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Suppose Alice gives Bob a proof π1 that an encrypted value b1 is a bit (0 or 1), 
and a proof π2 that another encrypted value b2 is a bit

To prove b1⋅b2 is a bit: just pass Charlie π1 and π2

But this reveals π1 and π2; Charlie could know Alice formed proofs!

Next solution: prove knowledge of π1 and π2 (“meta-proof” [dSY90])

But this proof is big; reveals that Bob didn’t form original proofs!
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At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled 
malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on 
Groth-Sahai proofs [GS08]

Essentially observed certain malleability properties and built off of those; 
restricted to transformations supported by GS proofs

Natural open question: can we build malleability ourselves? If so, what kind of 
malleability can we hope to achieve?

This would potentially allow for more applications (e.g., CM-CCA encryption)
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The end result? A fully generic cm-NIZK with a much wider range of malleability 
(all t-tiered transformations) than previously supported, that is easier to “plug 
in” to applications
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Malleability for proofs [CKLM12]
Generally, a proof is malleable with respect to T if there exists an algorithm Eval 
that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

Can define zero knowledge in the usual way as long as proofs are malleable 
only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

High-level idea of CM-SSE: extractor can pull out either a witness (fresh proof), 
or a previous instance and an allowable transformation from that instance to 
the new one (validly transformed proof)

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we 
call it a cm-NIZK 7

(hides fresh vs. transformed)
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poly(k)polylog(|x|) + γ|w| for some 0 < γ < 1

• We use γ = 1/4 (for unary case)

• The point is, the proof can be smaller than the witness

• (Adaptive knowledge extraction.) For every A there exists extractor EA such 
that, for (x,π) = A(crs;r), w = EA(crs;r) such that (x,w)∈R

Constructions of these do exist [AF07,Groth10,...,BCCT12,GGPR13]
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To fit the proof-of-a-proof approach, consider transformations as moving 
between tiers 

A relation R is t-tiered if there exists an efficient function tier(⋅) such that for all 
x∈LR, 0 ≤ tier(x) ≤ t

A class of transformations T is t-tiered if for all T∈T, (1) tier(x) < t and x∈LR then 
tier(T(x)) > tier(x) and T(x)∈LR, and (2) if tier(x) = t then T(x) = ⊥

Also can’t compose more than t transformations

t-tiered transformations

9

(disallowed) (allowed)
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Intuitively, to form a proof for an instance x, prove you know a fresh witness w 
such that (x,w)∈R, or a proof π, instance x′ at the next tier down, and an 
allowable T such that T(x′) = x

Zero knowledge and adaptive knowledge extraction are both preserved*, gain 
malleability with respect to t-tiered transformations*

*Since extractor might have to “tunnel down” t must be a constant 
[BSW12,BCCT13] and we use a stronger notion of extraction (consider non-
uniform adversaries)

πA(xA): wA

πB(xB): (πA,xA,TB)

 (πB,xB,TC)

tier(xB) = tier(xA) + 1

tier(xC) = tier(xB) + 1
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Extraction is quite simple: τe is decryption key, and extractor decrypts, so we 
never need to use non-black-box SNARG extractor!

If we use a fully-homomorphic encryption scheme, can preserve malleability for 
t-tiered transformations (but we do lose succinctness)
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SNARG + Enc(w)
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cm-NIZK

Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don’t assume certain 
transformations (e.g., the identity) are allowable

malleable 
SNARG

malleable
NIWIPoK +

(SUF)
one-time 

sig
signature +

used in [CKLM12] construction
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Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a          
cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

Basically had to show that proof verification could consist of a set of pairing 
product equations, and that instances, witnesses, and transformations could be 
represented and transformed as elements in a bilinear group, etc.

To instantiate a cm-NIZK, had to therefore jump through a lot of hoops!
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The cm-NIZK we just constructed can be applied much more easily

In the paper, we show how to construct a compact verifiable shuffle with proof 
size O(L+M) (where L = # voters, M = # shufflers)

• Step 1 (mandatory!): Show that class of allowable transformations is t-tiered                      
(for shuffle: each mix server increments the tier by 1)

• Step 2: Give instantiation for encryption scheme depending on how much 
malleability you want                                                                                    
(for shuffle: multiplicatively homomorphic encryption)

malleable 
SNARG + Enc(w)
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Constructed generic cm-NIZKs for a general class of transformations, and 
intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Full version is online at eprint.iacr.org/2012/506 (recently updated!)

Conclusions and open problems

Thanks!
Any questions?

20


