
An Exploration of Group and Ring Signatures

Sarah Meiklejohn
!
!
!
!
UC San Diego Research Exam

4 February 2011

1

A real-world problem

2

A real-world problem

2

A real-world problem

2

I need
to tell the
others!

A real-world problem

2

1. How can we communicate with the other cars?

I need
to tell the
others!

A real-world problem

2

1. How can we communicate with the other cars?

2. Can we make sure that some malicious outsider
can’t use the system to create traffic mayhem?

I need
to tell the
others!

Outline

3

Outline

3

Cryptographic background

Outline

3

Cryptographic background Group signatures

Outline

3

Cryptographic background Group signatures

Ring signatures

Outline

3

Cryptographic background Group signatures

Ring signatures Open problems

Outline

3

Cryptographic background Group signatures

Ring signatures Open problems

Cryptographic background

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

Digital signatures

4

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

Digital signatures

4

Signer Recipient

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

• Signer first runs an algorithm KeyGen to get signing keypair (pk,sk), ...

Digital signatures

4

Signer Recipient

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

• Signer first runs an algorithm KeyGen to get signing keypair (pk,sk), ...

Digital signatures

4

Signer Recipient

sk pk

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

• Signer first runs an algorithm KeyGen to get signing keypair (pk,sk), ...

• ...then he can compute σ = Sign(sk,m) for the desired message m, and ...

Digital signatures

4

Signer Recipient

sk pk

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

• Signer first runs an algorithm KeyGen to get signing keypair (pk,sk), ...

• ...then he can compute σ = Sign(sk,m) for the desired message m, and ...

Digital signatures

4

m

Signer Recipient

sk pk

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

• Signer first runs an algorithm KeyGen to get signing keypair (pk,sk), ...

• ...then he can compute σ = Sign(sk,m) for the desired message m, and ...

Digital signatures

4

m
σ

Signer Recipient

sk pk

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

• Signer first runs an algorithm KeyGen to get signing keypair (pk,sk), ...

• ...then he can compute σ = Sign(sk,m) for the desired message m, and ...

• Recipient can run Verify(pk,σ,m) to be sure σ was created by Signer

Digital signatures

4

m
σ

Signer Recipient

sk pk

• Signatures: Signer wants to send a message to Recipient, but wants to make
sure she knows the message really came from him

!

!

• We need signatures to be unforgeable, which means an adversary cannot
successfully pretend to be the Signer (without knowing sk)

Digital signatures

5

Signer Recipient

sk pk

Outline

6

Cryptographic background

Group signatures

Intuition and motivation

Formal definitions
Extensions and variants

Comparison of existing schemes

Ring signatures Open problems

Group signatures: why do we want them?

7

Group signatures: why do we want them?

7
Group 1

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

Group 1

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

Group 1

Group 1
Alice: pkA
Bob: pkB

Charlie: pkC
Dora: pkD

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

m, σ = Sign(skB,m)

Group 1

Group 1
Alice: pkA
Bob: pkB

Charlie: pkC
Dora: pkD

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

m, σ = Sign(skB,m)

Group 1

Group 1
Alice: pkA
Bob: pkB

Charlie: pkC
Dora: pkD

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

m, σ = Sign(skB,m)

Verify(pkB,σ,m) = 1...

Group 1

Group 1
Alice: pkA
Bob: pkB

Charlie: pkC
Dora: pkD

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

m, σ = Sign(skB,m)

Verify(pkB,σ,m) = 1...

so Bob
wrote the message!

Group 1

Group 1
Alice: pkA
Bob: pkB

Charlie: pkC
Dora: pkD

Group signatures: why do we want them?

7

pkA,skA pkB,skB

pkC,skC pkD,skD

m, σ = Sign(skB,m)

Verify(pkB,σ,m) = 1...

so Bob
And he wrote the message!

works for the CIA!

