Full version of an extended abstract published in Proceedings of PKC 2013, Springer-Verlag, 2013.
Available from the IACR Cryptology ePrint Archive as Report 2012/697.

Verifiable Elections That Scale for Free

Melissa Chase Markulf Kohlweiss Anna Lysyanskaya
Microsoft Research Redmond Microsoft Research Cambridge Brown University
melissac@microsoft.com markulf@microsoft.com anna@cs.brown.edu

Sarah Meiklejohn
UC San Diego

smeiklej@cs.ucsd.edu

December 14, 2012

Abstract

In order to guarantee a fair and transparent voting process, electronic voting schemes must
be verifiable. Most of the time, however, it is important that elections also be anonymous. The
notion of a wverifiable shuffle describes how to satisfy both properties at the same time: ballots
are submitted to a public bulletin board in encrypted form, verifiably shuffled by several mix
servers (thus guaranteeing anonymity), and then verifiably decrypted by an appropriate threshold
decryption mechanism. To guarantee transparency, the intermediate shuffles and decryption
results, together with proofs of their correctness, are posted on the bulletin board throughout
this process.

In this paper, we present a verifiable shuffle and threshold decryption scheme in which, for
security parameter k, L voters, M mix servers, and N decryption servers, the proof that the end
tally corresponds to the original encrypted ballots is only O(k(L + M + N)) bits long. Previ-
ous verifiable shuffle constructions had proofs of size O(kLM + kLN), which, for elections with
thousands of voters, mix servers, and decryption servers, meant that verifying an election on an
ordinary computer in a reasonable amount of time was out of the question.

The linchpin of each construction is a controlled-malleable proof (cm-NIZK), which allows each
server, in turn, to take a current set of ciphertexts and a proof that the computation done by other
servers has proceeded correctly so far. After shuffling or partially decrypting these ciphertexts,
the server can also update the proof of correctness, obtaining as a result a cumulative proof that
the computation is correct so far. In order to verify the end result, it is therefore sufficient to
verify just the proof produced by the last server.

1 Introduction

Electronic voting is one of the most compelling applications of cryptography [3]. An approach popular
in cryptographic literature is voting via a verifiable shuffle [25, 12, 18, 19, 21], which consists of L
voters Vi, ..., Vr, M mix servers Sy, ..., Sy (that are needed for the election to be anonymous) and
N threshold decryption servers D, ..., Dy (that are responsible for setting up the system and, in
the end, tallying the results). This approach requires a secure rerandomizable encryption scheme, in
which given the public key and a ciphertext ¢ for some message m, one can efficiently find a random
ciphertext ¢ for the same message m. Further, it requires that there be a threshold realization of
the cryptosystem [14, 27, 7]; i.e., the secret key can be split up into “shares” such that each server

melissac@microsoft.com
markulf@microsoft.com
anna@cs.brown.edu
smeiklej@cs.ucsd.edu

can use its share to partially decrypt a ciphertext, and the correct decryption can be obtained by
putting all the decryption shares together.

On a high level, once the decryption servers set up the system, a verifiable election works in the
following three phases [24, 4]: first, each voter V; submits to a public bulletin board a ciphertext
cgo) containing his or her encrypted ballot (in one variation [25, 26, 2], a trusted device submits
this ciphertext on the user’s behalf, so that the user does not know the randomness that went into
forming the encryption and thus is unable to demonstrate that he voted a certain way). Next, in
th(e bgﬂlot pr(oce)ssing phase, each mix server .S; in turn takes as input the set of encrypted ballots
(Clifl i—1)

yoenCp and randomizes and permutes (i.e., shuffles) them, posting to the public bulletin

board the ciphertexts (cgi)7 e ,Cg)) together with a zero-knowledge proof m; that this was done

correctly. Finally, in the tallying phase, on input (ch), e ,c(LM)), each decryption server D; publicly

outputs its decryption shares (dgl), e ,d(Ll)), together with a zero-knowledge proof 7} that this was
done correctly. The tally is now publicly computable by putting together the decryption shares for
each ciphertext.

How much data does an elections monitor have to process in order to verify the tally? Suppose
the monitor observes and verifies every step of both mixing and decrypting. This means verifying
that, in the ballot processing step, the mix servers correctly formed LM ciphertexts, and then that
the decryption servers correctly computed LN decryption shares. This multiplicative blow-up is
very unfortunate if these algorithms are used on a large scale; indeed, the very vision of universally
verifiable elections is that it should be easy for anyone, including the voters themselves, to participate
in guaranteeing both the anonymity and the correctness of the election. This means that it should
scale well as the number of mix and decryption servers grows. Can the work of the elections monitors
be reduced to O(k(L + M + N)) for security parameter k?

(Note that a verifiable shuffle has the attractive property that the set of ballots output in the
end is the same as the set of ballots that were encrypted and submitted to the bulletin board. In
particular, this allows for write-in candidates. If an election is simply binary, then an encrypted
tally can be computed if the underlying cryptosystem is additively homomorphic, and the resulting
ciphertext can be decrypted by the decryption servers.)

In a recent result [8], we (referred to ask CKLM in what follows to distinguish between our current
and prior work) proposed an idea for overcoming this blow-up as far as the ballot processing phase
was concerned. Before, all known aggregation results [1, 17] required complex interactions between
shuffling authorities and, for non-interactive verification, were based on the Fiat-Shamir [16] heuristic
and thus the random oracle model. The crucial observation of CKLM is that the monitor does not
need to verify every step of the shuffle: it is sufficient to just verify the last set of ciphertexts

(ch), .. .,C(LM)), as long as the proof my; produced by the last mix server Sj; attests to the fact

that these were correctly computed from the original ballots (cgo), .. .,c(LO)). Of course, the last
mix server Sps does not have the witness to this statement: it knows only the randomness it used
to randomize and shuffle the ciphertexts (ch_l), e c(LM_l)). To nevertheless allow 7 to suffice
for the entire shuffle, CKLM proposed a cryptographic tool, called controlled-malleable proofs (cm-
NIZKs), that allows each server S; to build on the proof m;_; that attests to the validity of the
ciphertexts (cgifl), e ,C(Lifl)) in order to obtain the proof m; attesting to the validity of (cgi), e ,C(Li));
importantly, cm-NIZKs allow 7; to be the same size as m;_1. As a result, the proof 7, suffices, and the
elections monitor need not verify any of the intermediate ciphertexts and proofs. CKLM then gave
a construction of cm-NIZKs by taking advantage of certain convenient properties of GS proofs [23].

