
Succinct Malleable NIZKs and an
Application to Compact Shuffles

Melissa Chase (MSR Redmond)
Markulf Kohlweiss (MSR Cambridge)
Anna Lysyanskaya (Brown University)
Sarah Meiklejohn (UC San Diego)

1

Proofs of proofs

2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

Proofs of proofs

2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

Proofs of proofs

2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

Proofs of proofs

2

π1 π2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

Proofs of proofs

2

π1 π2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

Proofs of proofs

2

π1 π2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

Proofs of proofs

2

π1 π2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

But this reveals π1 and π2; Charlie could know Alice formed proofs!

Proofs of proofs

2

π1 π2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

But this reveals π1 and π2; Charlie could know Alice formed proofs!

Proofs of proofs

2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

But this reveals π1 and π2; Charlie could know Alice formed proofs!

Next solution: prove knowledge of π1 and π2 (“meta-proof” [dSY90])

Proofs of proofs

2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

But this reveals π1 and π2; Charlie could know Alice formed proofs!

Next solution: prove knowledge of π1 and π2 (“meta-proof” [dSY90])

Proofs of proofs

2

π′
π1 π2

Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1),
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

But this reveals π1 and π2; Charlie could know Alice formed proofs!

Next solution: prove knowledge of π1 and π2 (“meta-proof” [dSY90])

But this proof is big; reveals that Bob didn’t form original proofs!

Proofs of proofs

2

π′
π1 π2

SNARGs and malleable proofs

3

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

SNARGs and malleable proofs

3

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

SNARGs and malleable proofs

3

π1 π2

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

SNARGs and malleable proofs

3

π′
π1 π2π1 π2

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

SNARGs and malleable proofs

3

π′
π1 π2π1 π2

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

But what is π′ even proving? What Bob really wants is a malleable proof: take
proofs π1 for b1 and π2 for b2 and “maul” them to form a proof for b1⋅b2

SNARGs and malleable proofs

3

π′
π1 π2π1 π2

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

But what is π′ even proving? What Bob really wants is a malleable proof: take
proofs π1 for b1 and π2 for b2 and “maul” them to form a proof for b1⋅b2

Then if he proves knowledge of π1 and π2, but also of a transformation T such
that b1⋅b2 = T(b1,b2), does this suffice as a proof for b1⋅b2?

SNARGs and malleable proofs

3

π′
π1 π2π1 π2

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

But what is π′ even proving? What Bob really wants is a malleable proof: take
proofs π1 for b1 and π2 for b2 and “maul” them to form a proof for b1⋅b2

Then if he proves knowledge of π1 and π2, but also of a transformation T such
that b1⋅b2 = T(b1,b2), does this suffice as a proof for b1⋅b2?

SNARGs and malleable proofs

3

π′
π1 π2π1 π2

π1 π2

π′
π1 π2

T

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π1 and π2 could in fact be the same size!

But what is π′ even proving? What Bob really wants is a malleable proof: take
proofs π1 for b1 and π2 for b2 and “maul” them to form a proof for b1⋅b2

Then if he proves knowledge of π1 and π2, but also of a transformation T such
that b1⋅b2 = T(b1,b2), does this suffice as a proof for b1⋅b2?

SNARGs and malleable proofs

3

π′
π1 π2π1 π2

π1 π2
π′
π1 π2

T

Why use SNARGs for malleable proofs?

4

Why use SNARGs for malleable proofs?

4

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled
malleability for proofs; called them cm-NIZKs

Why use SNARGs for malleable proofs?

4

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled
malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on
Groth-Sahai proofs [GS08]

Why use SNARGs for malleable proofs?

4

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled
malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on
Groth-Sahai proofs [GS08]

Essentially observed certain malleability properties and built off of those;
restricted to transformations supported by GS proofs

Why use SNARGs for malleable proofs?

4

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled
malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on
Groth-Sahai proofs [GS08]

Essentially observed certain malleability properties and built off of those;
restricted to transformations supported by GS proofs

Natural open question: can we build malleability ourselves? If so, what kind of
malleability can we hope to achieve?

Why use SNARGs for malleable proofs?

4

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled
malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on
Groth-Sahai proofs [GS08]

Essentially observed certain malleability properties and built off of those;
restricted to transformations supported by GS proofs

Natural open question: can we build malleability ourselves? If so, what kind of
malleability can we hope to achieve?