Group 1

Group 1
Alice: pkA
Bob: pkB

Charlie: pkC
Dora: pkD

Properties of group signatures: anonymity

8

Properties of group signatures: anonymity

8

Properties of group signatures: anonymity

8

skA skB

skC skD

Properties of group signatures: anonymity

8

skA skB

skC skD

pkCIA

Properties of group signatures: anonymity

8

skA skB

skC skD

pkCIA

Properties of group signatures: anonymity

8

skA skB

skC skD

m, σ = Sign(skB,m)

pkCIA

Properties of group signatures: anonymity

8

skA skB

skC skD

m, σ = Sign(skB,m)

Verify(pkCIA,σ,m) = 1...
so someone from the CIA

wrote the message.

pkCIA

Properties of group signatures: anonymity

8

skA skB

skC skD

m, σ = Sign(skB,m)

Verify(pkCIA,σ,m) = 1...
so someone from the CIA

wrote the message.

pkCIA

• Given Sign(skB,m) and Sign(skD,m), recipient can’t
tell the difference

!

• This should be true even if he knows who has
signed previous messages

Properties of group signatures: traceability

9

skA skB

skC skD

m, σ = Sign(skB,m)

pkCIA Verify(pkCIA,σ,m) = 1...
so someone from the CIA

wrote the message.

Properties of group signatures: traceability

9

skA skB

skC skD

m, σ = Sign(skB,m)

pkCIA Verify(pkCIA,σ,m) = 1...
so someone from the CIA

wrote the message.

Properties of group signatures: traceability

9

skA skB

skC skD

m, σ = Sign(skB,m)
m = “The CIA is the worst!”

pkCIA Verify(pkCIA,σ,m) = 1...
so someone from the CIA

wrote the message.

Properties of group signatures: traceability

9

skA skB

skC skD

m, σ = Sign(skB,m)
m = “The CIA is the worst!”

tk
pkCIA Verify(pkCIA,σ,m) = 1...

so someone from the CIA
wrote the message.

Properties of group signatures: traceability

9

skA skB

skC skD

m, σ = Sign(skB,m)
m = “The CIA is the worst!”

tk
pkCIA

• Want new algorithm Trace s.t. Trace(tk,σ) = Bob

!

• Whoever has access to tk breaks anonymity

Verify(pkCIA,σ,m) = 1...
so someone from the CIA

wrote the message.

Using group signatures with our real-world problem

10

Using group signatures with our real-world problem

10

1. How can we communicate with the other cars?

Using group signatures with our real-world problem

10

1. How can we communicate with the other cars?
• Use dedicated short-range transmitters, send the

message and a group signature (group = “all cars”)

Using group signatures with our real-world problem

10

1. How can we communicate with the other cars?
• Use dedicated short-range transmitters, send the

message and a group signature (group = “all cars”)
2. Can we make sure that some malicious outsider
can’t use the system to create traffic mayhem?

Using group signatures with our real-world problem

10

1. How can we communicate with the other cars?
• Use dedicated short-range transmitters, send the

message and a group signature (group = “all cars”)
2. Can we make sure that some malicious outsider
can’t use the system to create traffic mayhem?

• Yes, because group signatures are traceable

Using group signatures with our real-world problem

10

1. How can we communicate with the other cars?
• Use dedicated short-range transmitters, send the

message and a group signature (group = “all cars”)
2. Can we make sure that some malicious outsider
can’t use the system to create traffic mayhem?

• Yes, because group signatures are traceable
3. Can we do so without revealing private information?

Using group signatures with our real-world problem

10

1. How can we communicate with the other cars?
• Use dedicated short-range transmitters, send the

message and a group signature (group = “all cars”)
2. Can we make sure that some malicious outsider
can’t use the system to create traffic mayhem?

• Yes, because group signatures are traceable
3. Can we do so without revealing private information?

• Yes, because group signatures are anonymous

Group signatures: a formal characterization

• A group signature is a tuple of algorithms (KeyGen,Sign,Verify,Trace)

11

Group signatures: a formal characterization

• A group signature is a tuple of algorithms (KeyGen,Sign,Verify,Trace)

• KeyGen(1k,1n): outputs group public key pk, master secret key msk, and
signing keys for each user in the group {ski}i

11

Group signatures: a formal characterization

• A group signature is a tuple of algorithms (KeyGen,Sign,Verify,Trace)

• KeyGen(1k,1n): outputs group public key pk, master secret key msk, and
signing keys for each user in the group {ski}i

• Sign(ski,m): outputs signature σ on message m

11

Group signatures: a formal characterization

• A group signature is a tuple of algorithms (KeyGen,Sign,Verify,Trace)

• KeyGen(1k,1n): outputs group public key pk, master secret key msk, and
signing keys for each user in the group {ski}i

