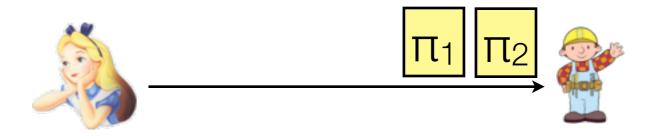
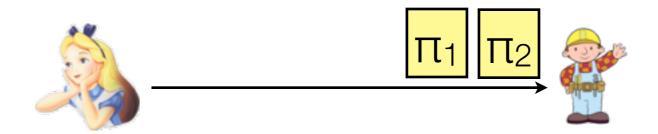
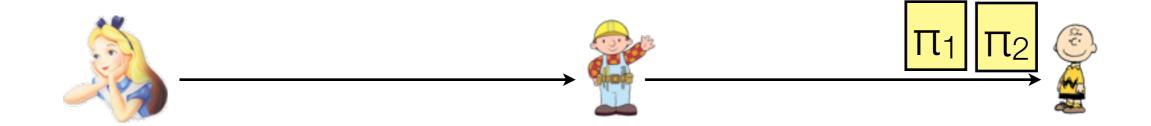
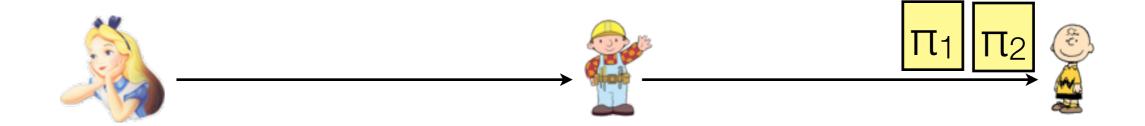
Succinct Malleable NIZKs and an Application to Compact Shuffles


Melissa Chase (MSR Redmond)
Markulf Kohlweiss (MSR Cambridge)
Anna Lysyanskaya (Brown University)
Sarah Meiklejohn (UC San Diego)



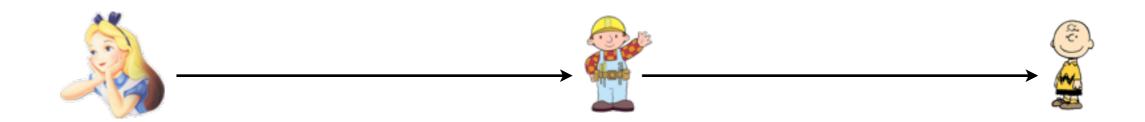


Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit


To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2

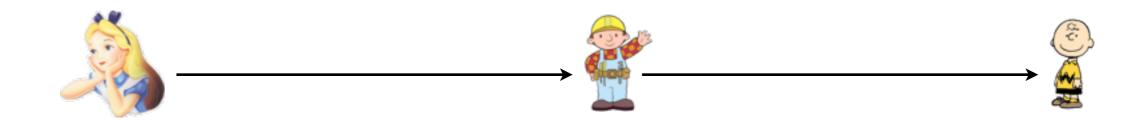
Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit

To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2


Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit

To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2

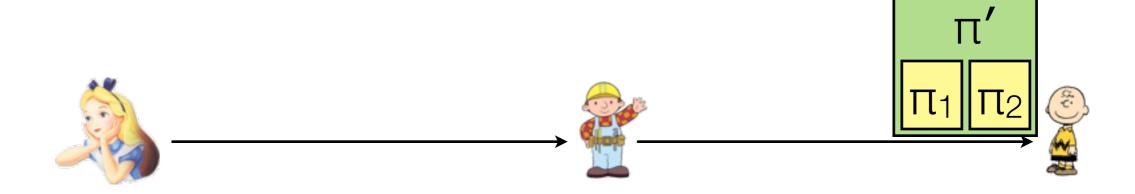
But this reveals π_1 and π_2 ; Charlie could know Alice formed proofs!


Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit

To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2

But this reveals π_1 and π_2 ; Charlie could know Alice formed proofs!

Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit

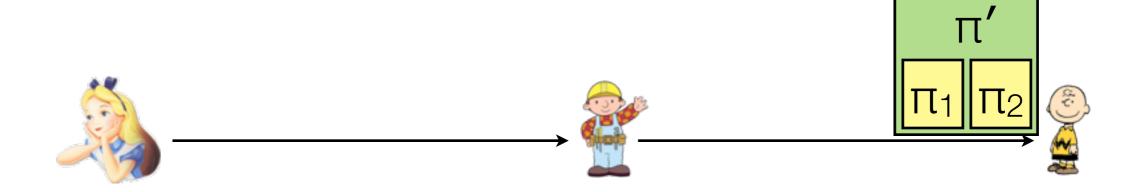


To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2

But this reveals π_1 and π_2 ; Charlie could know Alice formed proofs!

Next solution: prove knowledge of π_1 and π_2 ("meta-proof" [dSY90])

Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit

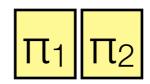


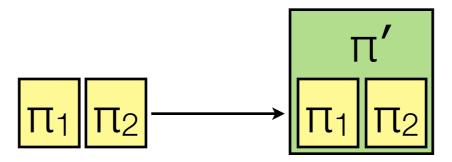
To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2

But this reveals π_1 and π_2 ; Charlie could know Alice formed proofs!

Next solution: prove knowledge of π_1 and π_2 ("meta-proof" [dSY90])

Suppose Alice gives Bob a proof π_1 that an encrypted value b_1 is a bit (0 or 1), and a proof π_2 that another encrypted value b_2 is a bit

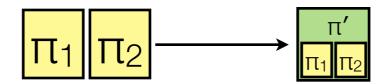



To prove $b_1 \cdot b_2$ is a bit: just pass Charlie π_1 and π_2

But this reveals π_1 and π_2 ; Charlie could know Alice formed proofs!