This would potentially allow for more applications (e.g., CM-CCA encryption)

Our contributions

5

To get all the way from a SNARG to a cm-NIZK, proceed in three stages

Our contributions

5

To get all the way from a SNARG to a cm-NIZK, proceed in three stages

Our contributions

5

malleable
SNARG

First, built malleability
into SNARGs
according to our intuition

To get all the way from a SNARG to a cm-NIZK, proceed in three stages

Our contributions

5

malleable
SNARG

malleable
NIWIPoK

First, built malleability
into SNARGs
according to our intuition

Next, boost from weird SNARG
extraction to regular extractability

To get all the way from a SNARG to a cm-NIZK, proceed in three stages

Our contributions

5

malleable
SNARG

malleable
NIWIPoK

cm-NIZK

First, built malleability
into SNARGs
according to our intuition

Next, boost from weird SNARG
extraction to regular extractability

Finally, plug this into a modified
version of our original cm-NIZK
construction

To get all the way from a SNARG to a cm-NIZK, proceed in three stages

The end result? A fully generic cm-NIZK with a much wider range of malleability
(all t-tiered transformations) than previously supported, that is easier to “plug
in” to applications

Our contributions

5

malleable
SNARG

malleable
NIWIPoK

cm-NIZK

First, built malleability
into SNARGs
according to our intuition

Next, boost from weird SNARG
extraction to regular extractability

Finally, plug this into a modified
version of our original cm-NIZK
construction

Outline

6

Outline

6

Definitions

Outline

6

Definitions SNARGs to cm-NIZKs

Outline

6

Definitions SNARGs to cm-NIZKs

Applying the cm-NIZK

Outline

6

Definitions SNARGs to cm-NIZKs

Applying the cm-NIZK Conclusions

Outline

6

Definitions SNARGs to cm-NIZKs

Applying the cm-NIZK Conclusions

Definitions
Malleable proofs

SNARGs
t-tiered transformations

Malleability for proofs [CKLM12]

7

Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval
that on input (T,{xi,πi}), outputs a proof π for T({xi})

7

Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval
that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

7

Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval
that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

7

Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval
that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

7

Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval
that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

High-level idea of CM-SSE: extractor can pull out either a witness (fresh proof),
or a previous instance and an allowable transformation from that instance to
the new one (validly transformed proof)

7

Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval
that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

Can define zero knowledge in the usual way as long as proofs are malleable
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

High-level idea of CM-SSE: extractor can pull out either a witness (fresh proof),
or a previous instance and an allowable transformation from that instance to
the new one (validly transformed proof)

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we
call it a cm-NIZK 7

(hides fresh vs. transformed)

SNARGs [BSW12,GGPR13]

8

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

SNARGs [BSW12,GGPR13]

8

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

• (Succinctness.) The size of a proof that (x,w)∈R is bounded by φ(k,|x|,|w|) <
poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

SNARGs [BSW12,GGPR13]

8

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

• (Succinctness.) The size of a proof that (x,w)∈R is bounded by φ(k,|x|,|w|) <
poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

• We use γ = 1/4 (for unary case)

SNARGs [BSW12,GGPR13]

8

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

• (Succinctness.) The size of a proof that (x,w)∈R is bounded by φ(k,|x|,|w|) <
poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

• We use γ = 1/4 (for unary case)

• The point is, the proof can be smaller than the witness

SNARGs [BSW12,GGPR13]

8

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

• (Succinctness.) The size of a proof that (x,w)∈R is bounded by φ(k,|x|,|w|) <
poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

• We use γ = 1/4 (for unary case)

• The point is, the proof can be smaller than the witness

SNARGs [BSW12,GGPR13]

8

π π
π′

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

• (Succinctness.) The size of a proof that (x,w)∈R is bounded by φ(k,|x|,|w|) <
poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

• We use γ = 1/4 (for unary case)

• The point is, the proof can be smaller than the witness

• (Adaptive knowledge extraction.) For every A there exists extractor EA such
that, for (x,π) = A(crs;r), w = EA(crs;r) such that (x,w)∈R

SNARGs [BSW12,GGPR13]

8

π π
π′

A proof system is a succinct non-interactive argument of knowledge (SNARG) if
it is complete and if:

• (Succinctness.) The size of a proof that (x,w)∈R is bounded by φ(k,|x|,|w|) <
poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

• We use γ = 1/4 (for unary case)

• The point is, the proof can be smaller than the witness

• (Adaptive knowledge extraction.) For every A there exists extractor EA such
that, for (x,π) = A(crs;r), w = EA(crs;r) such that (x,w)∈R

Constructions of these do exist [AF07,Groth10,...,BCCT12,GGPR13]

SNARGs [BSW12,GGPR13]

8

π π
π′

t-tiered transformations

9

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

t-tiered transformations

9

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

t-tiered transformations

9

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

t-tiered transformations

9

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

(allowed)

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

(allowed)

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

(allowed)

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

(disallowed) (allowed)

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

(disallowed) (allowed)

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

t-tiered transformations

9

(disallowed) (allowed)

To fit the proof-of-a-proof approach, consider transformations as moving
between tiers

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

Also can’t compose more than t transformations

t-tiered transformations

9

(disallowed) (allowed)

Outline

10

Cryptographic background Shuffling and decrypting

Applying the cm-NIZK Conclusions

Definitions

SNARGs to cm-NIZKs
Malleable SNARGs

Boosting to full extractability
Boosting to CM-SSE

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Malleable SNARGs

11

malleable
SNARG

π

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Malleable SNARGs

11

malleable
SNARG

π

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Malleable SNARGs

11

malleable
SNARG

π

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

π
π′

T

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

π
π′

T

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Can continue this process many times (Bob proves knowledge of Alice’s proof
πA for xA and an allowable transformation TB to his instance xB, Charlie proves
knowledge of Bob’s proof πB for xB and an allowable transformation TC to his
instance xC, etc.)