• Sign(ski,m): outputs signature σ on message m

• Verify(pk,σ,m): checks that σ is a valid signature on m formed by some
member of the group defined by pk (and outputs 1 if yes and 0 if no)

11

Group signatures: a formal characterization

• A group signature is a tuple of algorithms (KeyGen,Sign,Verify,Trace)

• KeyGen(1k,1n): outputs group public key pk, master secret key msk, and
signing keys for each user in the group {ski}i

• Sign(ski,m): outputs signature σ on message m

• Verify(pk,σ,m): checks that σ is a valid signature on m formed by some
member of the group defined by pk (and outputs 1 if yes and 0 if no)

• Trace(msk,σ,m): outputs either index i such that σ = Sign(ski,m) or ⊥ to
indicate failure (or that Verify(pk,σ,m) = 0)

11

Group signatures: a formal characterization

• A group signature is a tuple of algorithms (KeyGen,Sign,Verify,Trace)

• KeyGen(1k,1n): outputs group public key pk, master secret key msk, and
signing keys for each user in the group {ski}i

• Sign(ski,m): outputs signature σ on message m

• Verify(pk,σ,m): checks that σ is a valid signature on m formed by some
member of the group defined by pk (and outputs 1 if yes and 0 if no)

• Trace(msk,σ,m): outputs either index i such that σ = Sign(ski,m) or ⊥ to
indicate failure (or that Verify(pk,σ,m) = 0)

11

Anonymity: a more formal definition

12

Game G

Anonymity: a more formal definition

12

Game G

Adversary A

Anonymity: a more formal definition

12

Game G

Adversary A

Anonymity: a more formal definition

12

Phase 1: getting to see who signed which messages

Game G

Adversary A

Anonymity: a more formal definition

12

pk,msk,{ski}←KeyGen(1k,1n)

Phase 1: getting to see who signed which messages

Game G

Adversary A

Anonymity: a more formal definition

12

pk, {ski}

pk,msk,{ski}←KeyGen(1k,1n)

Phase 1: getting to see who signed which messages

Game G

Adversary A

Anonymity: a more formal definition

12

pk, {ski}

msk

Phase 1: getting to see who signed which messages

Game G

Adversary A

Anonymity: a more formal definition

12

pk, {ski}

msk

Phase 1: getting to see who signed which messages

Game G

Adversary A

Sign(skB,m)

Anonymity: a more formal definition

12

pk, {ski}

msk

Phase 1: getting to see who signed which messages

Game G

Adversary A

Sign(skB,m)
B

Anonymity: a more formal definition

12

Sign(ski,m)

pk, {ski}

msk

Phase 1: getting to see who signed which messages

Game G

Adversary A

Anonymity: a more formal definition

12

Sign(ski,m)
i

pk, {ski}

msk

Phase 1: getting to see who signed which messages

Game G

Adversary A

Anonymity: a more formal definition

13

pk, {ski}
Phase 2: picking identities and receiving a challenge

Anonymity: a more formal definition

13

pk, {ski}
Phase 2: picking identities and receiving a challenge

m,i0,i1

Anonymity: a more formal definition

13

pk, {ski}
Phase 2: picking identities and receiving a challenge

m,i0,i1

b←{0,1

Anonymity: a more formal definition

13

pk, {ski}
Phase 2: picking identities and receiving a challenge

m,i0,i1

b←{0,1

σ = Sign(skib,m)

Anonymity: a more formal definition

14

pk, {ski}, σ = Sign(skib,m)

b←{0,1

Anonymity: a more formal definition

14

Phase 3: getting to see who signed which messages (again)
pk, {ski}, σ = Sign(skib,m)

b←{0,1

Anonymity: a more formal definition

14

Phase 3: getting to see who signed which messages (again)
pk, {ski}, σ = Sign(skib,m)

b←{0,1

Anonymity: a more formal definition

14

Sign(ski,m) ≠ σ

Phase 3: getting to see who signed which messages (again)
pk, {ski}, σ = Sign(skib,m)

b←{0,1

Anonymity: a more formal definition

14

Sign(ski,m) ≠ σ

i

Phase 3: getting to see who signed which messages (again)
pk, {ski}, σ = Sign(skib,m)

b←{0,1

Anonymity: a more formal definition

15

b←{0,1

pk, {ski}, σ = Sign(skib,m)

Anonymity: a more formal definition

15

Phase 4: guessing the bit b

b←{0,1

pk, {ski}, σ = Sign(skib,m)