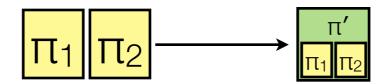
Next solution: prove knowledge of π_1 and π_2 ("meta-proof" [dSY90])

But this proof is big; reveals that Bob didn't form original proofs!

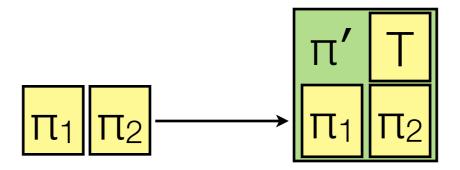


If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π_1 and π_2 could in fact be the same size!

But what is π' even proving? What Bob really wants is a malleable proof: take proofs π_1 for b_1 and π_2 for b_2 and "maul" them to form a proof for $b_1 \cdot b_2$


If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π_1 and π_2 could in fact be the same size!

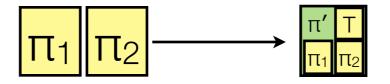
But what is π' even proving? What Bob really wants is a malleable proof: take proofs π_1 for b_1 and π_2 for b_2 and "maul" them to form a proof for $b_1 \cdot b_2$


Then if he proves knowledge of π_1 and π_2 , but also of a transformation T such that $b_1 \cdot b_2 = T(b_1,b_2)$, does this suffice as a proof for $b_1 \cdot b_2$?

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π_1 and π_2 could in fact be the same size!

But what is π' even proving? What Bob really wants is a malleable proof: take proofs π_1 for b_1 and π_2 for b_2 and "maul" them to form a proof for $b_1 \cdot b_2$

Then if he proves knowledge of π_1 and π_2 , but also of a transformation T such that $b_1 \cdot b_2 = T(b_1,b_2)$, does this suffice as a proof for $b_1 \cdot b_2$?



If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π_1 and π_2 could in fact be the same size!

But what is π' even proving? What Bob really wants is a malleable proof: take proofs π_1 for b_1 and π_2 for b_2 and "maul" them to form a proof for $b_1 \cdot b_2$

Then if he proves knowledge of π_1 and π_2 , but also of a transformation T such that $b_1 \cdot b_2 = T(b_1,b_2)$, does this suffice as a proof for $b_1 \cdot b_2$?

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled malleability for proofs; called them cm-NIZKs

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on Groth-Sahai proofs [GS08]

At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled malleability for proofs; called them cm-NIZKs

To actually achieve malleability, our construction was fundamentally based on Groth-Sahai proofs [GS08]

Essentially observed certain malleability properties and built off of those; restricted to transformations supported by GS proofs

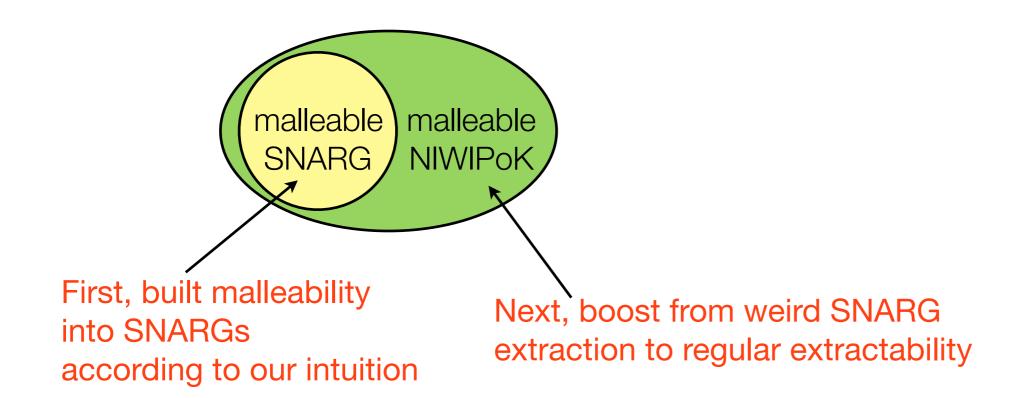
At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled malleability for proofs; called them cm-NIZKs

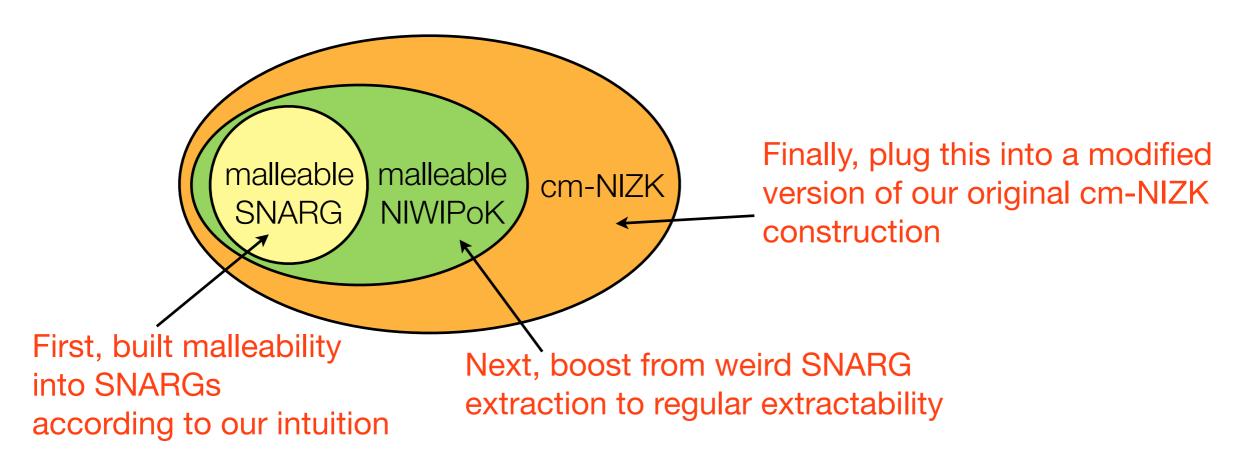
To actually achieve malleability, our construction was fundamentally based on Groth-Sahai proofs [GS08]

