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Abstract

Group signatures are a modern cryptographic primitive that allow a member of a specific group
(e.g., “the White House staff” or “employees of Corporation X that publish press releases”) to
sign messages on behalf of the group as a whole; i.e., without revealing their individual identities
and thus providing them with a certain degree of anonymity and privacy. They have quite a
number of potential applications (and in fact have been incorporated into the latest version of the
Trusted Platform Module, or TPM), and are still an active area of research. In this work, we
explore group signatures and the many variations that have been considered since their original
introduction in 1991 by Chaum and van Heyst. We furthermore discuss the basic primitives used to
realize group signatures and their numerous definitions of security; we then outline a generic group
signature construction (due to Bellare, Micciancio, and Warinschi) that achieves the strongest notion
of security and give intuition for how it does this.

As a complement to group signatures we also consider ring signatures, in which users can enjoy
anonymity properties similar to those of group signatures but can form their groups in an ad-
hoc manner; i.e., without any setup or consent required from the other members of these “ad-hoc
groups,” or rings. We again consider the different notions of security for ring signatures, as well
as the different variations on the original concept introduced by Rivest, Shamir, and Tauman in
2001. We then outline a ring signature construction (due to Shacham and Waters) that achieves the
strongest notion of security, and conclude with a discussion of open problems for both group and
ring signatures.

1 Introduction

Group signatures, originally introduced by Chaum and van Heyst [42], allow members of a specified
group to sign messages on behalf of the entire group; i.e., without revealing their individual identities
but still guaranteeing that they are in fact a member of the right group. Members of the group
thus enjoy anonymity, meaning their identities are hard to recover given just a signature they have
created. This primitive has quite a number of applications, and is in fact currently deployed in two
real-world settings. The first of these applications is anonymous attestation, in which a server wants to
authenticate a trusted platform running on a user’s laptop remotely, but the user would like to preserve
his privacy by revealing to the server only that he is in fact a valid user of the trusted platform but
not who he is. Direct Anonymous Attestation (DAA) [29], which accomplishes exactly this, is built
on top of a variant of a group signature (the original group signature is due to Ateniese et al. [5]
and the variant to Brickell, Camenisch, and Chen [29]), and has in fact been adopted by the Trusted
Computing Group in the newest version (version 1.2) of their Trusted Platform Module (TPM) [89].
In the second application (first described by Boneh, Boyen, and Shacham [20]), group signatures can
be used ! in a Vehicle Safety Communications (VSC) system [66] to preserve the privacy of its users.
In these systems, cars are embedded with dedicated short-range transmitters, which then allow a car

"While this approach can be used, in practice some approximation of group signatures is used instead.



to communicate with all the other cars within some small radius in case of emergency; e.g., to let them
know that it needs to brake abruptly or perform some similar maneuver. Using a group signature,
where the members of the group are all cars equipped to send these types of messages, drivers can
protect their privacy by not revealing their exact speed and location when transmitting these safety
messages.

More generally, group signatures are useful in any application in which the importance of a signature
lies in the fact that it came from the group as a whole, and there is thus no benefit in revealing which
specific group member formed the signature. As in any privacy-preserving application, we would like
to maintain the anonymity of the users as much as possible, but still need to be sure that there is
a mechanism in place for misbehaving members of a group to get caught (as otherwise dishonest or
malicious group members could take advantage of their anonymity and cheat with impunity). For
example, if the group consists of members of a certain corporation responsible for putting out press
releases, a disgruntled employee who publishes and signs off on a false or damaging press release should
be able to be identified and (presumably) fired or otherwise penalized. This property is referred to
as traceability; it is important to note that only a party with a specific piece of information should
be able to perform the tracing (in the above example, perhaps the employee’s boss), as otherwise the
anonymity property discussed above would be violated. We might also say that we would like this
authority to use its tracing power only in the case that it is required; e.g., if a press release contains
certain keywords or in general some specified policy is not followed, as otherwise it can simply trace
messages at will. While this issue is often not addressed in the group signature literature (typically the
tracing party is always assumed to be trusted), the notion of “contractual anonymity” was introduced
by Schwartz, Brumley, and McCune in 2010 [86] to deal with exactly this problem; essentially, it says
that if users obey the policy then they enjoy unconditional anonymity, while if they don’t follow the
rules they are subject to exposure (but still only to the tracer).

Outside of these two basic properties, anonymity and traceability, there are many variations within
group signatures and many additional properties that we may consider. In a typical group signature
scheme, a trusted group master defines the group of users and issues secret keys to the members; it
additionally publishes the public key for the group. The group master may also take on the responsi-
bility of performing the tracing operation, although this functionality may also be split between two
authorities; note that this separation has the desirable property that the tracer does not necessarily
have all the secret information available to the group master (in fact, in practice it has quite a lot
less). Additionally, a group manager may be used in place of the group master; the manager differs
from the master in that it will interact with the users to help issue their secret keys, but it will not
learn them and so only the user will have access to his own secret key. The members of the groups
may also be static, meaning they are predefined at the start, or dynamic, meaning group members can
be added throughout the evolution of the group. Finally, schemes that support revocation allow the
group master/manager to revoke the keys of misbehaving members, meaning they can no longer sign
messages on behalf of the group. We discuss all these possible extensions in more detail in Section 4.

Even with a group signature scheme that supports dynamic addition and revocation of users, there
is still one fundamental shortcoming with respect to signing flexibility: At the time that a message
is signed, the members of the group are in fact fixed and static; i.e., groups cannot be formed on
an ad-hoc, signature-by-signature basis. To fill this gap, Rivest, Shamir, and Tauman proposed ring
signatures in 2001 [82], in which the signer of a message can specify a “ring” at the time of signing. The
signature then provides the same anonymity property as a group signature; namely that a recipient of
this signature will learn that it was signed by a member of this ad-hoc ring, but not which particular
member was responsible for the signing. Rather than the somewhat cumbersome setup required by
group signatures, ring signatures assume only that each member has a public key published for a
standard digital signature scheme; in some ring signature schemes, participants can even have keys



for different signature schemes (e.g., in the scheme of Rivest et al., any signature scheme based on
trapdoor one-way permutations will suffice).