Anonymity: a more formal definition

15

Phase 4: guessing the bit b

b←{0,1

b′

pk, {ski}, σ = Sign(skib,m)

Anonymity: a more formal definition

15

Phase 4: guessing the bit b

b←{0,1

b′

pk, {ski}, σ = Sign(skib,m)

We say that A wins at G if
b = b′

Anonymity: a more formal definition

15

Phase 4: guessing the bit b

b←{0,1

b′

pk, {ski}, σ = Sign(skib,m)

We say that A wins at G if
b = b′

Say that scheme is
anonymous if the

probability that A wins at
G is very small (negligible)

Traceability: a more formal definition

16

Traceability: a more formal definition

16

Traceability: a more formal definition

16

Phase 1: getting to pick a corrupt coalition

Traceability: a more formal definition

16

Phase 1: getting to pick a corrupt coalition

Traceability: a more formal definition

16

Phase 1: getting to pick a corrupt coalition

Traceability: a more formal definition

16

Phase 1: getting to pick a corrupt coalition

C

Traceability: a more formal definition

16

pk,msk,{ski}←KeyGen(1k,1n)

Phase 1: getting to pick a corrupt coalition

C

Traceability: a more formal definition

16

pk, msk

pk,msk,{ski}←KeyGen(1k,1n)

Phase 1: getting to pick a corrupt coalition

C

Traceability: a more formal definition

16

pk, msk

{ski}

Phase 1: getting to pick a corrupt coalition

C

Traceability: a more formal definition

16

i,m

pk, msk

{ski}

Phase 1: getting to pick a corrupt coalition

C

Traceability: a more formal definition

16

i,m
Sign(ski,m)

pk, msk

{ski}

Phase 1: getting to pick a corrupt coalition

C

Traceability: a more formal definition

16

i,m
Sign(ski,m)

pk, msk

{ski}

Phase 1: getting to pick a corrupt coalition

C

i

Traceability: a more formal definition

16

i,m
Sign(ski,m)

pk, msk

{ski}

Phase 1: getting to pick a corrupt coalition

C ski

i

Traceability: a more formal definition

17

pk, msk

Phase 2: outputting a forgery

C

Traceability: a more formal definition

17

i,m

pk, msk

Phase 2: outputting a forgery

C

Traceability: a more formal definition

17

i,m
Sign(ski,m)

pk, msk

Phase 2: outputting a forgery

C

Traceability: a more formal definition

17

i,m
Sign(ski,m)

pk, msk

Phase 2: outputting a forgery

C

m,σ

Traceability: a more formal definition

17

i,m
Sign(ski,m)

pk, msk

Phase 2: outputting a forgery

C

m,σ
We say that A wins at G
if Verify(pk,σ,m) = 1 and:

(1) ∃i s.t.

Trace(msk,σ,m) = i, (2)
i∉C, and (3) A did not
query oracle on (i,m)

Traceability: a more formal definition

17

i,m
Sign(ski,m)

pk, msk

Phase 2: outputting a forgery

C

m,σ
We say that A wins at G
if Verify(pk,σ,m) = 1 and:

(1) ∃i s.t.

Trace(msk,σ,m) = i, (2)
i∉C, and (3) A did not
query oracle on (i,m)

Say that scheme is
traceable if the

probability that A wins
at G is very small (i.e.,

negligible)

Supporting dynamic groups

18

Back in real-world application: what if someone buys a car?

Supporting dynamic groups

18

Back in real-world application: what if someone buys a car?

So we can also support dynamic groups in which users join over time

• Replace KeyGen(1k,1n) with Setup(1k) (just outputs msk and pk)

• Add Join() ↔ Enroll(msk) protocol for group master to hand out keys as
members join

Supporting dynamic groups

18

Back in real-world application: what if someone buys a car?