π
π′

T

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Can continue this process many times (Bob proves knowledge of Alice’s proof
πA for xA and an allowable transformation TB to his instance xB, Charlie proves
knowledge of Bob’s proof πB for xB and an allowable transformation TC to his
instance xC, etc.)

π
π′

T

Malleable SNARGs

11

malleable
SNARG

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Can continue this process many times (Bob proves knowledge of Alice’s proof
πA for xA and an allowable transformation TB to his instance xB, Charlie proves
knowledge of Bob’s proof πB for xB and an allowable transformation TC to his
instance xC, etc.)

Malleable SNARGs

11

malleable
SNARG

π′′
π

π′
TT

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof
of knowledge of π could in fact be the same size!

Can continue this process many times (Bob proves knowledge of Alice’s proof
πA for xA and an allowable transformation TB to his instance xB, Charlie proves
knowledge of Bob’s proof πB for xB and an allowable transformation TC to his
instance xC, etc.)

Malleable SNARGs

11

malleable
SNARG

π′′
π

π′
TT

Malleable SNARGs

12

malleable
SNARG

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

πA(xA): wA

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

πA(xA): wA

πB(xB): (πA,xA,TB)

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

πA(xA): wA

πB(xB): (πA,xA,TB)
tier(xB) = tier(xA) + 1

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

πA(xA): wA

πB(xB): (πA,xA,TB)

 (πB,xB,TC)

tier(xB) = tier(xA) + 1

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

πA(xA): wA

πB(xB): (πA,xA,TB)

 (πB,xB,TC)

tier(xB) = tier(xA) + 1

tier(xC) = tier(xB) + 1

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

Zero knowledge and adaptive knowledge extraction are both preserved*, gain
malleability with respect to t-tiered transformations*

πA(xA): wA

πB(xB): (πA,xA,TB)

 (πB,xB,TC)

tier(xB) = tier(xA) + 1

tier(xC) = tier(xB) + 1

Malleable SNARGs

12

malleable
SNARG

Intuitively, to form a proof for an instance x, prove you know a fresh witness w
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an
allowable T such that T(x′) = x

Zero knowledge and adaptive knowledge extraction are both preserved*, gain
malleability with respect to t-tiered transformations*

*Since extractor might have to “tunnel down” t must be a constant
[BSW12,BCCT13] and we use a stronger notion of extraction (consider non-
uniform adversaries)

πA(xA): wA

πB(xB): (πA,xA,TB)

 (πB,xB,TC)

tier(xB) = tier(xA) + 1

tier(xC) = tier(xB) + 1

Boosting to full extractability

13

malleable
SNARG

Boosting to full extractability

13

malleable
SNARG

malleable
NIWIPoK

Our goal: get from adaptive knowledge extraction to stronger soundness

Boosting to full extractability

13

malleable
SNARG

malleable
NIWIPoK

Our goal: get from adaptive knowledge extraction to stronger soundness

Rather than even try to reconcile adaptive knowledge extraction with something
much stronger like extractability or CM-SSE, just use regular soundness of
SNARG

Boosting to full extractability

13

malleable
SNARG

malleable
NIWIPoK

Our goal: get from adaptive knowledge extraction to stronger soundness

Rather than even try to reconcile adaptive knowledge extraction with something
much stronger like extractability or CM-SSE, just use regular soundness of
SNARG

SNARG now just proves knowledge of plaintext such that (x,w)∈R

Boosting to full extractability

13

malleable
SNARG

malleable
NIWIPoK

Our goal: get from adaptive knowledge extraction to stronger soundness

Rather than even try to reconcile adaptive knowledge extraction with something
much stronger like extractability or CM-SSE, just use regular soundness of
SNARG

SNARG now just proves knowledge of plaintext such that (x,w)∈R

malleable
SNARG

Boosting to full extractability

13

malleable
SNARG

malleable
NIWIPoK

Our goal: get from adaptive knowledge extraction to stronger soundness

Rather than even try to reconcile adaptive knowledge extraction with something
much stronger like extractability or CM-SSE, just use regular soundness of
SNARG

SNARG now just proves knowledge of plaintext such that (x,w)∈R

malleable
SNARG + Enc(w)

Boosting to full extractability

14

malleable
SNARG

malleable
NIWIPoK

malleable
SNARG + Enc(w)

Boosting to full extractability

14

malleable
SNARG

malleable
NIWIPoK

Extraction is quite simple: τe is decryption key, and extractor decrypts, so we
never need to use non-black-box SNARG extractor!

malleable
SNARG + Enc(w)

Boosting to full extractability

14

malleable
SNARG

malleable
NIWIPoK

Extraction is quite simple: τe is decryption key, and extractor decrypts, so we
never need to use non-black-box SNARG extractor!