In addition to the lack of any required setup, ring signatures differ from group signatures in another
fundamental way: The anonymity of signers is provided unconditionally, as there is no tracing authority.
Furthermore, individual users have more fine-grained control over their own anonymity, as they can
pick the other members of their ring each time they sign a message (as opposed to group signatures,
in which users have no control over the other members of the group). The potential applications
of ring signatures are thus slightly different from those of group signatures. Recall that with group
signatures, our goal was to preserve privacy in settings in which there is simply no benefit or need to
reveal individual identities. With ring signatures, on the other hand, we would like to preserve privacy
in settings in which it is actively undesirable for a signer’s identity to be revealed; for example, in the
canonical example of Rivest, Shamir, and Tauman (and in fact the title of their paper), ring signatures
can be used to leak a secret, in which the user signing the message is not acting on behalf of any
organization but would still like to guarantee anonymity. We will see an example of a ring signature
(due to Shacham and Waters [87]) in Section 7.

2 Cryptographic Background

Group and ring signatures are quite advanced primitives; as such, they are often built on a variety of
more basic cryptographic primitives. In this section, we provide brief descriptions of primitives that
are commonly used (and we will in fact see used for group signatures in Section 6) and their design.

2.1 Public-key encryption

Public-key encryption (along with all of public-key cryptography) was originally introduced in the
1970s [81, 75] as a way to address a fundamental drawback in symmetric-key encryption; namely, the
fact that two parties wishing to send messages to each other would have to first come up with a way
to share a secret key between them. Since then, public-key encryption has remained one of the most
well-studied primitives in cryptography [55, 49, 79, 88, 1, 30, 21, 22, 43, 65].

Formally, a public-key encryption scheme consists of three algorithms: a randomized KeyGen algo-
rithm, a randomized Enc algorithm, and a deterministic Dec algorithm. To generate keys, a user will
run the KeyGen algorithm (on input some security parameter 1’“) to get a public encryption key pk
and a secret decryption key sk; this public key can then be put in a registry somewhere and associated
with the user. If someone else would like to encrypt some message m for this user, she can look up
his public key and compute ¢ <— Enc(pk, m), where we call ¢ the ciphertext. Given this ciphertext, the
user can then decrypt it using his secret key to get back m = Dec(sk, ¢).

In terms of security, there are two main notions we can consider for encryption: IND-CPA security,
which is short for INDistinguishability against Chosen Plaintext Attack, and IND-CCA security, which
is short for INDistinguishability against Chosen Ciphertext Attack. Informally, the former of these
says that an adversary, given a challenge ciphertext on one of two messages (where these messages are
chosen by the adversary, hence the name), cannot tell which message the ciphertext is encrypting. The
stronger notion, IND-CCA security [47, 43|, says that an adversary still cannot distinguish between an
encryption of either of the two messages, even if it is allowed to see decryptions of arbitrary ciphertexts
(though obviously not the exact challenge ciphertext) both before and after it is given its challenge
ciphertext.



2.2 Digital signatures

Digital signatures were introduced at the same time as public-key encryption [81, 80] and can be
thought of as the digital analog of a physical signature; that is, they provide evidence that a given
message was in fact written by the person who says they wrote it. Like public-key encryption, they have
been very well studied since their introduction [49, 76, 85, 18, 34, 57, 77, 3] and have been extended
and enhanced in many ways [39, 88, 17, 23, 12, 41, 50, 74], including group signatures themselves.

Formally, there are three algorithms we can consider in the public-key setting: a randomized KeyGen
algorithm, a randomized (but deterministic in the case of unique signatures [73]) Sign algorithm, and
a deterministic Verify algorithm. A user will run the KeyGen algorithm to generate two keys: his
public verification key pk and his secret signing key sk; the public key will then be published in some
public-key registry. When the user wants to sign a message m, he can compute Sign(sk, m) to generate
a signature o. A recipient of this message and its signature can look up the public key for the user
and compute Verify(pk, o, m). If this outputs 1 then the recipient can be convinced that the message
really did come from the sender; otherwise, if it outputs 0, then the recipient knows that the message
was in fact sent by some impostor attempting to forge the sender’s signature (or, less cynically, that
the signature was just malformed in some way).

In terms of security, definitions for signatures were first given by Goldwasser, Micali, and Rivest [57].
Informally, we would like to say that signatures are unforgeable, meaning no one can forge a signature
on someone else’s behalf. More formally, the strongest notion of security considered by Goldwasser
et al. is known as EUF-CMA security, which is short for Existential Unforgeability against Chosen
Message Attack; this essentially extends our intuition and says that, even after seeing arbitrarily many
signatures on any messages of his choice, an adversary still cannot produce a valid forgery (on any
message).

2.3 Zero-knowledge proofs

Zero-knowledge proofs were originally introduced in the 1980s [56, 54] as a way to allow someone to
prove that a given statement is true without revealing anything beyond the validity of the statement;
even in this early work, such proofs were shown to exist for all languages in NP. Since then, there has
been much work done to improve and extend their usefulness [37, 44, 52, 62, 71, 63, 84] and they have
been used in a wide variety of applications [60, 72, 31, 10, 40, 32, 9].

A particularly useful kind of zero-knowledge proof is a non-interactive zero-knowledge proof (NIZK
for short) [16, 51], in which no interaction is required between the prover and the verifier. A NIZK is
thus a single message (the proof) send from a prover P to a verifier V', where both parties have access
to some common random string R.? Before this message can be sent, a Setup algorithm must be run
first (either by a trusted third party or in some cases jointly by the prover and the verifier) to obtain
the common random string R. We then use the notation 7 <— P(R, x,w) to mean the proof 7 computed
by the prover for the statement z and using witness w, and V (R, z,7) to mean the verification of the
proof 7 for the statement x (and with both parties having access to the random string R).

In terms of security, there are two main properties that we expect from a zero-knowledge proof:
soundness and zero knowledge. Informally, the soundness property guarantees that the prover is being
honest; that is, that even an all-powerful prover cannot trick the verifier into thinking that a false
statement is true. On the other side of things, the zero knowledge property protects the privacy of the
prover by guaranteeing that the verifier will not learn anything beyond the validity of the statement
(so in particular, will not learn anything about any secret information the prover may have access to).

2In many cases a common reference string is in fact required, but we stick with the common random string model for
simplicity.