Essentially observed certain malleability properties and built off of those; restricted to transformations supported by GS proofs

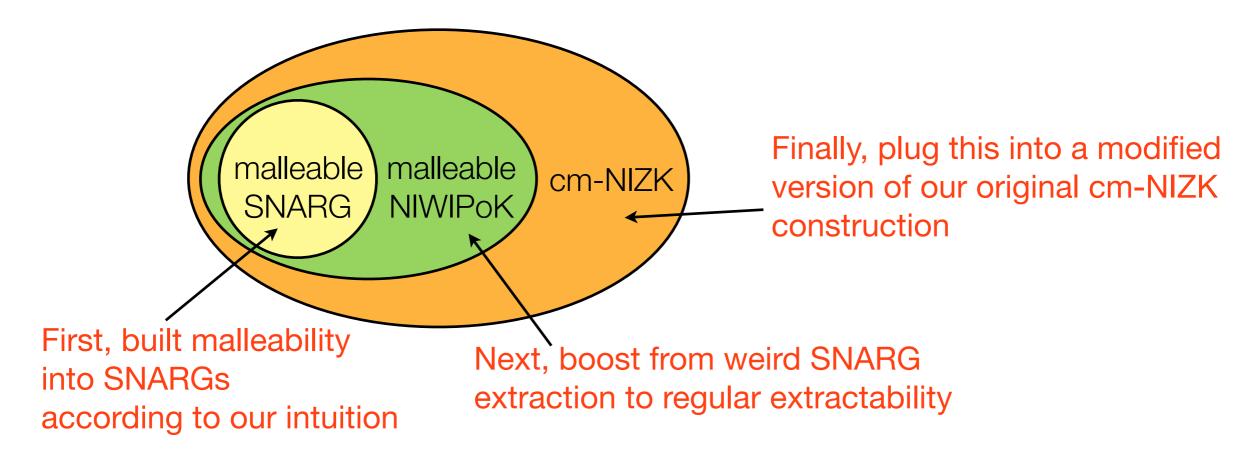
Natural open question: can we build malleability ourselves? If so, what kind of malleability can we hope to achieve?


At Eurocrypt 2012 [CKLM12], we defined notions of malleability and controlled malleability for proofs; called them cm-NIZKs


To actually achieve malleability, our construction was fundamentally based on Groth-Sahai proofs [GS08]


Essentially observed certain malleability properties and built off of those; restricted to transformations supported by GS proofs

Natural open question: can we build malleability ourselves? If so, what kind of malleability can we hope to achieve?


This would potentially allow for more applications (e.g., CM-CCA encryption)

To get all the way from a SNARG to a cm-NIZK, proceed in three stages

The end result? A fully generic cm-NIZK with a much wider range of malleability (all t-tiered transformations) than previously supported, that is easier to "plug in" to applications

Outline

Outline

Definitions

Definitions

SNARGs to cm-NIZKs

Definitions

SNARGs to cm-NIZKs

Applying the cm-NIZK

Definitions

SNARGs to cm-NIZKs

Applying the cm-NIZK

Conclusions

Definitions

Malleable proofs
SNARGs
t-tiered transformations

SNARGs to cm-NIZKs

Applying the cm-NIZK

Conclusions

Generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input $(T,\{x_i,\pi_i\})$, outputs a proof π for $T(\{x_i\})$

Generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input $(T,\{x_i,\pi_i\})$, outputs a proof π for $T(\{x_i\})$

• E.g., T = x, $x_i = b_i$ is a bit"

Generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input $(T,\{x_i,\pi_i\})$, outputs a proof π for $T(\{x_i\})$

• E.g., T = x, $x_i = b_i$ is a bit"

Can define zero knowledge in the usual way as long as proofs are malleable only with respect to operations under which the language is closed

Generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input $(T,\{x_i,\pi_i\})$, outputs a proof π for $T(\{x_i\})$

• E.g., T = x, $x_i = b_i$ is a bit"

Can define zero knowledge in the usual way as long as proofs are malleable only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

Generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input $(T,\{x_i,\pi_i\})$, outputs a proof π for $T(\{x_i\})$

• E.g., T = x, $x_i = b_i$ is a bit"

Can define zero knowledge in the usual way as long as proofs are malleable only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

High-level idea of CM-SSE: extractor can pull out either a witness (fresh proof), or a previous instance and an allowable transformation from that instance to the new one (validly transformed proof)

Generally, a proof is malleable with respect to T if there exists an algorithm Eval that on input $(T,\{x_i,\pi_i\})$, outputs a proof π for $T(\{x_i\})$

• E.g., T = x, $x_i = b_i$ is a bit"

Can define zero knowledge in the usual way as long as proofs are malleable only with respect to operations under which the language is closed

But how to define a strong notion of soundness like controlled malleability?

