 ¢ Zq 3

Yy ¢(Ia2v 33) ;

S« Fy(J)g"™

T guFt(J)Rgrz ;

Bridging the gap... for zero knowledge proofs

Crypto Systems

Bridging the gap... for zero knowledge proofs

Systems

1 3 1 f
vt if 41 *‘;f
Y

.
g\ ()

i T

P2P file sharing

Crypto

Bridging the gap... for zero knowledge proofs

Crypto Systems
W g 41
Y tf af '

| T

(|

i 7T

[POP file sharing
)

Bridging the gap... for zero knowledge proofs

Crypto Systems

4 % 'r’
! N"
i 1

Bridging the gap... for zero knowledge proofs

Crypto Systems
A
it g 1 %
‘

h e-cash

library | "\

Zero knowledge

Wrote language for zero-knowledge proofs

Removes obstacle, easy to translate from description to implementation

Wrote library for e-cash using this language/interpreter framework

Zero-knowledge proofs [GM

Verifier

2389,

SdSM

PO

Zero-knowledge proofs [GM

| have
access
credentials
&

..
LS. .
A<

Prover Verifier

2389,

SdSM

PO

Zero-knowledge proofs [GM

| have
access
credentials
&

<

Prover Verifier

2389,

SdSM

PO

Zero-knowledge proofs [GM

| have
access
credentials

&/ >

<

Prover Verifier

2389,

SdSM

PO

Zero-knowledge proofs [GMR89,BdSMP9I1]

Prover Verifier

Soundness: system won’t accept
incorrect proof

Zero-knowledge: system won’t learn
anything it didn’t already know

Zero-knowledge proofs [GMR89,BdSMP9I1]

| have
access
credentials

Soundness: system won’t accept
incorrect proof

/ >
H = « Zero-knowledge: system won’t learn
w 217" anything it didn’t already know
Prover Verifier

air exchange .
electronic

anonymous _
voting

credentials

non- multi-party verifiable anonymous
transferable computation encryption onion routing
signatures \

verifiable
secret sharing

electronic cash
. deniable

group authentication
signatures

Zero-knowledge proofs [GMR89,BdSMP9I1]

| have
access
credentials

Soundness: system won’t accept
incorrect proof

W/ >
H = « Zero-knowledge: system won’t learn
.@ 217 anything it didn’t already know
Prover Verifier

air exchange .
electronic

anonymous _
voting

credentials

non- multi-party verifiable anonymous
transferable omputation encryption onion routing
signatures \

verifiable
secret sharing

electronic cash
. deniable

group authentication
signatures

Zero-knowledge proofs [GMR89,BdSMP9I1]

| have
access
credentials

Soundness: system won’t accept
incorrect proof

W/ >
H = > Zero-knowledge: system won't learn
,@ 217" anything it didn’t already know
Prover Verifier

air exchange .
electronic

anonymous _
voting

credentials

non- multi-party verifiable anonymous
transferable omputation encryption onion routing
signatures \

verifiable
secret sharing

electronic cash
. deniable

group authentication
signatures

Zero-knowledge proofs have applications, but can be complex

Implementing zero knowledge (take 1)

Crypto Systems
W' g} th
R
, DY |
T 1
y {
i 7T

P2P file sharing

Implementing zero knowledge (take 1)

Crypto Systems
Wy th
" ;f i; 4
T 1
4\ {
i 7

Our first attempt: write library from scratch
P2P file sharing

Implementing zero knowledge (take 1)

Crypto

Zero knowledge

Systems
%
’1 ?!
o
i T

P2P file sharing

Implementing zero knowledge (take 1)

Crypto

Systems
%
‘1 ?!
)\ f
i T

P2P file sharing

Implementing zero knowledge (take 1)

Crypto

Systems

H
T‘f
f
i 7

P2P file sharing

T

Implementing zero knowledge (take 1)

Systems

\‘%‘ %g ; 'ty

Crypto

Our first attempt: write library from scratch
P2P file sharing
e Not reusable

e Time-consuming

® Error prone

Implementing zero knowledge (take 1)

Implementing zero knowledge (take 1)

¢ | esson learned: even though you know the math, coding can get messy

Implementing zero knowledge (take 1)

¢ | esson learned: even though you know the math, coding can get messy

Coin::Coin(const BankParameters *params, int stat, int 1x,
hashalg t hashAlg, const ZZ &coinIndex, const ZZ
&walletSize, int coinDenom, const ZZ &sk u, const ZZ &s,
const ZZ &t, const vec ZZ &clSig, const vector<SecretValue>
&clPrivateSecrets, const vector<SecretValue>
&clPrivateRandoms, const ZZ &r) { ...