3 Definitions and Notation for Group and Ring Signatures

Before we give the formal definitions for group and ring signatures, we can also consider two notions
that are used in all of cryptography. The first, a negligible function, means a function v(-) such that
for all k € N, there exists an integer zy such that for all 2 > zg, v(z) < 1/zF; in other words, a
function that grows slower than the inverse of any polynomial. We will also consider adversaries that
are allowed to make random choices but are constrained to run in time polynomial in the size of their
inputs; we refer to such adversaries as probabilistic polynomial-time adversaries, or PPT for short.

3.1 Group signatures

Formally, a group signature scheme? consists of four algorithms: KeyGen, Sign, Verify, and Trace, where
the first two are randomized and the second two are deterministic. The KeyGen algorithm, on input the
security parameter 1* and the number of users 1" in the group, outputs a group public key pk, a secret
key msk intended only for the group master, and a set {sk;}_; of secret keys, where sk; represents the
secret key for user i. The Sign algorithm, on input a secret signing key sk; and a message m, returns
a signature o on m under sk;. The Verify algorithm, on input the group public key pk, a signature
o, and a message m, outputs either 0 or 1, depending on whether or not ¢ really was created by a
member of the group. Finally, the Trace algorithm, on input the master secret msk and a signature o
on some message m, outputs either a user identity ¢ or L to indicate failure (i.e., that it was unable to
determine which user signed the message, or that o was not a valid signature on m).

In general, there are two main properties we would like from group signature schemes: anonymity
and traceability. Intuitively, anonymity says that a recipient of a group signature should be unable to
tell which member of the group formed the signature; formally, we have the following definition:

Definition 3.1. [11] For a group signature scheme (KeyGen, Sign, Verify, Trace), a given adversary A
and a bit b < {0,1} unknown to A, define the following game:

e Step 1. (pk,msk, {sk;}) + KeyGen(1¥,1m).

o Step 2. A is now given pk and {sk;} and may make arbitrarily many requests to a Trace(msk, -, ")
oracle to trace any signatures of its choice (i.e., valid signatures on any message m, signed using
any secret key sk;). It will also keep some state information s.

o Step 3. (m,ig,i1) < A(pk,{sk;},s), where we have iy # i1 and 1 < ip,i; < n.

e Step 4. A is now given o < Sign(sk;,, m). It may again query the Trace(msk,-,-) oracle at will,
but this time with the restriction that it cannot query it on o.

e Step 5. In the end, A outputs a bit .

We say that the group signature is fully anonymous if for all PPT algorithms A there exists a negligible
function v(-) and a security parameter ko such that for all k > kg the probability (over the choices of b
and the randomness used in KeyGen and A) that b’ = b is at most 1/2 + v(k).

As we can see, this definition is quite strong: In the game, the adversary is given access to every
single member secret key, and has full access to the tracing oracle both before and after the challenge
identities are picked. A slightly weaker setting in which the adversary does not have this oracle access

3Here we stick with the most basic definition: a static group with only a group master (i.e., no separate tracer or
tracing key). Further variants and their definitions are discussed in Section 4.



turns out to still be meaningful (the difference between the two settings is analogous to the difference
between IND-CCA- and IND-CPA-secure encryption; see Section 2.1 for a reminder), and is in fact the
setting used (and introduced) by Boneh, Boyen, and Shacham [20], as well as Boyen and Waters [27, 28].
For traceability, we intuitively would like to say that a misbehaving member of the group will be
caught, even if members of the group are attempting to alter their own secret keys or even forming
collusions to frame other members or otherwise deflect blame. We have the following definition:

Definition 3.2. [11] For a group signature scheme (KeyGen, Sign, Verify, Trace) and a given adversary
A, define the following game:

o Step 1. (pk,msk, {sk;}) « KeyGen(1* 17).

o Step 2. A is now given pk and msk and is allowed to pick any subset C of users to corrupt. In
picking this set C, A is given access to a signing oracle, which it can provide with an identity i
and a message m to obtain Sign(sk;, m); once A has picked a user it is then given access to the
secret key for that user and can pick the rest of its users adaptively.

e Step 3. A is now allowed to retain access to the signing oracle from Step 2, as well as its access
to the secret keys of its corrupted users and the master secret key msk. At the end of this step,
A outputs a pair (m, o).

We say that the group signature is fully traceable if for all such PPT algorithms A there exists a
negligible function v(-) and a security parameter ko such that for all k > ko the probability (over the
randomness used in KeyGen, Sign, and A) that Verify(pk,o,m) = 1 and there exists an i such that (1)
Trace(msk,o) =1, (2)i & C, and (3) A did not query its signing oracle on (i,m) is at most v(k).

3.2 Ring signatures

As introduced by Rivest, Shamir, and Tauman [82], ring signatures consist of only two algorithms:
Sign and Verify; this encapsulates the intuition that ring signatures are essentially “setup-free” (i.e.,
don’t require the KeyGen algorithm) and unconditionally anonymous (as there is no Trace algorithm).
In more recently proposed ring signature schemes, however, a KeyGen algorithm has been added as a
way to guarantee that all users have the same kind of keys. Therefore, for the purposes of security
definitions we assume that a ring signature scheme consists of three algorithms: KeyGen, Sign, and
Verify. Each user will run KeyGen individually; this algorithm, on input the security parameter 1%,
will output a keypair (pk, sk). The Sign algorithm, on input a secret key sk, a ring R (typically just a
list of public keys belonging to members of the ring), and a message m, outputs a signature o on m.
Finally, the Verify algorithm, on input the ring R, a signature o, and a message m, outputs 1 if some
member of R created the signature o on m and 0 otherwise.

Intuitively, we would like ring signatures to be secure in ways similar to group signatures. It turns
out we can achieve an anonymity notion very similar to that in Definition 3.1, but without a Trace
algorithm we obviously cannot hope to achieve anything that looks like traceability. We would still
like to be sure that non-ring members cannot forge signatures, and so we instead consider the slightly
weaker property of unforgeability. Both these properties were first defined formally by Bender, Katz,
and Morselli [15].

As defined by Bender et al., there are three possible levels of anonymity we can achieve: basic
anonymity, in which the adversary sees only public keys; anonymity with respect to adversarially-
chosen keys, in which the adversary (as the name implies) can pick its own keypairs and thus essentially
create its own users; and finally, anonymity with respect to full key exposure, in which the adversary



can continue to pick its own keypairs but also gets to see the secret keys for each user. As this last (and
strongest) definition most closely parallels the definition given above for group signatures, we present
it here.