The CKLM result came with a significant caveat that made it almost irrelevant in practice as
far as verifiable shuffles are concerned: they used permutation matrices to represent the statement

that there exists a permutation and a randomization that, when applied to (cgi_l), e ,C(Li_l)), result

in (ng)’ . ,c(LZ)). A permutation matrix is L x L, and so, by necessity, each proof m; was ©(L%k)
bits, for the security parameter k. The elections monitor would thus have to read ©(k(L?+ M)) bits
in order to verify the correctness of a shuffle, rather than ©(LMEk) bits when using, for example,
the verifiable shuffle of Groth and Lu [21], which does require the monitor to check intermediate
ciphertexts and proofs (hence the factor of M), but in which each proof is only of size ©(Lk) because
Groth and Lu represent a permutation as a list rather than a matrix. The CKLM solution is therefore
asymptotically superior only in the case where there are more mix servers than voters. In recent
follow-up work, CKLM extended their results [10] in a way that would allow permutations to be
represented as lists rather than matrices, but the extension does not apply for the scenario at hand
because it can only tolerate a constant number of mix servers. A natural question, therefore, is
the following: Is it possible to combine the CKLM techniques with the Groth-Lu techniques to
get a cm-NIZK for the correctness of a shuffle of size ©(k(L + M))? In this paper, we answer it
in the affirmative, obtaining a verifiable shuffle construction in which elections monitors only read
O(k(L + M)) bits to verify that the ballot processing step was done correctly.

Next, we focus on the application of em-NIZKs to the verification of threshold decryption (i.e.,
the tallying phase). In a naive approach, each decryption server D;, on input the ciphertexts
(ch),...,ch)), outputs the decryption shares (@,...,d%)) and the proofs (7T§i),...,7'f'g)) that
these decryption shares were correct. It is natural to ask whether, by taking turns processing these
ciphertexts and using cm-NIZK techniques, it is possible to achieve compact verifiable threshold
decryption, in which each server builds on the decryption share and proof of the previous server to
arrive, at the end, at the vector of decryptions (my,...,mp) for the original L ciphertexts and a sin-

gle vector of proofs (WEN), e W(LN)) that attests to the correct decryption and requires ©(k(L + N))
bits to verify. In this paper we answer this question in the affirmative as well. Rather than have each
decryption server produce its own decryption share and proof of correctness, we instead have the
decryption servers pass around a single cumulative share, along with a malleable proof of correctness.
When one authority receives the share and proof from the previous authority, it can therefore fold
in its own share, and update, or “maul”, the proof to obtain a new proof of correctness that takes
into account this new share.

To the best of our knowledge, the question of compact verifiable threshold decryption has not
been previously considered: the standard approach in threshold cryptography [14, 27, 7] is that, on
input the ciphertext and a share of the secret key, each decryption server computes a share of the
decryption and a proof that this share was computed correctly. These shares are then publicly output,
and the decryption can be computed; one can verify that the decryption is correct by verifying the
proofs. In a t-out-of-N threshold cryptosystem, ¢ + 1 correct shares are sufficient, while no malicious
coalition of t servers can break the security of the cryptosystem or cause incorrect decryption. An
advantage of this approach is that no communication need be required between servers; in the public
bulletin board model of electronic voting, however, this is not as important as compact verification.
Our approach, instead, has the decryption servers communicate via the public bulletin board. Each
server, in turn, takes as input the cumulative decryptions and their proofs of correctness so far (if
any), carries out its share of the decryption, and outputs the resulting cumulative decryption shares
and the resulting cumulative cm-NIZK proof of their correctness. The overall process results in the
correct decryption if no server fails to produce a valid proof.

2 Definitions and Notation

In this section, we present building blocks and definitions for our voting scheme. First, we recall
the malleable proof system due to CKLM [8] used by both our shuffle and threshold decryption

constructions. Then, we give the CKLM definition of a verifiable shuffle, which takes into account
that one proof is used to prove correctness of the entire shuffle. Next, we give a new definition,
analogous to the definition for the shuffle, of compact threshold encryption; here, the malleable
proof is used to prove correct partial decryption. Finally, in order to show that these two notions fit
together, we present a simple definition of a secure voting scheme.

2.1 Controlled malleable proofs (cm-NIZKs)

As defined by CKLM, a controlled malleable proof for a relation R and transformation class T
consists of four algorithms (CRSSetup, P, V, ZKEval): CRSSetup generates a common reference string
crs, the prover P takes as input the crs, the instance z, and a witness w for the truth of the statement
(z,w) € R and outputs a proof 7, and the verifier V takes as input the crs, an instance z, and a
proof 7 and either accepts or rejects the proof.

These three algorithms constitute a regular non-interactive proof (which we define formally in
Appendix A); such a proof is further called zero knowledge (NIZK) if there exists a PPT simulator
(S1,52) such that an adversary can’t distinguish between proofs formed by the prover and proofs
formed by the simulator, and a proof of knowledge (NIZKPoK) if there exists a PPT extractor
(E1, E9) that can produce a valid witness from any accepting proof.

The fourth algorithm, specific to malleable proof systems, is ZKEval, which, on input crs, a trans-
formation T' = (Tinst, Twit) (in some transformation class 7), an instance z, and a proof 7, outputs a
mauled proof 7’ for instance Tipst(x). The main definition of CKLM for controlled malleable proofs
then reconciles malleability with extractability (specifically, simulation-sound extractability [13, 20])
and requires that, for any instance x, if an adversary can produce a valid proof 7 that x € Ly then an
extractor can extract from 7 either a witness w such that (z,w) € R or a previously proved instance
2’ and transformation T' € T such that 2 = Tiys(2'). Intuitively this guarantees that any proof that
the adversary produces is either generated from scratch using a valid witness, or formed by applying
a transformation from the class 7 to an existing proof. They define this formally as follows:

Definition 2.1. [8] Let (CRSSetup, P, V,ZKEval) be a NIZKPoK system for an efficient relation R,
with a simulator (S1,S2) and an extractor (E1, Es). Let T be an allowable set of unary transforma-
tions for the relation R such that membership in T is efficiently testable. Let SE1 be an algorithm
that, on input 1%, outputs (crs, T, 7c) such that (crs, Ts) is distributed identically to the output of Si.
Let A be given, and consider the following game:

o Step 1. (crs, s, 7) < SE1(15).
o Step 2. (x,m) & AS2(ers,7s) (crs, 7).
e Step 3. (w,a',T) + Es(crs, e, x,).

The proof system satisfies controlled-malleable simulation-sound extractability (CM-SSE, for short)
with respect to T if for all PPT algorithms A there exists a negligible function v(-) such that the
probability (over the choices of SE1, A, and S2) that V(crs,x,m) = 1 and (z,7) ¢ Q (where Q
is the set of queried statements and their responses) but either (1) w # L and (z,w) ¢ R; (2)
(2/,T) # (L, 1) and either 2’ ¢ Q. (the set of queried instances), x # Tinst(x'), or T & T; or (3)
(w,2',T) = (L, L, 1) is at most v(k).

In addition, CKLM define the notion of strong derivation privacy for such proofs, in which
simulated proofs are indistinguishable from those formed via transformation. This is defined formally
as follows:

Definition 2.2. [8] For a malleable NIZK (CRSSetup,P,V,ZKEval) with an associated simulator
(S1,52), a given adversary A, and a bit b, let p{;‘(k) be the probability of the event that b’ = 0 in the
following game:

o Step 1. (Osim,Ts) & Sy (1),
o Step 2. (state,xq,m1,...,24,7q,T) & A(Osim, Ts)-

o Step 3. If V(0sim, xi,mi) = 0 for some i, (x1,...,24) is not in the domain of Tinst, or T ¢ T,
abort and output 1. Otherwise, form

. ﬁ S2(0'sima 7-57Tmst(x1a---axq)) Zfb: 0
ZKEvaI(aSim, T, {:L‘i, Wz}z) Zfb =1.

o Step 4. b & A(state,).