High-level idea of CM-SSE: extractor can pull out either a witness (fresh proof), or a previous instance and an allowable transformation from that instance to the new one (validly transformed proof)

(hides fresh vs. transformed)

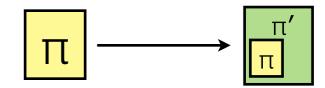
If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we call it a cm-NIZK

A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:

A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:

• (Succinctness.) The size of a proof that $(x,w) \in R$ is bounded by $\phi(k,|x|,|w|) < \text{poly(k)polylog(}|x|) + \gamma|w|$ for some $0 < \gamma < 1$

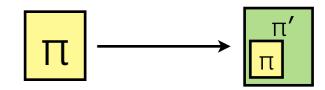
A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:


- (Succinctness.) The size of a proof that $(x,w) \in R$ is bounded by $\phi(k,|x|,|w|) < \text{poly(k)polylog(}|x|) + \gamma|w|$ for some $0 < \gamma < 1$
 - We use $\gamma = 1/4$ (for unary case)

A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:

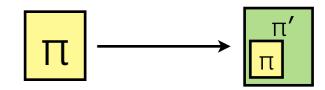
- (Succinctness.) The size of a proof that $(x,w) \in R$ is bounded by $\phi(k,|x|,|w|) < \text{poly(k)polylog(}|x|) + \gamma|w|$ for some $0 < \gamma < 1$
 - We use $\gamma = 1/4$ (for unary case)
 - The point is, the proof can be smaller than the witness

A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:


- (Succinctness.) The size of a proof that $(x,w) \in R$ is bounded by $\phi(k,|x|,|w|) < \text{poly(k)polylog(}|x|) + \gamma|w|$ for some $0 < \gamma < 1$
 - We use $\gamma = 1/4$ (for unary case)

The point is, the proof can be smaller than the witness

A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:


- (Succinctness.) The size of a proof that $(x,w) \in R$ is bounded by $\phi(k,|x|,|w|) < \text{poly(k)polylog(}|x|) + \gamma|w|$ for some $0 < \gamma < 1$
 - We use $\gamma = 1/4$ (for unary case)

- The point is, the proof can be smaller than the witness
- (Adaptive knowledge extraction.) For every A there exists extractor E_A such that, for $(x,\pi) = A(crs;r)$, $w = E_A(crs;r)$ such that $(x,w) \in R$

A proof system is a succinct non-interactive argument of knowledge (SNARG) if it is complete and if:

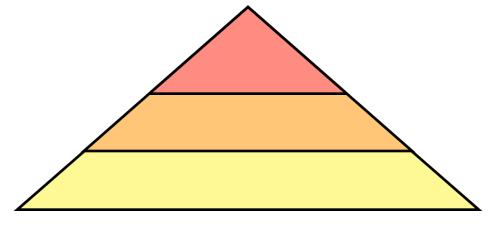
- (Succinctness.) The size of a proof that $(x,w) \in R$ is bounded by $\phi(k,|x|,|w|) < \text{poly(k)polylog(}|x|) + \gamma|w|$ for some $0 < \gamma < 1$
 - We use $\gamma = 1/4$ (for unary case)

- The point is, the proof can be smaller than the witness
- (Adaptive knowledge extraction.) For every A there exists extractor E_A such that, for $(x,\pi) = A(crs;r)$, $w = E_A(crs;r)$ such that $(x,w) \in R$

Constructions of these do exist [AF07,Groth10,...,BCCT12,GGPR13]

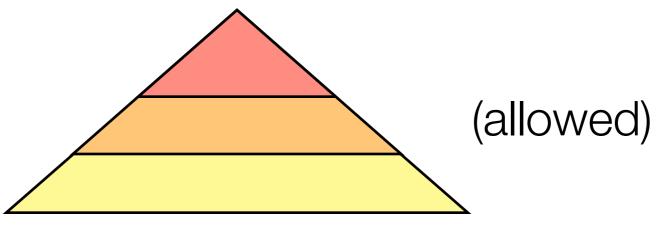
To fit the proof-of-a-proof approach, consider transformations as moving between tiers

To fit the proof-of-a-proof approach, consider transformations as moving between tiers

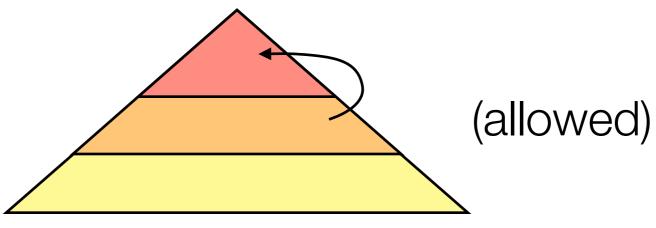

A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$

To fit the proof-of-a-proof approach, consider transformations as moving between tiers

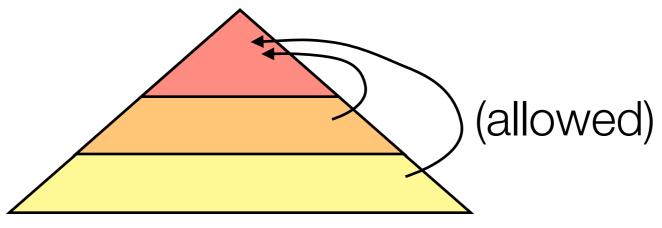
A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

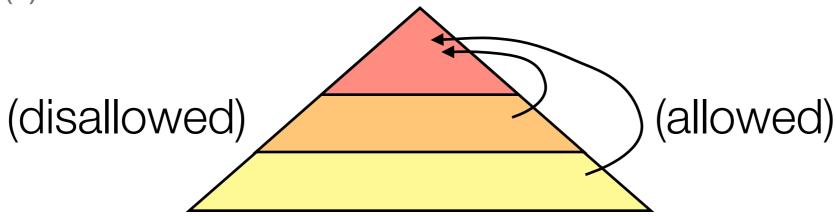
A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