Definition 3.3. [15] For a ring signature scheme (KeyGen, Sign, Verify), a given adversary A and a
bit b < {0,1} unknown to A, define the following game:

o Step 1. The KeyGen algorithm is run m times to obtain a set ((pkq,sk1),...,(pk,,, skm)) of
keypairs.

e Step 2. A is now given access to the set of public keys S = {pk;} and a signing oracle; i.e., an
oracle that, given any index i, any ring R (so it may be the case that R ¢ S), and any message
m, will output Sign(sk;, R,m). At the end of this step A will save some state information s.

o Step 3. (ig,i1, R,m) <— A(s). Note that it again may be the case that R ¢ S, but it must be the
case that pk;, and pk; are both in the ring R, and that ig # i1 and 1 <ig,i1 < |R|.

o Step 4. V < A(o = Sign(ski,, R,m), {sk;}).

We say that the ring signature is anonymous against full key exposure if for all such PPT algorithms
A there exists a negligible function v(-) and a security parameter ko such that for all k > ko the
probability (over the choices of b and the randomness used in KeyGen, Sign, and A) that b/ = b is at
most 1/2 4+ v(k).

As with anonymity, we can consider varying degrees of strength in our definitions of unforgeability.
The weakest, unforgeability against fixed-ring attacks, considers an adversary who does not get to pick
its ring R but is rather handed one at the start. A slightly stronger property, unforgeability against
chosen-ring attacks, considers an adversary who does pick its own ring. Finally, and strongest, the
adversary is allowed to pick any subset of ring members to corrupt, meaning it is given access to their
secret keys. Again, this strongest definition most closely parallels the analogous property for group
signature (from Definition 3.2) and so we present it here.

Definition 3.4. [15] For a ring signature scheme (KeyGen, Sign, Verify) and a given adversary A,
define the following game:

o Step 1. The KeyGen algorithm is run m times to obtain a set ((pkq,sk1),...,(pk,,, skm)) of
keypairs.

o Step 2. A is now given S = {pk;} and is allowed to pick any subset C of users to corrupt. In
picking this set C, A is given access to a signing oracle; i.e., an oracle that, given any indez i,
any ring R (so it may be the case that R ¢ S), and any message m, will output Sign(sk;, R, m).
Once A has picked a user it is then given access to the secret key for that user and can pick the
rest of its users adaptively. At the end of this step A will save some state information s.

e Step 3. (R*,m*,0%) + A(s).

We say that the group signature is unforgeable with respect to insider corruption if for all such PPT
algorithms A there exists a negligible function v(-) and a security parameter ko such that for all k > kg
the probability (over the randomness used in KeyGen, Sign, and A) that Verify(R*, o*,m*) = 1 and
there exists a j such that (1) A did not query its signing oracle on (j, R*,m*) and (2) R* C {pk;} \ C
is at most v(k).

For both the varying degrees of anonymity and unforgeability, Bender et al. prove separation

results; that is, that the definitions are distinct and each level up is strictly stronger than the one
below it.



4 Background on Group Signatures and Variants

In this section, we consider some of the many possible extensions of the basic four algorithms (KeyGen,
Sign, Verify, and Trace) that make up a group signature scheme; we focus in particular on the use of
dynamic groups with a group manager and on the notion of revocation.

Before we discuss these variants, it is important to first establish some background. As mentioned
in Section 1, group signatures were originally introduced by Chaum and van Heyst [42] in 1991, who
both proposed them as a useful primitive and provided the first constructions. In 1997, Camenisch
and Stadler [36] proposed the first group signature scheme in which the size of both the public key and
the signatures did not depend on the size of the group; i.e., their size was constant. Their construction
involves a combination of various cryptographic primitives (referred to by Kiayias and Yung as the
“single-message and signature-response paradigm” [70]), and in fact this method of construction was
followed by a number of schemes for years afterward [5, 70, 6, 7, 20].

In 2003, Bellare, Micciancio, and Warinschi [11] introduced the modern definitions and security
properties that we now use for group signatures (and just saw in Section 3.1); they additionally gave a
generic construction of a scheme that satisfied these (quite strong) security properties. Their scheme,
as we will see in Section 6, combines digital signatures, IND-CCA-secure public-key encryption, and
non-interactive zero-knowledge proofs, and works for static groups (i.e., groups in which the set of
users is defined at the start) with a group master. Like the Camenisch-Stadler construction, their
construction has proved to be quite useful; in fact, the first group signature scheme based on lattices,
introduced recently at the end of 2010 by Gordon, Katz, and Vaikuntanathan [59], follows the exact
outline of the Bellare et al. construction.

As mentioned above, the security properties defined by Bellare et al. are quite strong, and in fact
were not realized by an efficient scheme until a scheme due to Groth in 2006 [61].% In 2004, therefore,
Boneh, Boyen, and Shacham [20] introduced a slightly weakened definition of security along with a
scheme that satisfied this new definition. As mentioned in Section 3, their definition simply removes
the access to the Trace oracle from the game in Definition 3.1. Boneh, Boyen, and Shacham argue
that, in practice, access to the Trace functionality will be tightly controlled, and so this definition of
security is still meaningful.

4.1 Dynamic groups and group managers

The notion of a group manager, who helps to issue keys to enrolling members but does not in fact learn
these keys, was considered as early as the Camenisch-Stadler scheme [36], and a bit more in depth later
by Kiayias and Yung [69] and Kiayias, Tsiounis, and Yung [68]. In 2005, Bellare, Shi, and Zhang [14]
gave formal security definitions for groups with a group manager, as well as dynamic groups; i.e.,
groups in which users can be added as time goes by. Recall that in our basic group signature scheme,
the KeyGen algorithm was run by the group master at the beginning to both set up the parameters for
the group, as well as the secret keys for each of its individual members; each of these secret keys was
then presumed to be passed along to the appropriate member along some secure channel. There are
two main shortcomings associated with this approach: (1) the group master knows the secret key for
each of the members, and (2) the members of the group must be fixed at the start and cannot change
over time.

Before we consider the case where both these pitfalls are avoided, it is worth mentioning that
these properties do not necessarily have to occur at the same time; that is, we can have a scheme in
which users are allowed to enroll at any time, but when they enroll they are still simply handed their

4As noted by Groth himself, although the operations in the scheme can be considered efficient and the signatures are
of constant size, the constant is far too large for the scheme to be considered remotely practical.