The proof system is strongly derivation private if for all PPT algorithms A there exists a negligible
function v(-) such that |pg(k) — pft(k)| < v(k).

Putting these two definitions together, if a proof system is CM-SSE, strongly derivation private,
and zero knowledge, then CKLM call it a cm-NIZK.

2.2 Compactly verifiable shuffles

In a compact verifiable shuffle, as defined by CKLM, a single (malleable) proof is used to prove
the correctness of an entire multi-step shuffle. A compact verifiable shuffle (Setup, ShuffleKg, Shuffle,
Verify) is parameterized by a re-randomizable encryption scheme (EncKg, Enc, Dec): Setup generates
parameters params; ShuffleKg outputs key pairs (pk;j, sk;) chosen from a hard relation R, that are
used by mix servers as a stamp of participation; Shuffle takes the original ciphertexts {c;, m;};, the
shuffled ciphertexts {c;}; and proof thus far (7, {pk;};), and a pair of keys (pk,,, skm) € Ry, and
outputs ({c]}:, 7', {pk;}; U{pk,,}); and Verify ensures that the shuffle has been performed correctly.

Before giving the compact verifiability definition, we recall the relation that is proved by the
shuffle. Instances are of the form (pk,{c;}i, {c;}i, {pk;};), where pk is a public key produced by
EncKg, {c;}; are ciphertexts produced by Enc through the voting process, {c;}; are the shuffled
ciphertexts, and {pk:j}j are the public keys for R,; that are used to identify the mix servers that
have participated in the shuffle thus far. Witnesses are of the form (¢, {R;}i, {sk;};), where ¢ is a
permutation, {R;}; are re-randomization factors, and {sk;}; are the secret keys for the mix servers.
Then the relation R is defined by

((pk, {ci}is {ciyir {k; 1), (0, {Ri}i, {sk;j}5)) € R
<{c}; = {ReRand(pk, o(c;); Ri) }4 AVj(pk;, skj) € Ryp.

Definition 2.3. [8] Let (Setup, ShuffleKg, Shuffle, Verify) be a wverifiable shuffle with respect to an
encryption scheme (EncKg, Enc,Dec). For an adversary A and a bit b € {0,1}, let p{)“(k) be the
probability that b’ = 0 in the following experiment:

e Step 1. params & Setup(1%), (pk, sk) & EncKg(params), and (T := {pk;}i,{ski}:) i
ShuffleKg(1F).

o Step 2. A gets params, pk, T, and access to the following two oracles: an initial shuffle
oracle that, on input ({c;,mi}i, pky) for pk, € T, outputs ({c;}i, 7, {pko}e) (if all the proofs of
knowledge m; verify), where m is a proof that the {c,}; constitute a valid shuffle of the {c;}i
performed by the user corresponding to pk, (i.e., the user who knows sky); and a shuffle oracle

that, on input ({c;, i }i, {c;}i, m,{Dk;}j, Pky,) for pk,, € T, outputs ({c] }i, 7', {pk;}; U{pk,,})-

5

e Step 3. Eventually, A outputs a tuple ({c;, mi}i, {c;}i, 7, T" = {pk;};).

e Step 4. If Verify(params, ({ci, mi}i, {c;}i, m, {pk;};)) = 1 and TNT' # () then continue; oth-
erwise simply abort and output L. If b = 0 give A {Dec(sk,c})}i, and if b = 1 then give A
©({Dec(sk, c;)}i), where ¢ is a random permutation.

e Step 5. A outputs a guess bit .

Then the shuffie is compactly verifiable if for all PPT algorithms A there exists a negligible function
v(-) such that |pg‘(k) — pit(k)| < v(k).

In addition to defining such a shuffle, CKLM also provide a generic construction using a hard
relation [11], a proof of knowledge, and a ¢cm-NIZK. Since we use this generic construction as a
template for our shuffle construction in Section 3, for completeness we provide an outline of it in
Appendix B.

2.3 Threshold encryption

As discussed in the introduction, the previous model for threshold encryption had each participant
generate a share and proof of correctness separately; the proofs of correctness would then be verified
separately, and the shares would all be combined at the end to produce the decrypted ciphertext. As
we now assume that the participants compute a single share and proof cumulatively (by computing
their own shares and then folding them into a single one that gets passed around and mauling the
accompanying proof appropriately), the model must be changed to reflect these differences.

With this in mind, we define a threshold encryption scheme to be a tuple of four algorithms
(EncKg, Enc, ShareDec, ShareVerify). The first, EncKg, generates a public encryption key pk, a verifi-
cation key vk that is used to check the validity of a share, and a set of secret key shares {sk;};. The
next, Enc, performs regular public-key encryption. The next, ShareDec, takes in a share sk; of the
secret key, a ciphertext ¢, and the decryption share/proof thus far. It first computes its own partial
decryption of ¢, and then folds this value into the cumulative share and outputs this new share; it
also mauls the proof to take into account that the value it has folded in is correct, and thus the new
share is the correct cumulative share for the participants thus far. Finally, ShareVerify takes in the
cumulative share and proof and verifies that the share is indeed correct. In this paper we focus on
n-out-of-n threshold decryption, in which all n parties must participate in the decryption; our results
should generalize to the t-out-of-n case as well, but we leave that as an open problem.

There are a number of desirable properties of a threshold encryption scheme. Functionally, we
require completeness, which says that if everyone is behaving honestly then the scheme works as
it should; i.e., the proofs of correctness verify and the ciphertexts decrypt correctly. Completeness
therefore requires that the threshold encryption scheme also yields a regular encryption scheme: the
Dec algorithm would take as input sk := {sk;}; and compute the cumulative shares; it would then
output the final cumulative share, which by completeness is equal to the message m. This essentially
means Dec(sk, c) = ShareDec(pk, vk, sk, c, (L, L, 1)).