Implementing zero knowledge (take 1)

¢ | esson learned: even though you know the math, coding can get messy

Coin::Coin(const BankParameters *params, int stat, int 1x,
hashalg t hashAlg, const ZZ &coinIndex, const ZZ
&walletSize, int coinDenom, const ZZ &sk u, const ZZ &s,
const ZZ &t, const vec ZZ &clSig, const vector<SecretValue>
&clPrivateSecrets, const vector<SecretValue>
&clPrivateRandoms, const ZZ &r) { ...

¢ Functionality is there, but not easy to use

Implementing zero knowledge (take 2)

Crypto 9 Systems
W ag g
e |- (Y R A
\‘:‘\— h) /'l‘ '
4\ {
i 7

P2P file sharing

Implementing zero knowledge (take 2)

Crypto ' Systems
Y & , r % t 1 i
q W ot 11y ¢
e |- (Y a4
S
i 7

P2P file sharing

How can we lighten the implementation load?

Implementing zero knowledge (take 2)

Crypto , Systems
W f) 1h '
= @ A
i ()

Sl T 1T

4 f

P2P file sharing
How can we lighten the implementation load?

e Design a language: ZKPDL (Zero Knowledge Proof Description Language)

e Build an interpreter to automatically translate from ZKPDL to proofs

Implementing zero knowledge (take 2)

Crypto Systems
o
} » interpreter e-cash
_ library ‘
1 ‘t
4\ f

P2P file sharing
How can we lighten the implementation load?

e Design a language: ZKPDL (Zero Knowledge Proof Description Language)

e Build an interpreter to automatically translate from ZKPDL to proofs

Step 1: writing programs in ZK

High-level language, goal was to mirror theoretical descriptions

Step 1: writing programs in ZK

High-level language, goal was to mirror theoretical descriptions

Description in paper

Algorithm 3.1: CalcCoin
Input: pk, € {0,1}" merchant’s public key,
contract € {0,1}"
User Data: u private key, g* public key,
(s,t,0,J) a wallet coin
R « H(pk4||info) ;
S gl/(a+z.+l);
T ‘_gu(gl/(t+x+l))R;
Calculate ZKPOK & of (J,u, s,t,0) such that:

0<J<n
S = gl/(a+z+l)

T = gu(gl/(t+z+l))R
VerifySig(pks, (u, s,t),0) = true
return (S,7,9, R)

Step 1: writing programs in ZK

High-level language, goal was to mirror theoretical descriptions

Description in paper Description in ZKPDL
Algorithm 3.1: CalcCoin computation:
Input: pk,, € {0,1}" merchant’s public key, compute:
contract € {0,1}" . S := g*(1/(s+x+1))
User Data: u private key, g* public key, T := g*u * (g (1/(t+x+1)))"R
(s,t,0,J) a wallet coin proof:
R « H(pk y|info) ; ven:

S gl/(s«}-z‘d-l);
T ‘_gu(gl/(t+r+l))k;
Calculate ZKPOK @ of (J,u, s,t,o) such that:

0<J<n
S = gl/(s+z+1)

T = gu(gl/(t+r+l))R
VerifySig(pks, (u, s,t),0) = true
return (5,7, 9, R)

group: G = <g,h>
elements in G: S, T
prove knowledge of:
exponents in G: u,s,t,x
integer: J
such that:
range: 0 <= J < n
S = g*(l/(s+x+1l))

Step 1: writing programs in ZK

High-level language, goal was to mirror theoretical descriptions

Description in paper Description in ZKPDL
Algorithm 3.1: CalcCoin computation:
Input: pk, € {0,1}" merchant’s public key, compute:

contract € {0,1}"
User Data: u private key, g* public key,
(s,t,0,J) a wallet coin
R « H(pk4||info) ;
S gl/(s+-z+l);
T ‘_gu(gl/(t+r+l))k;
Calculate ZKPOK @ of (J,u, s,t,o) such that:

0<J<n
S = gl/(a+1‘+l)

T = gu(gl/(t+r+l))R
VerifySig(pks, (u, 8,t),0) = true
return (S,7,9, R)