Scheme Group type/operations Master/manager? Assumptions used

CS97 [36] dynamic join manager DLP, strong RSA
BMWO03 [11] static master trapdoor permutations
BBS04 [20] static join but revocation master g-SDH, DLIN, random oracle
BWO06 [27] dynamic join and revocation master CDH, SGH

Table 1: A comparison of some well-studied group signature schemes. We consider the possible group types
(static or dynamic) and the operations supported (addition or revocation), whether the group has a master or
a manager, and finally which cryptographic assumptions it relies on for security. As far as assumptions go, we
can see that the Camenisch-Stadler scheme relies on the hardness of the Discrete Log Problem and the Strong
RSA assumption [8]; the security of the Bellare-Micciancio-Warinschi scheme relies on the existence of trapdoor
permutations; the security of the Boneh-Boyen-Shacham scheme relies on the security of the g-SDH (short for
Strong Diffie Hellman and introduced by Boneh and Boyen [19]) and DLIN (short for Decision LINear and
introduced by the authors) assumptions, as well as the existence of random oracles; and finally the security of
the Boyen-Waters scheme relies on the CDH (Computational Diffie Hellman) and SGH (short for SubGroup
Hiding and introduced by Boneh, Goh, and Nissim [24]) assumptions.

keys by the group master. In practice, such a scheme can be easily emulated by the standard static
construction as follows: During the KeyGen phase, the group master will simply specify the number of
group members 1" as the maximum number of members he would ever expect; he should then have
enough keys to continue handing them out throughout the evolution of the group.

While the above scheme seems to solve the problem of dynamic enrollment, the first problem is still
left unresolved. To solve both problems at the same time, we need to augment the basic group signature
scheme as follows: The KeyGen algorithm is replaced with a Setup algorithm which outputs the group
public key pk and (possibly) some common parameters params, as well as the group manager secret
key msk and a separate tracing key tk. In addition, a new interactive protocol Join() <> Enroll(msk)
is added that takes place between the enrolling member and the group manager. This protocol is
essentially a secure two-party computation, at the end of which user i learns their secret key sk; but
nothing else (so in particular, nothing about the manager’s secret key msk), and the group manager
learns nothing except that the user is now an enrolled member. Finally, the Trace algorithm is changed
to take in the tracing key tk rather than the manager secret key msk, as it is assumed that the tracing
authority should be separate from the group manager and thus not be able to enroll users (and vice
versa).

As mentioned, this setting was fully formalized by Bellare, Shi, and Zhang [14], who noted that with
a weaker issuing authority (i.e., the group manager as opposed to a master), new security notions could
be considered.® They therefore define the notion of non-frameability (also called strong exculpability
by Boneh, Boyen, and Shacham [20] and expanding on the informal notion of exculpability introduced
by Ateniese and Tsudik [6]), which says that no coalition of corrupt group members, not even ones
that include the group manager, can produce a signature on behalf of another group member.

Finally, we mention that, in addition to considering potentially corrupt group managers, Bellare
et al. (and others after them) also consider the notion of potentially corrupt tracing authorities. To
this end, many dynamic group signature schemes include another new algorithm in addition to the
ones described above; namely, a Judge algorithm. Essentially, the Trace algorithm is now required to
output not only the member it believes created the signature, but also a proof that this is so. The
Judge algorithm can then decide whether or not this proof is in fact true, so that the tracing authority

®Slightly different security definitions were previously given by Kiayias, Tsiounis, and Yung [68] and Kiayias and
Yung [69], but we stick here with the formalization due to Bellare et al.



is bound in some sense to be honest.

4.2 Revocation

Another property of a group signature scheme is the opportunity to revoke the signing privileges of
misbehaving members [7, 25, 45, 6]; that is, perform some operation such that a member who has
misbehaved can no longer sign on behalf of the group. As an example of where this might be used,
consider that even if a group member publishes their signing key online (or has that information stolen),
the group can still continue to function as it should, as the group master can simply revoke the signing
privileges of that member. This property is therefore quite desirable for a group signature, as it means
that the scheme is able to protect itself and recover from these sorts of failures. One straightforward
way to achieve revocation is for the group master (or manager), at the time that a failure of this type
occurs, to recreate a public key and a new secret key for each member remaining in the group (or, in
the case of the manager, re-run the Join/Enroll algorithm with each member); the members who do
not get new keys are thus effectively shut out of the group. In practice, this solution is quite costly,
as a message over a secure channel needs to be sent to every group member, and a broadcast message
must be sent to all potential verifiers.

A more practical revocation technique, formalized by Boneh and Shacham in 2004 [25], is called
verifier-local revocation. As the name implies, the work of checking that revoked users cannot create
signatures that pass verification is put on the verifier (as opposed to say, the remaining signers). The
standard group signature scheme is therefore augmented by giving the Verify algorithm access to not
only the public key pk and the signature ¢ and message m in question, but also to a revocation list
RL that contains tokens to uniquely identify signers whose member privileges have been revoked. A
revoked member therefore will lose any sense of privacy, as their signatures can now be linked by any
verifier who simply runs Verify once without the revocation list and once with it; if certain signatures
verified in the former case but not in the latter, then the verifier now knows which messages were signed
by the revoked member. Because of this, Boneh and Shacham must define a new notion of anonymity,
which they call selfless anonymity; intuitively, this says that because a user has the ability to “revoke
himself,” he can in fact check and see (using the above technique) if a particular signature was created
using his key. In addition to the scheme introduced by Boneh and Shacham along with the formal
definitions, several schemes have been proposed that also satisfy this notion of revocation [78, 4].

In more informal settings, other revocation methods have also been proposed, typically on an ad-hoc
basis. Boneh, Boyen, and Shacham [20, Section 6], for example, describe a revocation method for their
scheme (which in turn follows a revocation mechanism due to Camenisch and Lysyanskaya [33, 35])
in which a revocation list is again published, but this time is given to remaining signers as well as
verifiers. It is then used to update the public key for the group; additionally, remaining signers have
the ability to update their secret keys to be consistent with this new public key, while revoked signers
do not.