In terms of security properties, we would first like our scheme to satisfy IND-CPA security; to
capture this, we can use the usual IND-CPA security experiment, in which an adversary A outputs
message (mg, my) such that |mg| = |mi| and is asked to guess which one of them a challenge
ciphertext ¢* encrypts. In addition to IND-CPA security, in the threshold setting we would also
like to guarantee that partial decryption shares do not reveal anything about the secret key shares,
even in the face of malicious participants (which also means that these malicious participants should
not be able to recover the message without a sufficient number of collaborators). To capture this
requirement, which we call share simulatability, we have the following definition:

Definition 2.4. Let (EncKg, Enc, ShareDec, ShareVerify) be a threshold encryption scheme with N
decryption participants. For an adversary A and a bit b, let p{)“(k‘) be the probability of the event that
b =0 in the following game:

o Step 1. {1,...,N} > S & A(1% N).
o Step 2. (pk, vk, {sk;};) & K(1¥ N, S).
o Step 3. b & ASP(pk, vk, {ski}ics),

where (K, SD) are defined as (EncKg, ShareDec) if b = 0 and the following algorithms if b = 1:

Procedure K(1%,n, S) Procedure SD(pk,T,Uk‘,{Sk‘j};.Vzl)(/i? ¢, s, 1,m)

(pk, vk, { sk} ;vzl) & EncKg(1%, N) m Dec({skj}é-v:l,c)
(vk,{sk;}jes,T) & SimKg(pk, vk’, N, S) (s, 7') & SimShareDec(pk, vk, T, (i,¢,s,1,), m)
output (pk, vk, {sk;}jes U {sk}}je[N]\S) output (', TU{i},)

Then the threshold encryption scheme is share simulatable if there exist PPT algorithms SimKg
and SimShareDec as used above such that for all PPT algorithms A there exists a negligible function
v(-) such that |pg‘(k) — pit(k)| < v(k).

As SimShareDec can therefore simulate the decryption process without access to the secret key,
we can argue that the shares produced by ShareDec do not reveal anything more than what an honest
decryption would reveal. Finally, we require that the proof of correctness is meaningful; i.e., that it
is hard for an adversary to produce a ciphertext ¢, a message m and an accepting proof 7 such that
m # Dec(sk, c). More formally:

Definition 2.5. Let (EncKg, Enc,ShareDec, ShareVerify) be a threshold encryption scheme with N
decryption participants. For an adversary A, define the following game:

o Step 1. (pk,vk,{sk;}i) & EncKg(1%, N).
e Step 2. (¢,m,m) <§ A(pk, vk, {sk;}i),

Then the threshold encryption scheme is sound if for all PPT algorithms A there exists a meg-
ligible function v(-) such that the probability that ShareVerify(pk, vk,c, (m,[N],7)) = 1 but m #
Dec({sk;}i,c) is at most v(k).

Putting everything together, we say that a threshold encryption scheme is secure if it satisfies
IND-CPA security, share simulatability, and soundness.

2.4 Compactly verifiable voting

In order for ballots to be cast and elections to be publicly verifiable, verifiable voting schemes use a
public space (in practice, an append-only authenticated storage system) commonly referred to as a
bulletin board. To describe an election, we break it up into several phases, which we describe here. To
ease exposition, we implicitly assume that all parties are informed and agree about when a particular
phase ends and the next one starts; e.g., by a particular symbol being written on the bulletin board.

e Setup. All authorities meet and jointly compute the public parameters of the election, while
also keeping some correlated secrets private. All public parameters are published on the bulletin
board.

e Voting. Each voter now uses these public parameters to encrypt his vote v and produce a
ballot. All ballots are written on the bulletin board.

e Ballot processing. Next, once all ballots have been cast, they are examined to weed out invalid
or duplicate ballots, and a set of mix authorities shuffle the remaining valid ballots.

e Tallying. Finally, a set of decryption authorities work together to decrypt the shuffied ballots.
After decryption, the actual count of the votes can be performed publicly.

This multi-phase model of elections is inspired by the work of Juels et al. [24] and Bernhard
et al. [4], although with some crucial modifications: unlike the former, we do not address coercion
resistance, and unlike the latter we consider both shuffling and threshold decryption.

As far as security is concerned, there are a wide variety of properties we might want a voting
scheme to satisfy; e.g., keeping users’ votes private, coercion resistance, end-to-end verifiability, etc.
In this paper, we focus mainly on this first property. As did Benaloh [3]|, we observe that we can
provide voter privacy only up to a certain point; for example, if the election consisted of only one
vote (or only one vote not controlled by some adversary), then voter privacy would be quite difficult
to enforce! We therefore follow Benaloh’s approach in requiring that votes can be private only in
elections in which different assignments of honest votes still lead to the same outcome. To capture
this property formally, we say that an election with N decryption authorities, L voters, and M mix

authorities satisfies basic vote privacy if, for a random bit b & {0,1}, no PPT adversary A can win
the following game with more than negligible advantage:

e Setup. First, a random bit b & {0,1} is chosen. Then, A picks the decryption authorities to cor-
rupt as [N] D S & A(1¥). Then, params & Setup(1%), ({pk;}i, {sk:}s) & ShuffleKg(params),

(pk, vk, {dk;};) & EncKg(params). At the end of the setup phase (params, pk, vk) are added
to the bulletin board, and A gets to see {dk;}jes and T := {pk,};.

e Voting. Proceeding adaptively, the adversary can either provide his own ballot B, or a vote
pair (vg,v1). For the former, the ballot is simply added to the bulletin board, while for the
latter he gets back the ballot By (i.e., the ballot corresponding to either vy or v;), which is
also added to the bulletin board. At the end of the phase (i.e., once there are L votes on the
board), A automatically loses if the election outcome differs between b = 0 and b = 1.

e Ballot processing. In this phase, in addition to access to the bulletin board, we give the
adversary access to two shuffle oracles: an initial shuffle oracle that, on input pk, for pk, € T,
writes ({c}}:, 7, {pk,}¢) on the bulletin board (if all the ballots on the bulletin board are valid),
where 7 is a proof that the {c,}; constitute a valid shuffle of the initial ballots { B;}; performed
by the user corresponding to pk, (i.e., the user who knows sky); and a regular shuffle oracle
that, on input ({c}};, 7, {pk;};, pk,) for pk, € T, adds both ({c}}:, 7, {pk;};) (if it cannot be
found there already) and the shuffled ({c]'}i, 7', {pk;}; U {pk,}) to the bulletin board. The
phase ends when the final shuffle ({c;};, 7, {pk;};) such that [{pk;};| = M and {pk;}; NT # 0
is written to the bulletin board, either by the shuffle oracle or by the adversary.

e Tallying. The adversary can ask for decryption shares for the shuffled {¢}}; through an oracle
that, on input (j, k, sg, I, ¢x), computes (si, I U{j}, ¢}) & ShareDec(pk, vk, dkj, c}., (sk, I, ¢r))
and posts both (sk, I, ¢x) (if it cannot be found there already; s = L and I = () denotes an
initial decryption) and the share (s}, U {j}, ¢},) with its new contribution. The phase ends
when, for every i, 1 < i < L, the final decryption share (s;, [N], ¢;) is written to the bulletin
board, either by the share decryption oracle or by the adversary.

e Winning the game. The adversary outputs ', and wins if o' = b.

While the above definition explicitly captures vote privacy, we could also attempt to extend it to
deal with verifiability by requiring that, if 7 and ¢; verify for all 7, then the expected outcome (based
on the v; and the decryption of ¢; in the adversary’s ballots) should match the real outcome. While
the soundness of the proofs used in our construction in Section 5 should guarantee that this holds,
we focus solely on privacy in this work and leave a formal proof of verifiability as an interesting open
problem.