S := g"(1/(s+x+1))

T := g'u * (g"(1/(t+x+1l)))"R

proof:

given:
group: G = <g,h>
elements in G: S, T

prove knowledge of:

— exponents in G: u,s,t,x
integer: J

such that:

range: 0 <= J < n

S = g*(l/(s+x+1l))

Step 1: writing programs in ZK

High-level language, goal was to mirror theoretical descriptions

Description in paper Description in ZKPDL
Algorithm 3.1: CalcCoin computation:
Input: pk, € {0,1}" merchant’s public key, compute:

contract € {0,1}"
User Data: u private key, g* public key,
(s,t,0,J) a wallet coin
R Hiphlin)
« ’ =
T ._30(91/(Hz+1))1i’. group: G = <g,h>

’ elements in G: S, T
Calculate ZKPOK & of (J,u, s,t,0) such that: !
prove knowledge of:

(;‘5:.217(:1““) — gxponents in G: u,s,t,x

T = gu(gl/(t+z+l))R
VerifySig(pks, (u, s,t),0) = true
return (S,7,9, R)

S @
T :
proof:

g~ (1/(s+x+1))
g’u * (g"(1l/(t+x+1)))"R

range: 0 <= J < n
S = g*(1l/(s+x+1)

Currently support four ZKP types, enough for vast majority of applications

Should also be easy to add new types if they’re needed

Sample usage of the interpreter

| have
access
Prover\ credentials Verifier

Sample usage of the interpreter

Prover

Far

/KPDL
program

Interpreter

Verifier

Interpreter

Sample usage of the interpreter

/KPDL
program

Interpreter

PN

Verifier

—_——

LR
L
LR

Interpreter

e At compile time, check program syntax, types, etc.

Sample usage of the interpreter

public
secret values N
values Verifier
E;j 17
Interpreter Interpreter

e At compile time, check program syntax, types, etc.

e At run time, need all values to be proved

Sample usage of the interpreter

public
secret values N
values Verifier
‘ o 7
Interpreter Interpreter

e At compile time, check program syntax, types, etc.

e At run time, need all values to be proved

Sample usage of the interpreter

public
secret values N
- values Verifier
PROOF ;I; | 7
Interpreter Interpreter

e At compile time, check program syntax, types, etc.

e At run time, need all values to be proved

Sample usage of the interpreter

public
secret values

Verifier

Interpreter Interpreter

e At compile time, check program syntax, types, etc.

e At run time, need all values to be proved

Sample usage of the interpreter

secret
values

public
values

Interpreter

AN

Verifier

Interpreter

e At compile time, check program syntax, types, etc.

e At run time, need all values to be proved

Sample usage of the interpreter

secret
values

public
values

Interpreter

AN

Verifier

Interpreter

e At compile time, check program syntax, types, etc.

e At run time, need all values to be proved

Step 2: using the interpreter to write a library

10

Step 2: using the interpreter to write a library '

Use simple procedure to create wrapper classes for interpreter

10

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

program

L@]l
-

Interpreter

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter

publics
secrets

A

Interpreter

Step 2: using the interpreter to write a library |

Use simple procedure to create wrapper classes for interpreter

publics
secrets
N - /
S A
H [| PROOF
118 vV &

Interpreter

Step 2: using the interpreter to write a library

Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
p.check(program) ;
p.compute(g,Vv);
return p.prove();

10

Step 2: using the interpreter to write a library

i O
=/
:m 1y 2% N
.
‘v ¥ -)
\ -
’
7+
\ig
3 / ,
il 2

Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
—> p.Ccheck (program) ;
p.compute(g,Vv);
return p.prove();

}
e Specify crypto protocol of choice in the program string

10

Step 2: using the interpreter to write a liorary ¢

/ oy
)%
:-w ., N
.
\ .
Y,
.

Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
—> p.Ccheck (program) ;
—> p.compute(g,v);
—>» return p.prove();

}
e Specify crypto protocol of choice in the program string

* Feed numeric values in and you're donel!

10

Step 2: using the interpreter to write a library '

Use simple procedure to create wrapper classes for interpreter
Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
—> p.check(program) ;
—>» p.compute(g,v);
—>» return p.prove();

}
e Specify crypto protocol of choice in the program string

* Feed numeric values in and you're donel!