Finally, Boyen and Waters [27, Section 5.4] also describe a way in which their scheme can be ex-
tended to support revocation. In their setting, both the Sign and Verify algorithms must be augmented
to support a proof, created by the signer, that they are not in fact a revoked member (so there must
also be a public list of revoked members); the verifier will then check this proof before proceeding to
standard verification. As the signer must create a proof for each revoked member, Boyen and Waters
also mention that once there are enough revoked members for this approach to become impractical,
the group master can resort to the naive approach described at the beginning in which the entire group
is essentially re-keyed.
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5 Background on Ring Signatures

In this section, we discuss previous work in ring signatures. Although the extensions of ring signatures
are not as widely varied as those for group signatures, the problem of constructing a secure ring
signature has still been approached from a number of different angles, and so we highlight these
different approaches here.

5.1 Generic vs. non-generic constructions

In the original scheme of Rivest, Shamir, and Tauman [82], the setup assumptions were quite minimal:
Users were assumed only to have generated signing keypairs for any signature scheme whose security
relied on the existence of trapdoor permutations. This meant that their construction was fundamen-
tally generic, as it could not rely on any particular properties or forms of the keys. Another generic
construction, due to Bender, Katz, and Morselli [15], was proposed in 2006 that satisfied the much
stronger definitions of security they defined (the ones we saw in Section 3.2). Their construction, simi-
lar to the generic group signature construction due to Bellare, Micciancio, and Warinschi [11], combines
public-key encryption (although they require only IND-CPA security, as opposed to IND-CCA), sig-
natures, and a primitive similar to zero-knowledge proofs called ZAPs [48].6 Finally, we mention that
other generic ring signature schemes have been proposed based on a variety of assumptions, including
the discrete log assumption [2, 64], the RSA assumption [46], or a mixture of the two [2].

Somewhat surprisingly, the literature for ring signatures with efficient protocols is much less ex-
tensive than what we see for generic constructions (note that these are distinct notions, since generic
constructions can essentially never be truly efficient). In 2003, Boneh, Gentry, Lynn, and Shacham [23]
introduced an efficient ring signature scheme, secure only in the random oracle model. In 2007, Shacham
and Waters [87] introduced the first efficient ring signature scheme that was secure without random
oracles; we will see an outline of this scheme in Section 7. Also in 2007, Boyen introduced the concept
of mesh signatures [26], which are a generalization of ring signatures. In the language of Boyen, ring
signatures can be viewed as a disjunction of signatures, in which the statement being shown is that at
least one member of a ring signed a particular message (so either Member A or Member B or ...). In
mesh signatures, more complex structures can be used, and in fact any monotone access structure is
supported (e.g., conjunction). As a special case of mesh signatures, Boyen demonstrates an efficient
ring signature, using less attractive assumptions than Shacham and Waters but still secure without
random oracles.

5.2 Ring signature size

In almost all ring signature constructions, the size of the ring is implicitly assumed to be linear in the
number of the members, as the natural way to describe a ring is with a list of the public keys of its
members. In a result due to Dodis, Kiayias, Nicolosi, and Shoup [46], however, the authors manage to
avoid this linear dependence by arguing that some rings can have short descriptions; e.g., “members
of the White House staff.” Furthermore, they argue that in practice, certain rings may end up being
re-used quite often; if these rings are not being created fresh for every single signature, then they can
be assigned some sort of unique description or identifier. Using this intuition, Dodis et al. describe
a ring signature scheme with constant-size signatures, as opposed to the linear-size signatures used in

SA ZAP is in fact weaker than a zero-knowledge proof, as it achieves a related property called witness indistinguisha-
bility, which says that the verifier doesn’t learn which witness was used by the prover, but not that the verifier learns
nothing about the witness. The scheme they outline that uses only these three primitives, however, does not actually
achieve their strongest notions of security, as it is not anonymous against full key exposure. To achieve this, they require
the use of an oblivious key generator, which we will not discuss here.
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all previous schemes. There is a drawback in the scheme, however, as its security fundamentally relies
on the use of random oracles [13]. To address this, Chandran, Groth, and Sahai [38] came up with a
scheme that achieves sub-linear size without random oracles; while this is certainly an improvement
over linear-size signatures, their signatures are still of size O(v/N) (where N is the number of members
in the ring) as opposed to the constant size achieved by Dodis et al.

6 A Generic Group Signature Construction

In this section, we outline a generic group signature construction, due to Bellare, Micciancio, and
Warinschi [11], that satisfies the security requirements described in Definition 3.1. The construction
combines digital signatures [58], IND-CCA-secure public-key encryption, and simulation-sound non-
interactive zero-knowledge proofs (NIZKs) [84]; for summaries of these three primitives, see Section 2.7

Intuitively, the construction works as follows: The KeyGen algorithm will first create keys for the
encryption scheme and the signature scheme, as well as the common random string for the NIZK.
The group master, for each user, will create a signing keypair and then a signature (under the group
master’s secret signing key) on the user’s identity and public key; this signature will essentially act as
a certificate that guarantees the group master really did assign the user a keypair. With the secret key
from this keypair, the user can then sign a message; he cannot simply reveal this signature, however,
as it completely exposes his identity. He therefore encrypts this signature under the group’s encryption
scheme, along with the certificate from the group master, and finally forms a NIZK that the ciphertext
really does contain this valid certificate and the signature. The final group signature will then consist
of this NIZK and the ciphertext; a recipient of this signature can then check that the NIZK is correct
to be sure that the message was in fact signed by a member of the group. More formally, the scheme
works as follows:

° KeyGen(lk,ln): Compute keypairs for the encryption and signing schemes as (pk,, ske) <
KeyGen, (1%) and (pk,, sks) < KeyGen,(1¥), in addition to a random value R + {0, 1}?(*) that will
act as the common random string (CRS) for the NIZK scheme. Set pk = (R, pk,, pk,) and msk =
(ske, sks). Now, for each individual secret key, compute the keypair (pk;, sk;) < KeyGen,(1¥)
and a certificate cert; < Sign(sks, (i, pk;)), and set user i’s secret key to be gsk; = (i, sk;, cert;).

e Sign(gsk;,m): First compute a signature s < Sign(sk;,m). Next, compute some randomness
r < {0,1}* and use it to compute the ciphertext ¢ < Enc(pk,, (i, pk;, cert;, s);r). Next, compute
a proof m < P(R, (pk., pks, m,c), (i, pk;, cert;,s,r)); i.e., a proof that the certificate contained
in the ciphertext is in fact a signature on the value (7, pk;). Finally, form the group signature as
o = (¢, m) and return this value o.

e Verify(pk,o,m): Return V (R, (pk,, pks,m,c), ).

e Trace(msk,o): If V(R, (pk,, pkg, m,c), ) = 0 then return L. Otherwise, compute m = Dec(sk,, ¢),
parse it as m = (i, pk;, cert;, s), and return i.