3 A Compactly Verifiable Shuffle

In this section, we show how to achieve a compactly verifiable shuffle, as defined in Definition 2.3,
with parameter size O(L) and proof size O(L + M) by using the verifiable shuffle due to Groth and
Lu [21]. To do this, we use the following outline: first, we show that an adapted version of the
Groth-Lu construction is what CKLM call CM-friendly, meaning that a pairing-based cm-NIZK can
be constructed based on it. We then observe that, once we have a cm-NIZK, we can plug it into the
generic construction of CKLM to obtain a compactly verifiable shuffle.

In the definition of CM-friendliness as proposed by CKLM [8, Definition 4.3], they assigned the
property of CM-friendliness to a relation and transformation; in the case of a shuffle, this relation
and the set of transformations describe the permutation and randomization of ciphertexts, as we saw
formally in Section 2.2. We propose a useful weakening of this definition that shifts the assignation
of CM-friendliness from the relation to its specific instantiation using a sound proof system; as we
will see, this allows the definition to accomodate computationally sound proofs (i.e., arguments) as
well as the perfectly sound proofs that the previous definition required. We capture the previous
definition as perfect CM-friendliness.

Definition 3.1. For sets S and S’ of pairing product equations and a PPT setup algorithm params Ll
CRSSetup(1*) that specifies some group G, we say that (S, S’, CRSSetup) is a CM-friendly instanti-
ation for a relation R and transformation class T if the following siz properties hold:

1. Representable statements. Any instance and witness of R can be represented as a set of group
elements; i.e., there is an efficiently computable invertible function Fs(params,-) that maps
Lr — G% for some dg, and simlarly there is an efficiently computable invertible function
F(params,-) that maps Wg — G% for some dy, and Wg := {w | 3z : (z,w) € R}.

2. Representable transformations. Any transformation in T can be represented as a set of group
elements; i.e., there is an efficiently computable invertible function Fy(params,-) that maps
T — G% for some d.

3. Provable statements. Proving satisfaction of the set S constitutes a computationally sound
proof for the statement “(x,w) € R” using the above representations for x and w; i.e., for

params & CRSSetup(1¥) it holds that (1) if (z,w) € R then Fs(params,x) and F,(params,w)
satisfy S, and (2) for a PPT adversary A there exists a negligible function v(-) such that the
probability (over the randomness used in CRSSetup and A) that A can produce (X, W) such
that X and W satisfy S but (F; ' (params, X), F; ' (params, W)) ¢ R is at most v(k).

4. Provable transformations. Proving satisfaction of the set S’ constitutes a computationally
sound proof for the statement “Ti,s(x’) = x for T € T7 using the above representations
for x and T'; i.e., for params & CRSSetup(1¥) it holds that (1) if T € T and Tis(2') = x
then Fy(params,T), Fs(params,z), and Fs(params,x’) satisfy S’, and (2) for a PPT adver-
sary A there exists a negligible function v(-) such that the probability (over the randomness
used in CRSSetup and A) that A can produce (T',X,X") such that T', X, and X' satisfy S’

but F(params, T') ¢ T or F; Y(params, T')(F; ' (params, X')) # F. ' (params, X) is at most
v(k).

5. Transformable statements. For any T € T, the statement “(x,w) € R” (phrased using S as
above) can be transformed using some valid® set of transformations into the statement “(&,w0) €
R” where & = Tipsi(x) and w0 = Tyi(w).

6. Transformable transformations. For any T,T" € T, the statement “Ti,st(2’) = x for T € T”
(phrased using S’ as above) can be transformed using valid transformations into the statement
“Timst(z') = & for T € T” where T =T oT and & = T}, ,(x).

We say that (S,S’, CRSSetup) is a perfect CM-friendly instantiation if the probabilities in the
third and fourth properties are zero. A relation and transformation class (R,T) are (perfectly) CM-
friendly, if they have a (perfect) CM-friendly instantiation.

To instantiate the shuffle relation and transformations from Section 2.2, we combine the proof of
hard relation instances of CKLM and an adapted version of the Groth-Lu protocol for the permuta-
tion proof. We omit the proof that the {pkj }; are the public keys for R, in our exposition as it is
unchanged from the original CKLM shuffle.

Our adapted version Groth-Lu protocol is slightly less efficient than theirs and achieves a weaker
notion of zero knowledge (theirs is perfect whereas ours is computational) but a stronger notion
of soundness (theirs achieves the slightly non-standard notion of L.,-soundness, whereas ours is
computationally sound). These tradeoffs seem necessary, as it is not clear how to accomodate the
definition of CM-friendliness (or of a cm-NIZK or compact shuffle) to allow for Lc,-soundness. We
first recall the assumptions used by Groth and Lu (which they prove secure in the generic group
model):

Assumption 3.2 (Permutation Pairing assumption). [21] Given (p,G,Gr,e,g) and ({g; :== g" },

{vi := g"}) for random x4, ..., %, & F,, it is hard to compute elements ({a;}i,{bi}i) such that
[Liai = [Ligi, II;0i = [Livi, and e(ai,a;) = e(g,b;) for all i, 1 < i < n, but {a;}; is not a
permutation of {g;}i.

Assumption 3.3 (Simultaneous Pairing assumption). [21] Given (p,G,Gr,e,g) and ({g; :== g" }4,

{vi == g% }i) for random x1, ..., an & [F,,, it is hard to compute elements {j;}; that are not all equal
to 1 such that [1; e(pi, gi) =1 and T, e(pi,vi) = 1.

Following Groth and Lu, the instantiation we use for the shuffle encryption scheme is Boneh-
Boyen-Shacham (BBS) encryption [6], which uses a prime-order bilinear group setting (p, G, Gr, g, €)

with public keys of the form pk := (f,h) for f := ¢* and h := ¢® (for random «, 3 & F,) and
ciphertexts of the form ¢ := (u,v,w) for u := f", v := h*, and w := ¢""*m (for the message m and

r,s & F,). Using this, we can show how to satisfy CM-friendliness, starting with CRSSetup(1*):

e CRSSetup(1¥): First generate a prime-order bilinear group (p,G,Gr,e,g). To allow for a

shuffle over L ciphertexts, pick zi,...,zp & F, and set g; := g% and v; := ga’fz2 for all q.
Output crs 1= (p7 G7 Gt7 e 9q, {92}17 {FY’L}Z)

With this in place, we now describe how the six properties of CM-friendliness are met; in what follows,
we highlight the involvement of the permutation by using ¢(g;) in place of 9 (i) (and similarly for
other variables):

1Briefly, valid transformations are those that can be performed on a set of pairing product equations; for more
details, we refer the reader to the definition of CKLM [8, Definition 4.1].

10

1. Representable statements. Because we are using BBS encryption, instances will use pk = (f, h),
¢ = (ui,vi,w;), and ¢, = (uj,v;, w}). We represent the witness as follows: to represent ¢, we

use ({ai}i, {bi}i), where a; = ¢(gi) and bi = () for all 4, 1 < i < L, and to represent R; we
use (f"i, h%, g"i, g%) for random 7, s/ & Fp.