So we can also support dynamic groups in which users join over time

• Replace KeyGen(1k,1n) with Setup(1k) (just outputs msk and pk)

• Add Join() ↔ Enroll(msk) protocol for group master to hand out keys as
members join

In practice, this approach could be emulated by a group master who simply
runs KeyGen(1k,1N) for some N >> n, stockpiles extra keys for later

Using group managers instead of masters

19

Now, we have group manager who doesn’t know your secret key

So Join() ↔ Enroll(msk) is a secure two-party computation at the end of which
the member learns their secret key and nothing else, and the group manager
learns nothing (except that the member successfully enrolled)

Using group managers instead of masters

19

Now, we have group manager who doesn’t know your secret key

So Join() ↔ Enroll(msk) is a secure two-party computation at the end of which
the member learns their secret key and nothing else, and the group manager
learns nothing (except that the member successfully enrolled)

Now it makes sense to split tracing capability, Setup(1k) will output msk used
for enrollment, pk used as group public key, and tk used as tracing key

Using group managers instead of masters

19

Now, we have group manager who doesn’t know your secret key

So Join() ↔ Enroll(msk) is a secure two-party computation at the end of which
the member learns their secret key and nothing else, and the group manager
learns nothing (except that the member successfully enrolled)

Now it makes sense to split tracing capability, Setup(1k) will output msk used
for enrollment, pk used as group public key, and tk used as tracing key

We can further talk about notions of non-frameability, in which corrupt coalition
might also involve the group manager

Supporting revocation

20

What if someone publishes my secret key on the internet?

Supporting revocation

20

What if someone publishes my secret key on the internet?

We need a method to revoke member privileges; allow certain members to
continue signing on behalf of the group but block others from doing so

Supporting revocation

20

What if someone publishes my secret key on the internet?

We need a method to revoke member privileges; allow certain members to
continue signing on behalf of the group but block others from doing so

This is often accomplished using a revocation list (RL)

• In verifier-local revocation, RL is sent to all verifiers, who then perform
some additional checks using Verify(pk,RL,σ,m)

• We could also have remaining signers update their keys to match some
updated public key using KeyUpdate(pk′,pk,RL,ski) → ski′

How do we evaluate group signature schemes?

• Efficiency: want really fast Sign and Verify

• Size of the signatures: want them to be independent of the group size

• Security: want highest level of security (CCA-style anonymity, full traceability)

• Flexibility: group manager? dynamic addition? revocation?

• Uses reasonable assumptions: random oracles? crazy weird-looking
assumptions?

21

Comparison of group signature schemes

22

Efficiency Size Security Flexibility Assumptions R.O.?
CS’97 CPA-A, PT manager, + DLP + strong RSA

BMW’03 C* CCA-A, FT master TDP

DKNS’04 CPA-A, FT manager, + Strong RSA

BBS’04 CPA-A, FT master, - q-SDH + DLIN

BSZ’05 C* CCA-A, FT master, + TDP

BW’06 lg(N) CPA-A, FT master, +/- CDH + SGH

Groth’06 C* CCA-A, FT manager, + DLIN

BW’07 CPA-A, FT master, +/- CDH + SGH + HSDH

Comparison of group signature schemes

22

Efficiency Size Security Flexibility Assumptions R.O.?
CS’97 CPA-A, PT manager, + DLP + strong RSA

BMW’03 C* CCA-A, FT master TDP

DKNS’04 CPA-A, FT manager, + Strong RSA

BBS’04 CPA-A, FT master, - q-SDH + DLIN

BSZ’05 C* CCA-A, FT master, + TDP

BW’06 lg(N) CPA-A, FT master, +/- CDH + SGH

Groth’06 C* CCA-A, FT manager, + DLIN

BW’07 CPA-A, FT master, +/- CDH + SGH + HSDH

• Holy grail: Efficient, CCA-A and FT secure, fully dynamic but short signatures,
secure under mild assumptions and without random oracles

!

• There’s no clear winner here!

Outline

23

Cryptographic background Group signatures

Ring signatures

Intuition and motivation

Formal definitions
Comparison of existing schemes

Open problems

Ring signatures: why do we want them?

24

Ring signatures: why do we want them?

24

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

Ring signatures: why do we want them?

24

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

Ring signatures: why do we want them?

24

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

Ring signatures: why do we want them?

24

skA

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

Ring signatures: why do we want them?

24

skA skB

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

Ring signatures: why do we want them?

24

skA skB

skC

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

Ring signatures: why do we want them?

24

skA skB

skDskC

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

Ring signatures: why do we want them?

24

skA skB

skDskC

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

3. Government picks a tracer

Ring signatures: why do we want them?

24

skA skB

skDskC

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

3. Government picks a tracer

4. Boss issues key for Senator #1

Ring signatures: why do we want them?