If we use a fully-homomorphic encryption scheme, can preserve malleability for
t-tiered transformations (but we do lose succinctness)

malleable
SNARG + Enc(w)

Boosting to CM-SSE

15

malleable
SNARG

malleable
NIWIPoK

cm-NIZK

Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don’t assume certain
transformations (e.g., the identity) are allowable

Boosting to CM-SSE

15

malleable
SNARG

malleable
NIWIPoK

cm-NIZK

Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don’t assume certain
transformations (e.g., the identity) are allowable

malleable
SNARG

malleable
NIWIPoK + signature

Boosting to CM-SSE

15

malleable
SNARG

malleable
NIWIPoK

cm-NIZK

Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don’t assume certain
transformations (e.g., the identity) are allowable

malleable
SNARG

malleable
NIWIPoK + signature

used in [CKLM12] construction

Boosting to CM-SSE

15

malleable
SNARG

malleable
NIWIPoK

cm-NIZK

Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don’t assume certain
transformations (e.g., the identity) are allowable

malleable
SNARG

malleable
NIWIPoK +

(SUF)
one-time

sig
signature +

used in [CKLM12] construction

Outline

16

Cryptographic background SNARGs to cm-NIZKs

A voting scheme Conclusions

Definitions

Applying the cm-NIZK

How to apply previous cm-NIZK?

17

How to apply previous cm-NIZK?

17

Suppose you have some (theoretical) application that uses a cm-NIZK

How to apply previous cm-NIZK?

17

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a
cm-NIZK called CM-friendliness

How to apply previous cm-NIZK?

17

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a
cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

How to apply previous cm-NIZK?

17

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a
cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

Basically had to show that proof verification could consist of a set of pairing
product equations, and that instances, witnesses, and transformations could be
represented and transformed as elements in a bilinear group, etc.

How to apply previous cm-NIZK?

17

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a
cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

Basically had to show that proof verification could consist of a set of pairing
product equations, and that instances, witnesses, and transformations could be
represented and transformed as elements in a bilinear group, etc.

To instantiate a cm-NIZK, had to therefore jump through a lot of hoops!

How to apply this cm-NIZK?

18

How to apply this cm-NIZK?

18

The cm-NIZK we just constructed can be applied much more easily

How to apply this cm-NIZK?

18

The cm-NIZK we just constructed can be applied much more easily

In the paper, we show how to construct a compact verifiable shuffle with proof
size O(L+M) (where L = # voters, M = # shufflers)

How to apply this cm-NIZK?

18

The cm-NIZK we just constructed can be applied much more easily

In the paper, we show how to construct a compact verifiable shuffle with proof
size O(L+M) (where L = # voters, M = # shufflers)

• Step 1 (mandatory!): Show that class of allowable transformations is t-tiered
(for shuffle: each mix server increments the tier by 1)

How to apply this cm-NIZK?

18

The cm-NIZK we just constructed can be applied much more easily

In the paper, we show how to construct a compact verifiable shuffle with proof
size O(L+M) (where L = # voters, M = # shufflers)

• Step 1 (mandatory!): Show that class of allowable transformations is t-tiered
(for shuffle: each mix server increments the tier by 1)

• Step 2: Give instantiation for encryption scheme depending on how much
malleability you want
(for shuffle: multiplicatively homomorphic encryption)

malleable
SNARG + Enc(w)

Outline

19

Cryptographic background SNARGs to cm-NIZKs

Applying the cm-NIZK Conclusions

Definitions

Conclusions

Conclusions and open problems

20

Constructed generic cm-NIZKs for a general class of transformations, and
intermediate primitives of potential independent interest

Conclusions and open problems

20

Constructed generic cm-NIZKs for a general class of transformations, and
intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Conclusions and open problems

20

Constructed generic cm-NIZKs for a general class of transformations, and
intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Conclusions and open problems

20

Constructed generic cm-NIZKs for a general class of transformations, and
intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Full version is online at eprint.iacr.org/2012/506 (recently updated!)

Conclusions and open problems

20

Constructed generic cm-NIZKs for a general class of transformations, and
intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Full version is online at eprint.iacr.org/2012/506 (recently updated!)

Conclusions and open problems

Thanks!
Any questions?

20