19 9%
2. Representable transformations. We represent T(, (g,1,) = (Tinst, Twit) in the same form as
witnesses; i.e., ({a;}s, {bi}:) for ¢ and (f"i, %, g"i, g%) for all R;.
3. Provable statements. To prove that, under the public key pk = (f,h), the set of ciphertexts
{(u},v},w})}; is a shuffle of {(u,,vl,wz)}Z usmg the permutatlon represented by ({a;}i, {bi}:)
and re-randomization represented by {(f"i, k%, g"i, g%)};, we use the set S of pairing product

equations defined as follows:

L L
He A5, U 1 He a;, f gz;uz) (2) He buul He bzyf ’Yuuz)
=1 =1
L L
He az; 1 He au guvz) (4) H b“”l)z H buh 727117,)
=1 =1
L L
He ag, W 1_[6 ai, g ’9 gzawz) (6) H buw H ’Yuwz)
i=1 =1

L L
(1) [las ' =1, (8) H it

1 1
(9) e(a;,a;) =e(g,b;) for all i, 1 <i < L, (10) e(f",g) = e(f,g") for all i,
(

hoi,g) = e(h, g%) for all i.

4. Provable transformations. To prove Tiygt(2') = x for T € T, we use the same equations from
the above set S. We must additionally prove that the transformation does not change pk or
{¢;i}i; to do this, we form an augmented set S’, which consists of all the equations in S as
well as equations to check that these values stay fixed. More formally, if we represent X as
(pk, { (u;, vi, w;i) }i, {(uf, v}, wh)}i) and X7 as (pk', {(Ui, Vi, W;) }i, {U;, Vi, W/};), then our extra
checks ensure that pk = pk’ and w; = U;, v; = V;, w; = W; for all i, 1 < i < L. We can then
run the checks in S using Tingt as the witness and Xp := (pk, {(u}, v}, w}))}i, {(U, V/,W])}i) as
the instance.

5. Transformable statements. CKLM already show how to permute variables by a permutation ¢
and multiply re-randomization factors into ciphertexts using valid transformations; we there-
fore assume these operations exist and are valid. To change the statement (r,w) € R into
(Tinst(x), Twit(w)) € R for X = (pk, {(us, vi, wi) }i, {(ug, vi, wi) }a), W = (({ai}; {bi}e), {Ri}i),
and T = (¢, {R.}:), we therefore begin by permuting the values {(u}, v}, w})}:, {a:}:, and {b;};
by ¢’; this operation affects Equations 1 through 9 in S. We then multiply the additional
randomness {R}}; into Equations 1 through 6, as well as Equations 10 and 11.

6. Transformable transformations. To change the statement Ting(2') = x into T} o Tinst(2) =

T} «(x), we leave the additional checks in S” (i.e., the checks that ensure that pk and {c¢;};

go unchanged) as they are. We then transform S as we did above using the values (¢/, {R’ })

specified in T}, so that we permute the values {(u}, v}, w})}i, {a;}i, and {b;}; by ¢’ and

multiply the additional randomness into Equations 1 through 6 and 10 and 11.

Theorem 3.4. If both the Permutation Pairing and Simultaneous Pairing assumptions hold, then
(S, 5", CRSSetup) as defined above is a CM-friendly instantiation for the shuffle relation R (defined
in Section 2.2) and the transformation class T consisting of all valid shuffies.

11

Proof. To show this, we take an adversary A that can break one of the properties in Definition 3.1
with non-negligible probability € and use it to construct an adversary B that can break either the
Permutation Pairing or Simultaneous Pairing assumptions with the same probability e.

To start, B will get as input params := (p,G,Gr,e,g,{g:}i,{7vi}i), where g; = ¢g* and ~; =
gx? for all 4. It can then pass params along to A. At some point, A will produce either a
pair (X, W) or a triple (77, X, X’). In the former case, the pair should be of the form (X :=
((f, h), {(ui, vi, w) Yo, {(uh, 05, W) Ye), W= (({as s, {bi}i), {(F75, h%i, g"iT%)},)). In order for A to win,
S must be satisfied by X and W and, for x := F; !(params, X) and w := F,;!(params, W), one of
three cases must hold: (1) x is not a valid (i.e., properly formatted) instance for R, (2) w is not a
valid witness for R, or (3) (xz,w) ¢ R; i.e., {(u},v},w})}; is not a permutation and re-randomization
of {(uj,vi, w;)}i. We deal with each of these cases in turn.

We start by observing that the first case, in which X is not properly formatted, is in fact
impossible. Looking at S, we know that it can be satisfied only by values in G; this means that in
order for X to satisfy S, it must consist of elements in G and we can parse it as such. If we look
first at the public key (f,h), we know that an honest public key is formed as f := ¢® and h := ¢°.
As g is a generator of the group, any pair of values in G will therefore represent a public key. If we
consider next the ciphertexts {(u;,v;,w;)}; and {(u}, v}, w})}:;, we notice that for BBS encryption,
once again any three values in G constitute a valid ciphertext. To see this, observe that for any values
U,V,W € G, they can be represented respectively as g, ¢*, and g* for u,v,w € F,. Then if we use
ri=ujo, s:=v/B,m:=w—(r+s),and M := g™ weget U=g"=g"*=f",V=g"=g% =h"
and W = g% = g™g""% = ¢"*M, so (U,V,W) is a valid encryption of M.

We next turn to the second case, in which W is not properly formatted. For the re-randomization
factors { F;, H;, Gy, Gs;i }i, we first observe that any two values F;, H; € G can be written respectively
as fTi and h%, as if we write F, := ¢fi and H; := ¢" for some f; and h;, we can set rl = fi/a
and s, := h;/B. If additionally Equations 10 and 11 are satisfied, then we know that G,; = g’”g
and G = g%, so the re-randomization values have the appropriate form. This leaves as the only
possibility the case in which the {a;}; and {b;}; do not actually represent a permutation . If this is
true then we observe that, because S is assumed to be satisfied, in particular Equations 7, 8, and 9
will all be satisfied. Given ({a;}i, {b;}:) that therefore satisfy these equations but do not represent a
valid permutation, B can just output this tuple itself to break the Permutation Pairing assumption.

Finally, we look at the third case. In this case, we know that A has produced {(u}, v}, w})}; and
{(u;, vi,w;)}; such that the former is not a shuffle of the latter; this means that, for the permutation
¢ and re-randomization factors { f”i, hsi, g’”g, gsg}i represented by W, there is an index 7 such that
cither (1) u} # p(u;) - 77, (2) v} # (v;) - %, or (3) w} # @(w;) - g"ig%. To argue that none of these
cases can in fact occur, we observe that because a; = ¢(g;), then for any set {z;}; it holds that

L L L

[Te(giz)=1] (o™ a;), 2;) = 1 elai, o(:)).

=1 =1 =1

This means that, in Equation 1, we can substitute in []; e(a;, ¢(u;)) for []; e(gi, u;) and divide both
sides by [, e(ai, u}) to get

L L

=TT ea, fr)e(ai p(ui) /uf) = T] e(ai, o(ui) f7 /uh).