Solves issues of reusability and of time

10

Step 2: using the interpreter to write a library '

Use simple procedure to create wrapper classes for interpreter

Proof MyZKP::prove(group map g, variable map v,
string program) {
InterpreterProver p;
—> p.check(program) ;
—>» p.compute(g,v);
—>» return p.prove();

}
e Specify crypto protocol of choice in the program string

* Feed numeric values in and you're donel!

Solves issues of reusability and of time

Took 3-4 months to build interpreter, then one month to reconstruct library

10

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

11

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

Have optimizations built into the interpreter

11

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

Have optimizations built into the interpreter

e Cache powers of bases used for modular exponentiation

Often have g”"x*h”r mod N, numbers are 1000 bits long!

Use common single- and multi-exponentiation techniques

11

Optimizations: caching

In addition to usability, can achieve improvements in efficiency

Have optimizations built into the interpreter

e Cache powers of bases used for modular exponentiation

Often have g”"x*h”r mod N, numbers are 1000 bits long!

Use common single- and multi-exponentiation techniques

e Save copy of interpreter state after compilation

11

Did caching help?

Program type Prover (ms) Verifier (ms) Proof size Cache size Multi-exps
With cache | Without | With cache | Without (bytes) (Mbytes) Prover | Verifier
DLR proof 3.07 3.08 1.26 1.25 511 0 2 1
Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2
Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11
CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39
CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1
CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42
Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)

12

Did caching help?

Program type Prover (ms) Verifier (ms) Proof size Cache size Multi-exps
With cache | Without | With cache | Without (bytes) (Mbytes) Prover | Verifier
DLR proof 3.07 3.08 1.26 1.25 511 0 2 1
Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2
Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11
CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39
CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1
CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42
Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)

12

Did caching help?

Program type Prover (ms) Verifier (ms) Proof size Cache size Multi-exps
With cache | Without | With cache | Without (bytes) (Mbytes) Prover | Verifier
DLR proof 3.07 3.08 1.26 1.25 511 0 2 1
Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2
Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11
CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39
CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1
CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42
Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

On the prover side, saw about a 50% speed-up using all optimizations

On the verifier side, about 30% (less computation)

12

Case study: using ZKPDL for e-cash

Crypto Systems
I {4t

Zero knowledge } *

IR

| e-cash RSN W 4
Interpreter ‘T f T
T 1

4\ {
i 7

P2P file sharing

13

Case study: using ZKPDL for e-cash

Crypto Systems
) f’t‘ 1‘4 }TT fr’;,
} interpreter ‘ :T ffT
P 1
)} f
i 7

P2P file sharing

13

Case study: using ZK

DL for e-cash

Crypto

Zero knowledge }

Systems

T4 L 14
e-cash "t {q %Tf ’1’
library % T 1 1

. i
g\ {
i T

P2P file sharing

13

Case study: using ZK

DL for e-cash

Crypto

Zero knowledge }

i
library

Systems

W't th it
ty 1t 1

‘1 ’T
T f

i T

P2P file sharing

13

Case study: using ZKPDL for e-cash

Crypto , Systems
LY 1 1‘{ }'1* 'r;,,
} " ol library :T ffT
| I
g\ ()
i 7

P2P file sharing

E-cash was originally developed [Ch82] as replacement for currency

Now, view e-cash in context of token systems

e QOur usage in P2P file-sharing schemes [BCE+07]

e Provides anonymous transportation ticketing (future work)

13

How e-cash works [Ch82, CHLOS, CLMO7]

’/‘\
"\/ |

R

14

How e-cash works [Ch82, CHLOS, CLMO7]

’/‘\
"\/ |
W\ /

Withdraw: Alice gets coins from bank

14

How e-cash works [Ch82, CHLOS, CLMO7]

Withdraw: Alice gets coins from bank

14

How e-cash works [Ch82, CHLOS5, CLMO7]

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

14

How e-cash works [Ch82, CHLOS5, CLMO7]

>\
W
- =
&= :

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

14

How e-cash works [Ch82, CHLOS5, CLMO7]

>
. Vi
| J

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

14

How e-cash works [Ch82, CHLOS5, CLMO7]

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

14

How e-cash works [Ch82, CHLOS5, CLMO7]

'-\/'
|

ﬂ
G

&'

\

\6

A

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

14

How e-cash works [Ch82, CHLOS5, CLMO7]

P
N\V
AN A
¥4

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

14

How e-cash works [Ch82, CHLOS5, CLMO7]