The security of the group signature scheme fundamentally relies on the security of the underlying
primitives (i.e., the signature scheme, encryption scheme, and simulation-sound NIZKs). Because all
these primitives can be generically constructed from trapdoor permutations [47, 83, 84, 51], Bellare,
Micciancio, and Warinschi are able to prove the following result:

"Recall that in Section 2, we in fact describe standard NIZKs but not simulation soundness. As this is a fairly technical
definition we will not present it here, but we refer interested readers to the original paper by Sahai [84].
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Theorem 6.1. [11] If there exists a family of trapdoor permutations, then the group signature scheme
outlined above is fully anonymous and fully traceable (as outlined in Definitions 3.1 and 3.2).

Informally, we can describe how the security of the scheme relies on the security of its underlying
primitives. First, we consider anonymity, which relies on the IND-CCA security of the encryption
scheme and the zero knowledge property of the NIZK. Although the NIZK 7 is given out directly,
the zero knowledge property tells us that a recipient will still not be able to learn anything about the
witness used to compute the proof (which completely reveals the user’s identity). Similarly, although
the encryption of the certificate ¢ is also given out directly, the IND-CCA security of the encryption
scheme guarantees that a recipient will not be able to learn the contents of this ciphertext, and thus
not learn the certificate or other contents (which, as they are identical to the witness for the NIZK,
would again completely reveal the user’s identity).

For traceability, we now rely on the soundness of the NIZK and the unforgeability of the signature
scheme. By the soundness property of the NIZK, we know that 7 will not pass verification unless the
certificate cert; and signature s were in fact valid (i.e., cert; really was signed by the group master and
s really was signed by a group member). But, the unforgeability of the signature scheme guarantees
that the only way for these two values to be considered valid is if they were in fact signed by the right
people (the group master for the former and the possessor of sk; for the latter), and so we can be
assured that any valid group signature will in fact trace back to the appropriate group member.

7 A Ring Signature Construction

In this section, we will see an outline of a ring signature construction due to Shacham and Waters [87].
Unlike the group signature construction we just saw, this construction is not generic, meaning it uses
properties of its keys and signatures, which requires them to have specific forms. Additionally, the
scheme uses pairings, which requires us to introduce some more notation. Given a group G of some
order N, we say that G is a bilinear group if it is cyclic (meaning every element in G can be written
as g for some generator g and exponent a € Z/NZ) and if there exists some map e : G X G — Gr
such that e is nondegenerate, meaning if e(z,y) = 1 for all y then it must be the case that x = 1, and
bilinear, meaning if ¢ is the generator for G then we have e(g%, ¢°) = e(g, g)® for all a,b € Z/NZ.

For the Shacham-Waters construction, we will particularly be interested in bilinear groups with
order N = pq, where p and ¢ are primes. By the structure theorem for finite abelian groups, we know
that if |G| = N then G will have a decomposition of its own into G = G, x G4, where G), is the
subgroup of order p and Gy is the subgroup of order gq. The Subgroup Hiding assumption (SGH for
short, and introduced by Boneh, Goh, and Nissim in 2005 [24]) says that a random element h of the
subgroup G, will be indistinguishable from a random element of the full group G. We will also need
the Computational Diffie Hellman assumption (CDH for short), which says that given g, ¢* € G for
random a,b < Z/NZ, it is hard to compute g®.

Finally, the construction relies on the existence of collision-resistant hash functions, or CRHFs for
short. A CRHF is a hash function H : {0,1}* — {0,1}" for some fixed n such that it is infeasible
to find two messages m; and mg such that H(m1) = H(msg) but my # me. Collision-resistant hash
functions, and hash functions in general, have been very well studied in cryptography; we refer the
reader to any introductory text in cryptography (e.g., Goldreich [53] or Katz and Lindell [67]) for more
information.

Intuitively, the construction works as follows: the bilinear group and related values will be con-
structed by some trusted third party using a Setup(1¥) algorithm which outputs a common reference
string oers.5 Users can then generate their own signing keypairs. When a user wants to sign a message

8Using a common reference string is quite common with pairing-based schemes, and in fact many of them are secure
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m for some ring R, he first encrypts his public verification key (using the BGN cryptosystem [24],
which is IND-CPA secure assuming the SGH assumption) to get a ciphertext C. Next, he creates
a zero-knowledge proof 7w that the value in that ciphertext is in fact exactly one of the public keys
contained in R. This can be done by first creating “dummy” ciphertexts for each of the public keys
in R that does not belong to him; these dummy ciphertexts C; will just be encryptions of the identity
element for G. For every C;, he can then provide a zero-knowledge proof 7; (using NIZKs specifically
for pairings adapted from those of Groth, Ostrovsky, and Sahai [62], which are secure again assuming
SGH) that the value in C; is either the identity or his public key. Because the BGN encryption scheme
is multiplicatively homomorphic, meaning if C; is an encryption of m; and Cs is an encryption of ms
then C-Cs is an encryption of m-mg, the ciphertext C' = [[ C; will then be a proper encryption of the
user’s public key if he behaved honestly (meaning he encrypted his own public key for the appropriate
i and the identity for all other i), and an encryption of random garbage otherwise. Finally, the user
will sign the message m using his secret signing key; here we will use the pairing-based Waters signa-
ture [90], which is secure assuming the CDH assumption. The ring signature will then consist of this
Waters signature (S1,.52), as well as all the ciphertexts C; and the NIZKs 7;. For readers interested
in the details of the scheme, we have the following outline:

e Setu p(lk): First, generate a bilinear group G of order N = pq and its generator g, along with the
bilinear map e : G x G — G7 and an element h such that h generates G,. Next, pick random
exponents a,by < Z/NZ and compute A = g%, By = g%, and A = he. Next, pick random
generators ', uy, ug, . .., u of G, and define some collision-resistant hash function H : {0,1}* —
{0,1}*. The final CRS will then be 0.5 = (Z/NZ,G, g, e, h, A, Bo, A, v/ uq, . .. Uk, H).