=1 =1

12

Using a similar derivation for Equations 2 through 6, we can also see that

e(bia So(uz)frg/u;)a

T
L

s
Il
—

e(ai, p(vi)h* [0]),

"
L

s
I
—

e(bi, p(vi)h* [v]),

T
L

@
I
—

e(ai, p(w;)g g% Jw}), and

T
L

@
I
-

e(bis p(wi)g"ig™ /w)).

I
L

@
Il
—

Note that each of the winning cases for A correspond to the case in which the right-hand side of the
pairings are not equal to 1; e.g., if case 1 holds and u} # @(ug) f7 then go(ui)f"i/ué # 1. By applying
@~ !, this further implies that w;p ' (f7) /o~ (u}) # 1, so

I
=

@
Il
,_.

e(ai, @ (ui) 7 /) He gisuie” (f7) /¢ (uf)), and

e(bis p(ui) f7 uf) He%uzw () /e (),

I
=

N
Il
i

and similarly for the rest of the equations. In particular then, if case 1 holds then B can set
i = wp L (f75) /o~ (u) for all 4, 1 < i < L. Because case 1 holds, it must be the case that there
is at least one index 4 such that ¢~'(u}) # u;o~'(f"%) and thus p; # 1; this means that B has a
non-trivial set {p;}; such that [, e(g;, ;) = 1 and [[, e(y4, ;) = 1 and can thus output this set to
break the Simultaneous Pairing assumption. By analogous arguments, if case 2 holds then B can
output {v;o~ (k%) /' (v})}s, and if case 3 holds then it can output {wip~"(¢")~ (%) /o (w}) }:.
As B therefore succeeds in each of the cases that A does, we know that if A outputs such a tuple
(X, W) with non-negligible probability €, B can break either the Permutation Pairing or Simultaneous
Pairing assumption with the same non-negligible probability.

If instead A outputs (T, X', X), the argument here is very similar to the one above. If the pk and
{¢;}; values in X and X’ are not the same, then we know that S’ will not be satisfied. Otherwise, we
know by our outline above that S will be run on the remaining values. By all the same arguments
as above, we therefore know that either it really is the case that X (or rather, the value represented
by X) was obtained from X' by transformation using 7', or B can use these values to break either
the Permutation Pairing or Simultaneous Pairing assumption.

To conclude, the params that B gives to A are distributed identically to those that A expects,
so interactions with B are identical to honest interactions and A should succeed with the same non-
negligible probability €. As B succeeds whenever A does, we therefore know that B will succeed
with the same probability € in breaking either the Permutation Pairing or Simultaneous Pairing
assumption.]

Now that we have a CM-friendly instantiation for the shuffle relation, we can use the results
of CKLM to construct a cm-NIZK for this relation. As we slightly weakened the notion of CM-
friendliness, we argue in Appendix C that their results still carry through to produce a cm-NIZK;

13

we mention here that our proof is nearly identical, as the notion of soundness used for cm-NIZKs is
already computational.

Armed with our cm-NIZK, we now plug it into the generic verifiable shuffle construction of CKLM
(given in Appendix B), which they already proved secure. We can even use the same representation

of mix server keys as CKLM, which means pk; := g% and sk; := h* for «a; & F, and h := g? for

some (3 &). As for the size, looking at the construction above we see that the CRS must contain
the g; and +; elements for all i (and adding in the parameters for R,; adds only the single group
element h), which means the parameters are of size O(L). For the proofs, Equations 9, 10, and 11
in S are required for every i, so the size of the proof is also O(L). In addition, a constant number
of equations is required to check that (pk:j, sk;) € Ry for every value of j; if the number of mix
authorities is M, then this adds a proof component of size O(M) and thus our total proof size is
O(L + M).

4 Threshold Decryption

In this section, we provide our construction of a threshold encryption scheme that satisfies the notions
of security defined in Section 2.3; i.e., IND-CPA security, share simulatability, and soundness. We
provide first a construction using a generic malleable NIZK proof of knowledge (NIZKPoK), and
then describe how to instantiate this proof system concretely.

4.1 Our construction

In threshold decryption, the statement that each participant ¢ wants to prove is that the share s he
produces is a correct partial decryption of some ciphertext ¢. Formally, we represent instances as
x = (vke,c,s), where ¢ is a ciphertext, and s is the cumulative decryption share produced by the
combined user represented in vk., and witnesses as (¢, open), where ¢ is a secret token (in our case, a
bijection applied to the cumulative secret key) used to prove correctness of partial decryption, and
vk. = Com(t; open) for some commitment scheme Com. The statement we want to prove is then

((vke,c,s), (t, open)) € R < Isk. : vk, = Com(t; open) Nt = F(sk.) A s = Dec(ske,c), (1)

where F' is the bijection between cumulative secret keys and tokens.

Transformations for this relation correspond to a new set of users J folding in their shares. This
means we represent transformations as T' = (3, t, open), where Tingt (vke, ¢, s) := (vk.- Com(t; open), c,
s+ §) and Tywit(t, open) = (t - t, open - open); the transformation is considered allowable if § is a valid
share using the token #; i.e., § was computed using the secret key sk corresponding to t.

Our concrete instantiation uses BBS encryption [6], which is multiplicatively homomorphic; this is
why we multiply both the shares and the tokens to combine them. We also use a commitment scheme
Com and a strongly derivation-private malleable NIZK proof of knowledge (CRSSetup, P, V), ZKEval).
We will see later how to instantiate the NIZK concretely; for the commitment scheme (which we use
to commit to the two components of ¢) we can use the instantiation of Groth-Sahai commitments
under Decision Linear, which are almost identical to BBS encryption (and thus also multiplicatively
homomorphic). We thus usually keep these parameters implicit.

e EncKg(1%): Generate crs & CRSSetup(1*) and par & ComSetup(1¥); these are defined over

a shared bilinear group (p,G,Gr,e,g). Pick random «,f & Fp, set f := g% and h :=
¢”, and set pk = (f,h). Next, to allow N parties to participate in decryption, compute

ai,bi,...,an_1,bnN_1 & F,and ay := —1/a—=3Y;a; and by := —1/8—>", b;. Next, for all 7, set

14

t1; = g%, to; := g%, and form commitments A; & Com(t14; openy;) and B; & Com(ta;; openy;)
using random openings. Set vk’ := {(A;, B;)}; and sk; := (a;, b;, t1;, to;, openy;, openy;) for all
i, 1 <i <n. Output pk, vk := (crs, par, vk’), and {sk;};.

e Enc(pk,m): Parse pk = (f, h) and pick random r, s & Fp. Set u:= f", v:=h® w:= g""*m,
and output ¢ := (u,v,w).

o Dec({sk;}},,c): Parse ¢ = (u,v,w) and sk; = (ai,bi,t1i,t2, openy,;, openy;) for all i, and
compute a := Y ;a; and b := 3 ;b;. Output m := u® - v’w. (By definition, a = —1/a and
b= —1/p, so this is just standard BBS decryption with a reconstructed key.)

e ShareDec(pk, vk, skj, c, (s, I,m)): Parse sk; = (aj,bj,t1j,t25, openy;, openy;). 1If (s, I,7)

bjiw and 7 i

(L,L,1), then this is the initial decryption. Compute the share s; := u%v
P(CFS, (vkj7 G Sj)v (tlj? taj, opeNn ;4 0pen2j))7 and output (Sja {.7}7 7T>'
Otherwise, define vk, := [[,c; vk} and check that V(crs, (pk, vke, ¢, s),) = 1; abort and output

L if not. Otherwise continue and compute s; := u%ob and s = s - sj; then set T' :=

(sj, (t15,t25), (openy;, openy;)). Compute 7’ & ZKEval(crs, T, (vke, ¢, s),m), and output (s', I’ :=
Tu{j},«).
e ShareVerify(pk, vk, c, (s,I,m)): Parse vk = (crs, par, vk’) and output V(crs, (pk, [T;cs vk}, ¢,), 7).