'
*sc\“‘l l

3/
Q\J

Withdraw: Alice gets coins from bank

Buy: Alice gives Bob coin in exchange for her purchase

Unlinkability: if Alice spends twice, Bob won’t even know it’s the same person

Deposit: Bob deposits these coins with the bank

Untraceability: Bank cannot trace the deposited coins back to Alice

14

CashLib: integrating e-cash into a

P2P system

15

CashLib: integrating e-cash into a

P2P system

15

CashLib: integrating e-cash into a

P2P system

Operations:

How e-cash can improve P2P interactions:

Actors:

15

CashLib: integrating e-cash into a P2P system
Operations: Actors:
© Buy!rg\:“;
7
.
A
AW

How e-cash can improve P2P interactions:

15

CashLib: integrating e-cash into a P2P system

Operations: Actors:

o Buy!fg\:a“;
v

"\
e Buyer = o’

How e-cash can improve P2P interactions:

15

CashLib: integrating e-cash into a P2P system

Operations: Actors:

o Buy!fg\:a“;
v

"\
e Buyer = o’

How e-cash can improve P2P interactions:

15

CashLib: integrating e-cash into a P2P system

Operations: Actors:

o Buy!fg\:a“;
v

"\
e Buyer = o’

How e-cash can improve P2P interactions:

15

CashLib: integrating e-cash into a P2P system

Operations: Actors:

o Buy!fg\:a“;
v

"\
e Buyer = o’

How e-cash can improve P2P interactions:

15

CashLib: integrating e-cash into a P2P system

Operations: Actors:

o Buy!fg\:a“;
v

"\
e Buyer = o’

How e-cash can improve P2P interactions:

15

CashLib: integrating e-cash into a P2P system

) .
‘y

—_— ——— e ———

Operations: Actors:

° Buy%% Buyer . o‘

o Seller

L

f

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers

15

CashLib: |

integrating e-cash into a

P2P system

Operations:

o Buy!fg\:a“;

e Barter

How e-cash can improve P2P interactions:

Actors:

"\
e Buyer = o’

o Seller €

e Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

Operations: A tore
= '?\
o Buy'§‘§ Buyer | "‘
e Barter . Seller
e Withdraw

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers

CashLib: integrating e-cash into a P2P system

Operations:

* BuygE %

e Barter

e Withdraw

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers

15

CashLib: integrating e-cash into a P2P system

Operations:

° Buyf§;

e Barter

e Withdraw

e Deposit

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers

15

CashLib: integrating e-cash into a P2P system
Operations: \'1 t’ Actors:
. Buy%% » e S e Buyer 3‘
") % Py
e Barter - e Seller
N e ot
o Withdraw e Bank .\
e Deposit e Peer t

How e-cash can improve P2P interactions:

e Guarantees fair exchange [BCE+07,KL10] between peers

¢ Allows bank to monitor upload/download ratio without sacrificing privacy

15

Related work

16

Related work

So what aren’t we doing?

16

Related work

So what aren’t we doing?

e Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]

16

Related work

So what aren’t we doing?

e Aren’t guaranteeing anything about the quality of the proofs

You give us a bad (e.g., not sound) proof, get a bad proof back

Checking soundness is well studied by others [CACE]

e As application of zero knowledge, provide library only for e-cash

ldemix project [CHO02, BBC+09] provides anonymous credentials

16

IN summary...

¢ \Wrote interpreter to make cryptographer’s job easier

e Demonstrated efficiency and usability

e \Wrote library to make programmer’s job easier

e All source code and documentation available freely online:

e http://github.com/brownie/cashlib

17

http://github.com/brownie/cashlib
http://github.com/brownie/cashlib

IN summary...

¢ \Wrote interpreter to make cryptographer’s job easier

e Demonstrated efficiency and usability

e \Wrote library to make programmer’s job easier

e All source code and documentation available freely online:

e http://github.com/brownie/cashlib

Any guestions?

17

http://github.com/brownie/cashlib
http://github.com/brownie/cashlib

/ero knowledge proof types

e \What types of proofs do we support?

e Proof of discrete log representation (DLR): given c, provec = g"x*h"r

e Equality of DLR: givencand d, provec = g"x*h"randd = g"x*h”"s

e Multiplication: prove x = y*z for secret values x, vy, z

e Range: for secret x and public lo, hi, prove 1o <= x < hi