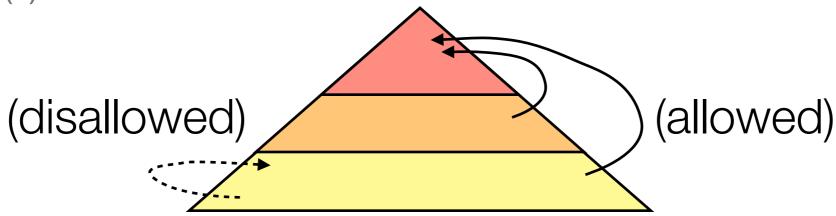
A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

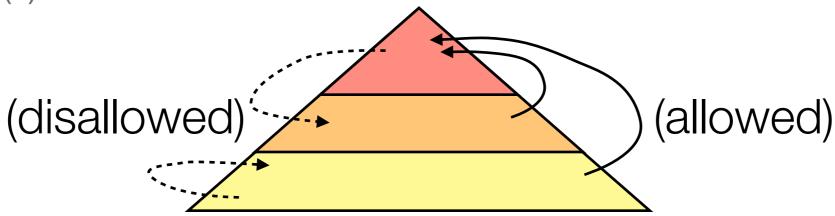
A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

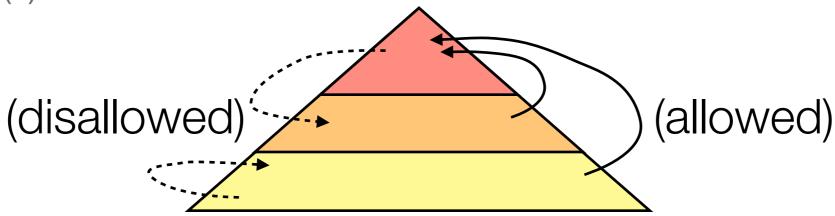
A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$


To fit the proof-of-a-proof approach, consider transformations as moving between tiers

A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$

To fit the proof-of-a-proof approach, consider transformations as moving between tiers

A relation R is t-tiered if there exists an efficient function tier(·) such that for all $x \in L_R$, $0 \le tier(x) \le t$

A class of transformations $\mathcal J$ is t-tiered if for all $T\in\mathcal J$, (1) tier(x) < t and $x\in L_R$ then tier(T(x)) > tier(x) and T(x) $\in L_R$, and (2) if tier(x) = t then T(x) = \bot

Also can't compose more than t transformations

Definitions

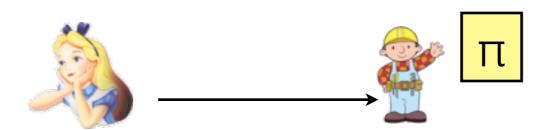
SNARGs to cm-NIZKs

Malleable SNARGs
Boosting to full extractability
Boosting to CM-SSE

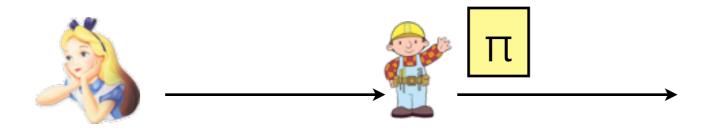
Applying the cm-NIZK

Conclusions

Our goal: build malleability into SNARGs [BSW12]


Our goal: build malleability into SNARGs [BSW12]

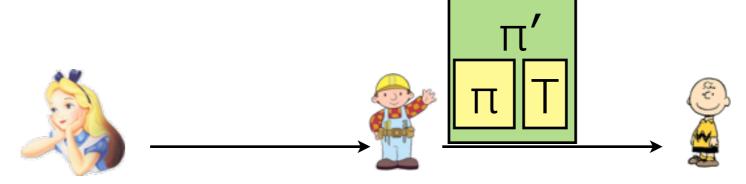
If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π could in fact be the same size!


Our goal: build malleability into SNARGs [BSW12]

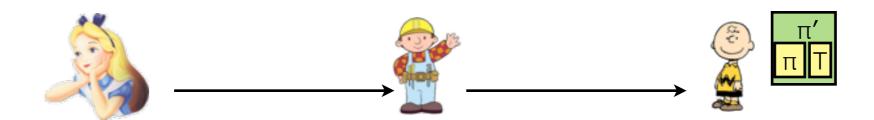
If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π could in fact be the same size!



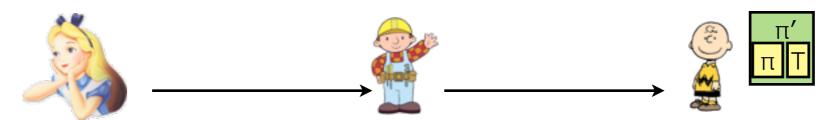
Our goal: build malleability into SNARGs [BSW12]



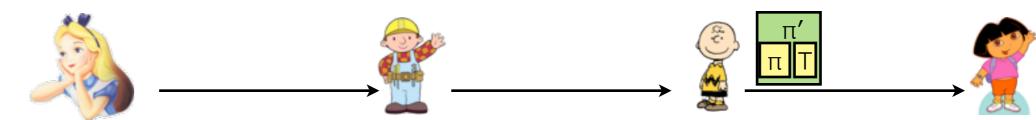
Our goal: build malleability into SNARGs [BSW12]



Our goal: build malleability into SNARGs [BSW12]


Our goal: build malleability into SNARGs [BSW12]

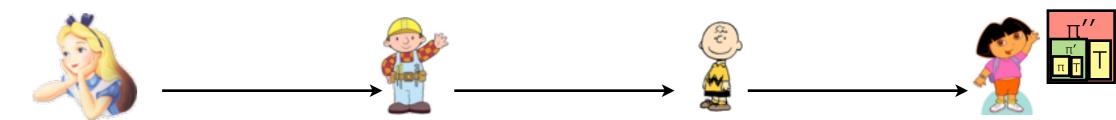
Our goal: build malleability into SNARGs [BSW12]


If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π could in fact be the same size!