e KeyGen(o.s): Choose a random exponent b < Z/NZ, and set sk = b and pk = A’

e Sign(ors, sk, R,m): Compute (mq,...,my) = H(M,R). Let n = |R|, and denote the elements
of R as v; € G for 1 < ¢ < n; furthermore, let ¢* be the index such that v;« = pk, where pk
is the public key corresponding to the signing key sk being used. Compute an n-tuple of bits
(B1y.--,Bn), where 8; = 1 if i = ¢*, and B; = 0 otherwise. Next, for each i, pick a random
exponent t; <— Z/NZ and compute

C; = (vi/Bo)%hti  and m = ((vi/Bo)*P ).
Let C =], C; and t = ), t;. Finally, choose r < Z/NZ and compute
S1 = sk - (u’Hu;ﬁj)’" CA' and Sy =g
J

Output the signature o = ((S1, S2), {(Ci, m)}4)-

e Verify(oeps, R,0,m): Compute (mq,...,mg) = H(M, R), and again let n = |R| and parse the
elements of R as v; € G for 1 < i < n; in addition, parse the signature o = ((S1, S2),{Ci, m)}:).
First, check that the proofs are valid by checking that the equation

6(02‘, Cz/(vz/BO)) = e(h, 7['1')

holds for all i. If any of the proofs is invalid, reject (i.e., output 0). Otherwise, set C' = [, C;
and check if the following equation is satisfied:

e(A, BoC) = e(S1,9) - e(Sy o/ [ [ uf™).
i

only in what is called, appropriately enough, the common reference string model. We furthermore assume Setup is run
by a trusted party, as it is essential for security that no one know the factorization of the group order N = pq.
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If it is, accept. Otherwise, reject.

As with the generic group signature construction, the security of the ring signature scheme relies
fundamentally on the security of its underlying primitives. As mentioned above, both the BGN en-
cryption scheme and the GOS NIZKs are secure using SGH, and the Waters signature scheme is secure
using CDH. Shacham and Waters can therefore prove the following theorem:

Theorem 7.1. [87] If SGH is hard in the group G, CDH is hard in Gy, and H is collision resistant,
then the above ring signature scheme is anonymous against full key exposure and unforgeable with
respect to insider corruption (as outlined in Definitions 3.8 and 3.4).

Again, we would like to intuitively argue why the ring signature is secure if its component primitives
are. For anonymity, we can see that the user’s public signing key might be leaked in either the ciphertext
C; containing it, or the NIZK 7; proving that it is the value in Cj; on the other hand, the user’s secret
signing key might be leaked by the signature (Si,S2). Here, we can use SGH as follows: in all of
these values, change h from being a generator of Gy to a random element of the whole group G; by
the assumption, we know that these changes will go undetected. Now, each of the values is simply
a random element of G, meaning the relevant information (i.e., the public or secret signing key) is
completely masked by h and no information whatsoever can be recovered about it (cryptographically,
we can say that the ciphertext/NIZK/signature values will be information-theoretically independent
from the key). As this holds regardless of whether or not someone is in possession of all the secret
signing keys, we get anonymity against full key exposure.

To argue unforgeability, we now rely on the collision resistance of the hash function and the un-
forgeability of the Waters signature, as well as the soundness of the NIZK. First, we note that for any
potential forgery (M*, R*), it cannot be the case that H(M™*, R*) = H(M, R) but (M*, R*) # (M, R)
(where (M, R) is some query the adversary made to its signing oracle), as this would violate the col-
lision resistance of H. We can now consider two additional types of forgeries: forgeries such that the
adversary encrypted either zero or more than one (i.e., not exactly one) of the public keys in R*, or
forgeries where it did in fact encrypt exactly one public key. The second type of forgery can easily
be discounted, as it would imply a forgery for the Waters signature as well, which we assume to be
unforgeable. For the first type of forgery, we can either argue that it breaks the soundness property
of the NIZK, or “embed” in the CRS a CDH challenge such that this first type of forgery will in fact
produce a solution for this challenge, thus breaking the assumption that CDH is hard.

8 Conclusions and Open Problems

In this paper, we have seen a broad overview of group and ring signature schemes, as well as some of
their potential applications. Looking at the previous work on group signatures, some open problems
are immediately raised. Although the work on group signatures is extensive and varied, there does not
yet seem to be any clear winner or scheme that far outstrips the rest. The “holy grail” of sorts would
be to combine the best qualities in each scheme and end up with an efficient scheme that supports
dynamic groups with a group manager and revocation, secure under mild assumptions and without
random oracles, and with short group signatures. Even less ambitious would be an efficient scheme
that supports some subset of these properties (e.g., a fully dynamic scheme with a group manager)
but meets the strongest definitions of security, as the only schemes we have seen that come close to
achieving this level of flexibility provide only CPA-style anonymity.

In terms of the different variations we saw, techniques for revocation seem to be lagging far behind
those for dynamic addition or for using group managers. This seems somewhat surprising, as the
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problem of getting rid of cheating members in an efficient manner seems to be just as important
as, if not more important than, adding users dynamically (and, as mentioned in Section 4, dynamic
addition can essentially be “faked” by simply creating too many keys at the start). An in-depth look
at revocation, perhaps even with some formal definitions that bind together the various approaches,
seems to be an important first step; it would additionally be interesting to see if there were a generic
construction (in the style of the group manager/dynamic addition generic construction of Bellare, Shi,
and Zhang [14]) that achieved some notion of revocation beyond the naive one of re-keying the whole
group.

For ring signatures, we again see that there is no clear “best” scheme out there. The most obvious
goal would therefore be to similarly try to create a “Franken-scheme” that again combines all the
best qualities of existing schemes and gives us an efficient scheme with minimal setup assumptions
(where ring members have published signing keys, but these keys do not even need to be for the same
signature scheme), secure using the strongest definitions under mild assumptions and without random
oracles, and with short signatures Unlike the ambitious analog for group signatures, such a scheme
actually seems highly unlikely, as any non-generic (and thus efficient) scheme would be hard-pressed to
deal with keys that have no specific form; still, even a scheme that required users to all use the same
signature scheme but had all the same properties would be a major breakthrough. Perhaps even more
important than finding the perfect scheme, finding a true real-world application for ring signatures,
analogous to the DAA and VSC applications discussed for group signatures in Section 1, would be
extremely valuable and would further motivate research in the field.
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