24

skA skB

skDskC

1. Bob contacts the Senate staff, requests that a
group be made (for all the senators)

2. Government picks a group master/manager

3. Government picks a tracer

4. Boss issues key for Senator #1

What if Bob wants

to protect his privacy

unconditionally?

Ring signatures: why do we want them?

25

Ring signatures: why do we want them?

25

pkA,skA pkB,skB

pkC,skC pkD,skD

Ring signatures: why do we want them?

25

pkA,skA pkB,skB

pkC,skC pkD,skD

Ring signatures: why do we want them?

25

m, σ = Sign(skB,R,m)
pkA,skA pkB,skB

pkC,skC pkD,skD

Ring signatures: why do we want them?

25

m, σ = Sign(skB,R,m)
pkA,skA pkB,skB

pkC,skC pkD,skD

R = “US senators”

{pkA,pkB,pkC,pkD,...}

Ring signatures: why do we want them?

25

m, σ = Sign(skB,R,m)

Verify(R,σ,m) = 1... so a
senator wrote the

message... but I don’t know
if the Senate sanctioned

pkA,skA pkB,skB

pkC,skC pkD,skD

R = “US senators”

{pkA,pkB,pkC,pkD,...}

Ring signatures: why do we want them?

25

m, σ = Sign(skB,R,m)

Verify(R,σ,m) = 1... so a
senator wrote the

message... but I don’t know
if the Senate sanctioned

pkA,skA pkB,skB

pkC,skC pkD,skD

R = “US senators”

{pkA,pkB,pkC,pkD,...}

 but I don’t know

if the Senate sanctioned it.

Ring signatures: a formal characterization

26

• A ring signature is a tuple of algorithms (KeyGen,Sign,Verify)

Ring signatures: a formal characterization

26

• A ring signature is a tuple of algorithms (KeyGen,Sign,Verify)

• KeyGen(1k): outputs public key pk and secret key sk

Ring signatures: a formal characterization

26

• A ring signature is a tuple of algorithms (KeyGen,Sign,Verify)

• KeyGen(1k): outputs public key pk and secret key sk

• Sign(ski,R,m): outputs signature σ on message m

Ring signatures: a formal characterization

26

• A ring signature is a tuple of algorithms (KeyGen,Sign,Verify)

• KeyGen(1k): outputs public key pk and secret key sk

• Sign(ski,R,m): outputs signature σ on message m

• Verify(R,σ,m): checks that σ is a valid signature on m formed by some
member of the ring defined by R (and outputs 1 if yes and 0 if no)

Anonymity against full key exposure:

Ring signature anonymity

27

Anonymity against full key exposure:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

Ring signature anonymity

27

Anonymity against full key exposure:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

• Phase 2: A gets to see S={pki}, access signing oracle Sign(.,.,.) that on
input (i,R,m) will output Sign(ski,R,m) (we could have R⊄S)

Ring signature anonymity

27

Anonymity against full key exposure:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

• Phase 2: A gets to see S={pki}, access signing oracle Sign(.,.,.) that on
input (i,R,m) will output Sign(ski,R,m) (we could have R⊄S)

• Phase 3: A outputs challenge (i0,i1,R,m) (again could have R⊄S) and gets
back Sign(skib,R,m) for some bit b it doesn’t know

Ring signature anonymity

27

Anonymity against full key exposure:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

• Phase 2: A gets to see S={pki}, access signing oracle Sign(.,.,.) that on
input (i,R,m) will output Sign(ski,R,m) (we could have R⊄S)

• Phase 3: A outputs challenge (i0,i1,R,m) (again could have R⊄S) and gets
back Sign(skib,R,m) for some bit b it doesn’t know

• Phase 4: A now gets to see all {ski}, eventually outputs a guess bit b′

Ring signature anonymity

27

Ring signature unforgeability

28

We obviously can’t consider traceability, since there is no tracer! So we instead
define unforgeability against coalitions and chosen-ring attacks:

Ring signature unforgeability

28

We obviously can’t consider traceability, since there is no tracer! So we instead
define unforgeability against coalitions and chosen-ring attacks:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

Ring signature unforgeability

28

We obviously can’t consider traceability, since there is no tracer! So we instead
define unforgeability against coalitions and chosen-ring attacks:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

• Phase 2: A gets to see S={pki} and has access to two oracles: one that, on
input (i,R,m) will output Sign(ski,R,m) (we could have R⊄S), and the other
that, on input i, will give A ski and consider User i “corrupted”