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π could in fact be the same size!

Our goal: build malleability into SNARGs [BSW12]


If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π could in fact be the same size!

Our goal: build malleability into SNARGs [BSW12]

If we use succinct non-interactive arguments of knowledge (SNARGs), a proof of knowledge of π could in fact be the same size!

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w)\in R$, or a proof π , instance x' at the next tier down, and an allowable T such that T(x') = x

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w) \in R$, or a proof π , instance x' at the next tier down, and an

allowable T such that T(x') = x

 $\pi_A(x_A)$: w_A

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w) \in R$, or a proof π , instance x' at the next tier down, and an

allowable T such that T(x') = x

 $\pi_B(x_B)$: (π_A, x_A, T_B)

 $\pi_A(x_A)$: w_A

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w)\in R$, or a proof π , instance x' at the next tier down, and an

 $\pi_B(x_B)$: (π_A, x_A, T_B)

 $\pi_A(x_A)$: w_A

allowable T such that T(x') = x

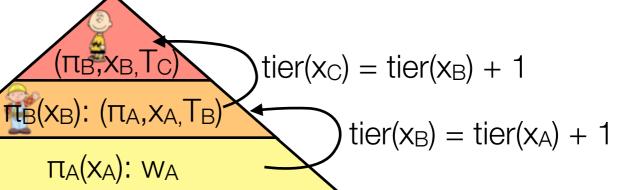
 $tier(x_B) = tier(x_A) + 1$

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w)\in R$, or a proof π , instance x' at the next tier down, and an

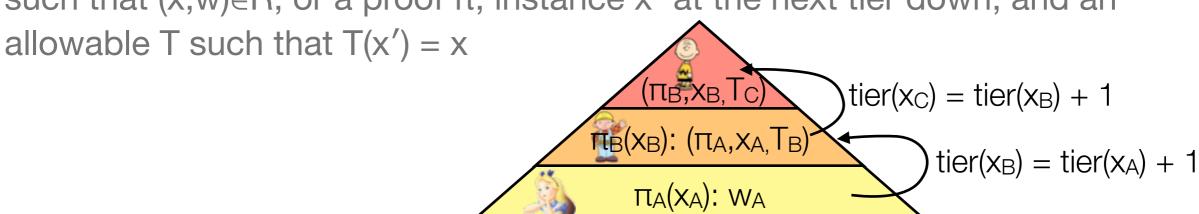
 (π_B, x_B, T_C)

 $\pi_B(x_B)$: (π_A, x_A, T_B)

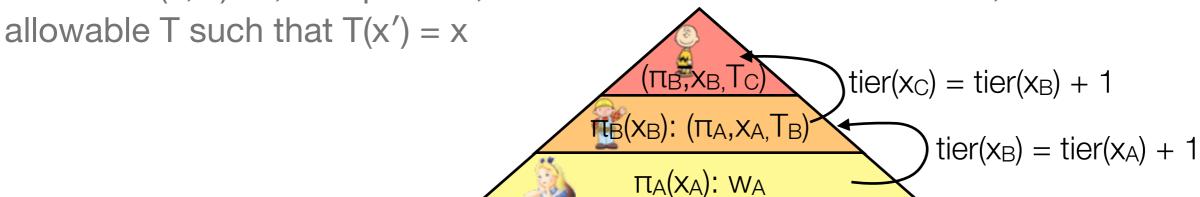
 $\pi_A(x_A)$: w_A


allowable T such that T(x') = x

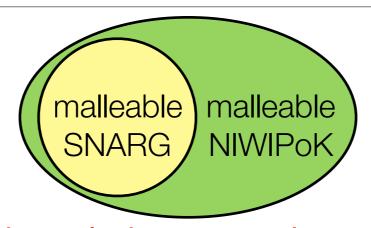
 $tier(x_B) = tier(x_A) + 1$

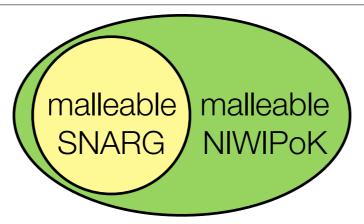

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w) \in R$, or a proof π , instance x' at the next tier down, and an

allowable T such that T(x') = x

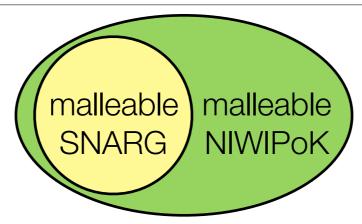

Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w) \in R$, or a proof π , instance x' at the next tier down, and an

Zero knowledge and adaptive knowledge extraction are both preserved*, gain malleability with respect to t-tiered transformations*


Intuitively, to form a proof for an instance x, prove you know a fresh witness w such that $(x,w)\in R$, or a proof π , instance x' at the next tier down, and an

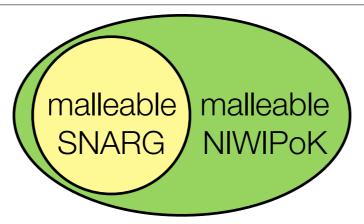

Zero knowledge and adaptive knowledge extraction are both preserved*, gain malleability with respect to t-tiered transformations*

*Since extractor might have to "tunnel down" t must be a constant [BSW12,BCCT13] and we use a stronger notion of extraction (consider non-uniform adversaries)



Our goal: get from adaptive knowledge extraction to stronger soundness

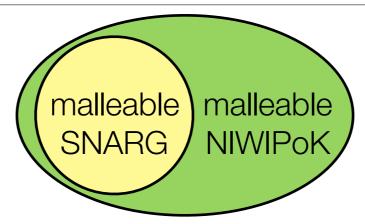
Our goal: get from adaptive knowledge extraction to stronger soundness


Rather than even try to reconcile adaptive knowledge extraction with something much stronger like extractability or CM-SSE, just use regular soundness of SNARG

Our goal: get from adaptive knowledge extraction to stronger soundness

Rather than even try to reconcile adaptive knowledge extraction with something much stronger like extractability or CM-SSE, just use regular soundness of SNARG

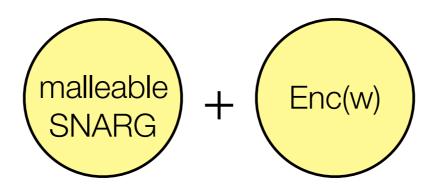
SNARG now just proves knowledge of plaintext such that (x,w)∈R

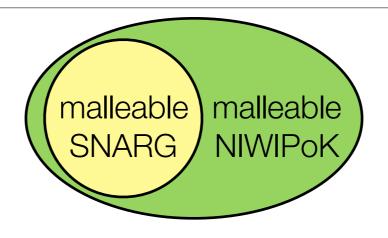


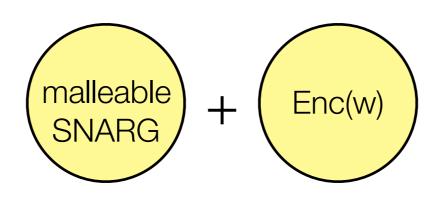
Our goal: get from adaptive knowledge extraction to stronger soundness

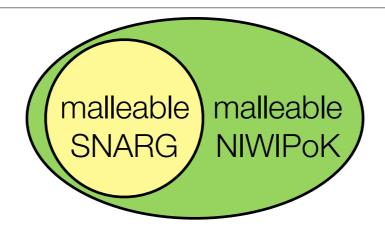
Rather than even try to reconcile adaptive knowledge extraction with something much stronger like extractability or CM-SSE, just use regular soundness of SNARG

SNARG now just proves knowledge of plaintext such that (x,w)∈R

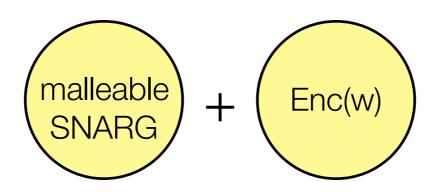


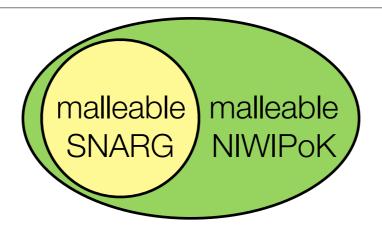


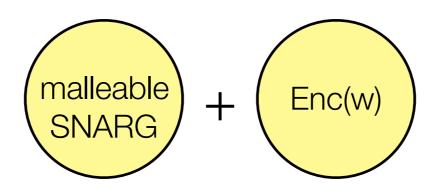

Our goal: get from adaptive knowledge extraction to stronger soundness

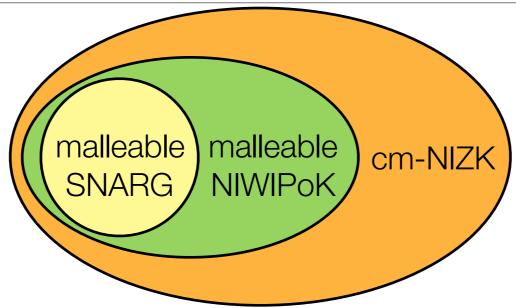

Rather than even try to reconcile adaptive knowledge extraction with something much stronger like extractability or CM-SSE, just use regular soundness of SNARG

SNARG now just proves knowledge of plaintext such that (x,w)∈R

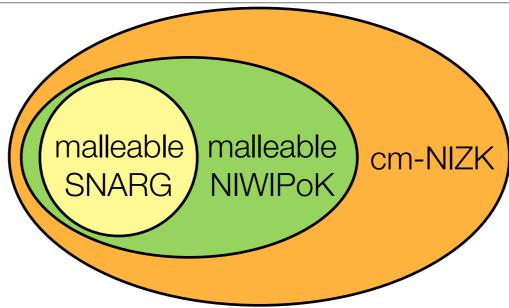


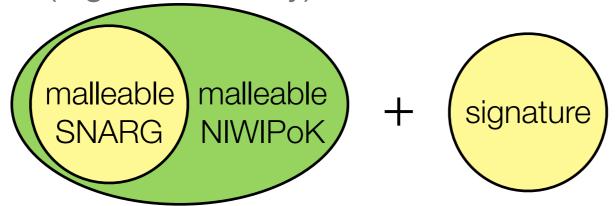


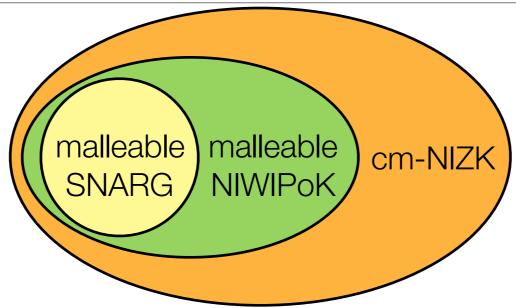

Extraction is quite simple: τ_e is decryption key, and extractor decrypts, so we never need to use non-black-box SNARG extractor!