Ring signature unforgeability

28

We obviously can’t consider traceability, since there is no tracer! So we instead
define unforgeability against coalitions and chosen-ring attacks:

• Phase 1: KeyGen(1k) is run m times to get {pki,ski}

• Phase 2: A gets to see S={pki} and has access to two oracles: one that, on
input (i,R,m) will output Sign(ski,R,m) (we could have R⊄S), and the other
that, on input i, will give A ski and consider User i “corrupted”

• Phase 3: A at some point has to output a successful forgery (R*,σ*,m*) (i.e.,
such that Verify(R*,σ*,m*) = 1)

How do we evaluate ring signature schemes?

• Efficiency: want really fast Sign and Verify

• Size of the signatures: want them to be independent of the ring size

• Security: want highest level of security (full anonymity, full unforgeability)

• Flexibility: can users pick their own signature schemes?

• Uses reasonable assumptions: random oracles? crazy weird-looking
assumptions?

29

Comparison of ring signature schemes

30

Efficiency Size Security Flexibility Assumptions R.O.?
RST’01 linear UFA TDP

DKNS’04 C CFA Strong RSA

BKM’06 linear CFA, FU TDP

SW’07 linear CFA, FU CDH + SGH

Boyen’07 linear UFA, PU Poly-SDH

Comparison of ring signature schemes

30

Efficiency Size Security Flexibility Assumptions R.O.?
RST’01 linear UFA TDP

DKNS’04 C CFA Strong RSA

BKM’06 linear CFA, FU TDP

SW’07 linear CFA, FU CDH + SGH

Boyen’07 linear UFA, PU Poly-SDH

• Holy grail: Efficient, CFA and FU secure, flexible but short signatures, secure
under mild assumptions and without random oracles

!

• Again, there’s no clear winner!

Outline

31

Cryptographic background Group signatures

Ring signatures Open problems

Open problems for group signatures

• We already saw this “holy grail” of a scheme that is efficient, CCA-A and FT
secure, fully dynamic but short signatures, secure under mild assumptions
and without random oracles

32

Open problems for group signatures

• We already saw this “holy grail” of a scheme that is efficient, CCA-A and FT
secure, fully dynamic but short signatures, secure under mild assumptions
and without random oracles

• Also would be nice to see more applications in the real world (just DAA and
VSC for now)

32

Open problems for group signatures

• We already saw this “holy grail” of a scheme that is efficient, CCA-A and FT
secure, fully dynamic but short signatures, secure under mild assumptions
and without random oracles

• Also would be nice to see more applications in the real world (just DAA and
VSC for now)

• Generic construction for a fully dynamic scheme (i.e., one that supports
revocation)

32

Open problems for group signatures

• We already saw this “holy grail” of a scheme that is efficient, CCA-A and FT
secure, fully dynamic but short signatures, secure under mild assumptions
and without random oracles

• Also would be nice to see more applications in the real world (just DAA and
VSC for now)

• Generic construction for a fully dynamic scheme (i.e., one that supports
revocation)

• Better definitions and formalizations for revocation

32

Open problems for ring signatures

• Find a real-world application!!

33

Open problems for ring signatures

• Find a real-world application!!

• Again, achieve holy grail of scheme that is efficient, CFA and FU secure,
flexible but short signatures, secure under mild assumptions and without
random oracles

33

Open problems for ring signatures

• Find a real-world application!!

• Again, achieve holy grail of scheme that is efficient, CFA and FU secure,
flexible but short signatures, secure under mild assumptions and without
random oracles

• Figure out way to overcome this linear-sized signature barrier (ideally without
random oracles)

33

Open problems for ring signatures

• Find a real-world application!!

• Again, achieve holy grail of scheme that is efficient, CFA and FU secure,
flexible but short signatures, secure under mild assumptions and without
random oracles

• Figure out way to overcome this linear-sized signature barrier (ideally without
random oracles)

• Can we even achieve flexibility using a non-generic construction?

33

Open problems for ring signatures

• Find a real-world application!!

• Again, achieve holy grail of scheme that is efficient, CFA and FU secure,
flexible but short signatures, secure under mild assumptions and without
random oracles

• Figure out way to overcome this linear-sized signature barrier (ideally without
random oracles)

• Can we even achieve flexibility using a non-generic construction?

33

Any questions?