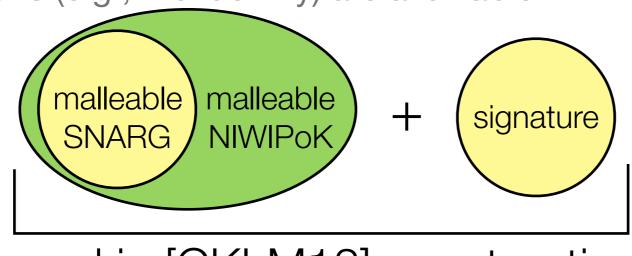
Extraction is quite simple: τ_e is decryption key, and extractor decrypts, so we never need to use non-black-box SNARG extractor!

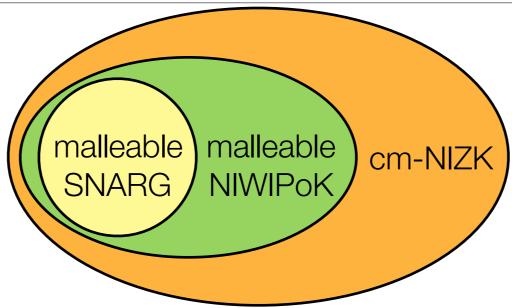

If we use a fully-homomorphic encryption scheme, can preserve malleability for t-tiered transformations (but we do lose succinctness)


Our goal: preserve malleability with respect to t-tiered transformations


Essentially amplify [CKLM12] construction; don't assume certain transformations (e.g., the identity) are allowable

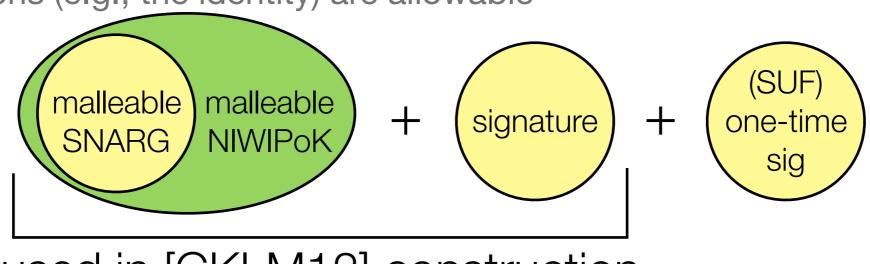
Our goal: preserve malleability with respect to t-tiered transformations


Essentially amplify [CKLM12] construction; don't assume certain transformations (e.g., the identity) are allowable



Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don't assume certain transformations (e.g., the identity) are allowable



used in [CKLM12] construction

Our goal: preserve malleability with respect to t-tiered transformations

Essentially amplify [CKLM12] construction; don't assume certain transformations (e.g., the identity) are allowable

used in [CKLM12] construction

Outline

Definitions

SNARGs to cm-NIZKs

Applying the cm-NIZK

Conclusions

Suppose you have some (theoretical) application that uses a cm-NIZK

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a cm-NIZK called CM-friendliness

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

Basically had to show that proof verification could consist of a set of pairing product equations, and that instances, witnesses, and transformations could be represented and transformed as elements in a bilinear group, etc.

How to apply previous cm-NIZK?

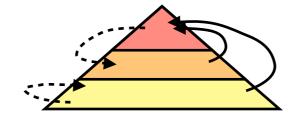
Suppose you have some (theoretical) application that uses a cm-NIZK

In [CKLM12], developed a methodology for showing the existence of a cm-NIZK called CM-friendliness

Needed to address our reliance on Groth-Sahai proofs

Basically had to show that proof verification could consist of a set of pairing product equations, and that instances, witnesses, and transformations could be represented and transformed as elements in a bilinear group, etc.

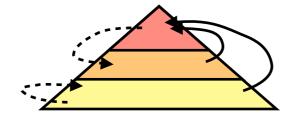
To instantiate a cm-NIZK, had to therefore jump through a lot of hoops!

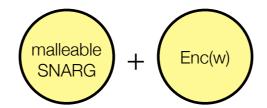

The cm-NIZK we just constructed can be applied much more easily

The cm-NIZK we just constructed can be applied much more easily

In the paper, we show how to construct a compact verifiable shuffle with proof size O(L+M) (where L=# voters, M=# shufflers)

The cm-NIZK we just constructed can be applied much more easily


In the paper, we show how to construct a compact verifiable shuffle with proof size O(L+M) (where L=# voters, M=# shufflers)


• Step 1 (mandatory!): Show that class of allowable transformations is t-tiered (for shuffle: each mix server increments the tier by 1)

The cm-NIZK we just constructed can be applied much more easily

In the paper, we show how to construct a compact verifiable shuffle with proof size O(L+M) (where L=# voters, M=# shufflers)

 Step 1 (mandatory!): Show that class of allowable transformations is t-tiered (for shuffle: each mix server increments the tier by 1)

 Step 2: Give instantiation for encryption scheme depending on how much malleability you want (for shuffle: multiplicatively homomorphic encryption)

Outline

Definitions

SNARGs to cm-NIZKs

Applying the cm-NIZK

Conclusions

Constructed generic cm-NIZKs for a general class of transformations, and intermediate primitives of potential independent interest

Constructed generic cm-NIZKs for a general class of transformations, and intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Constructed generic cm-NIZKs for a general class of transformations, and intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Constructed generic cm-NIZKs for a general class of transformations, and intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Full version is online at eprint.iacr.org/2012/506 (recently updated!)

Constructed generic cm-NIZKs for a general class of transformations, and intermediate primitives of potential independent interest

Saw example (shuffle) of how to construct applications using this cm-NIZK

Are there applications that directly exploit this expanded malleability?

Full version is online at eprint.iacr.org/2012/506 (recently updated!)

Thanks!
Any questions?