As the security of both BBS encryption and our cm-NIZK come from Decision Linear, we obtain
the following theorem. (See Section 4.2 for our construction of cm-NIZKs for partial decryption.)

Theorem 4.1. If Decision Linear holds in G then we can instantiate the above construction to
obtain a secure threshold decryption scheme, as defined in Section 2.3.

To prove this, we must prove that four properties are satisfied: completeness, IND-CPA security,
soundness, and share simulatability. The first of these, completeness, follows directly by inspection;
similarly, for IND-CPA security, as we use BBS encryption, IND-CPA follows directly from their
result and holds under Decision Linear.

For the latter two, we prove them using the security of the commitment scheme and NIZK.
Interestingly, while the proof system is required to be malleable, strongly derivation private, and
zero knowledge, for soundness we require not the strong notion of CM-SSE for ¢m-NIZKs, but
instead regular extractability (i.e., we require the proof to be a proof of knowledge). Intuitively, the
reason for this is that in the soundness game the adversary is not provided with simulated proofs,
and we can therefore always expect to be able to extract a witness (rather than just a transformation
as we do with CM-SSE).

Lemma 4.2. If (CRSSetup, P, V, ZKEval) is extractable and Com is binding, the threshold encryption
scheme describe above is sound, as defined in Definition 2.5.

Proof. To prove this, we assume there exists an adversary A that can, with some non-negligible
probability €, produce a tuple (¢,m,m) such that V(crs, (pk’,Hie[N] vki,e,m),) = 1 but m #
Dec({ski}icn),¢), and use it to construct either an adversary B that breaks the extractability
of the proof with some non-negligible probability eg or an adversary C that breaks the binding
of the commitment with non-negligible probability e-. First, consider an alternate game G* in
which crs is chosen along with a trapdoor 7., and after the adversary outputs (¢, m,m), we run
w < Es(crs, e, (pk, [Liepn vk}, c,m), m) before evaluating the success condition. Note that since the
real and extraction parameters must be indistinguishable, the adversary’s success probability in this
game can differ only negligibly from e.

In this game, we observe that, if A produces (¢, m,), one of either two events must take place:
for the witness w < Fs(crs, 7, (pk,Hie[N] vk}, c,m),) extracted from m, either (z,w) ¢ R (if this

15

occurs and A succeeds we call this Eventy), or (x,w) € R (if this occurs and A succeeds we call this
Eventy). If Eventy occurs with probability ey and Event; occurs with probability e;, then we know
that € = eg+e1, and thus either eg or e is non-negligible; furthermore, we argue that B succeeds with
probability ey and C succeeds with probability e, meaning either B or C succeeds with non-negligible
probability.

If Eventy occurs with non-negligible probability, consider the following adversary B: it first
receives as input (crs,7.). It then runs the rest of the code for EncKg honestly, and gives the
resulting pk, vk = (crs, par,vk’), and {sk;}; to A. When A outputs (c,m,n), B outputs (z :=
(pk, [Lepw vk}, c,m),). Whenever Eventy takes place, we know that the proof 7 verifies (because A
succeeds), but for w <— FEy(crs, e, z,7), (z,w) ¢ R; this means that B wins the extractability game
whenever Eventy occurs. Note that this game is identical to G*, so Eventg occurs with probability
exactly eg.

If, on the other hand, Event; occurs with non-negligible probability, we construct an adversary C
that first receives as input par. It then generates crs along with the extraction trapdoor 7., and then
runs the rest of the code for EncKg honestly and gives the resulting pk, vk = (crs, par, vk’), and {sk;};
to A. It stores for itself all the open,; and open,; values, as well as the values of —1/a and —1/0.
When A outputs (¢, m,w), C computes w = ((t1,12), (openy, openy)) < Ea(crs, e, x := (pk, vk, :=
[Lepn vk}, ¢, m),) and outputs (vke, (t1,ta, openy, openy), (g~ g~ VB 11, openy;, [1; opens;)).

To see that this tuple successfully breaks binding whenever Event; occurs, we observe that for
A to win it must be the case that m # Dec({sk;};, c); furthermore, we are also assuming (because
Event; occurred) that (z,w) € R and thus, according to Equation 1 there exists a value sk. = (a,b)
such that (1) vk, = (Com(t1; open,), Com(tz; openy)), (2) t1 = F(a) = g%, to = F(b) = ¢°, and (3)
m = Dec(ske,c). Using the way we formed vk and the homomorphic property of the commitment,
we already know that

vke = [] (Com(g™; openy;), Com(g"; openy;)) = (Com(gl/a; [T oveny;), Com(g~ /% I 0pen2¢)> :
i€[N] i i

Combining this with property (1) of the relation, we see that Com(g~'/*; [], openy;) = Com(t1; open,;)
and Com(g~ /8 1, opens;) = Com(ta; opens). Using property (3) of the relation, we further see that
m = Dec((a,b), (u,v,w)) = uvPw; we also know, however, that if A won then m # Dec({sk;};, (u, v,
w)), meaning m # v~ Y%~ Pyw, and thus (g~ 1/, g~ /P # (¢, g*). We therefore have a commitment
vk, that opens to two values, (g%, ¢") and (g_l/"‘,g_l/ﬂ), that are not equal, and thus binding is
broken. Furthermore, as C succeeds whenever Event; occurs, it succeeds with probability eq. O

Lemma 4.3. If (CRSSetup, P,V,ZKEval) is zero knowledge and strongly derivation private, and
Com is hiding, the threshold encryption scheme described above is share simulatable, as defined in
Definition 2.4.

Proof. Assume without loss of generality that the adversary A corrupts N — 1 parties, and thus
|[[N]\ Sa| =1, and consider the following algorithms:

SimKg(pk, vk, N, S4): Let vk’ = (crs’,par’, vk"). Let i* := [N]\ S4, and generate (crs, 7s) & Sy (1%);
we require that crs uses the same bilinear group as crs’. For all i € Sy, pick random values
a;, b; & Fp, and set t1; := g% and ty; := g%. Next, choose random openings openy; and opensy;
for all 4, and set sk; := (a, b;, t1;, to;, openy;, openy;); additionally, form commitments vk; :=
(Com(t14; openy;, Com(ta;; opensy;)) for all i, and set vk;+ := (Com(0; openy;), Com(0; openy;)).
Define vk := (crs, par’, {vk;};) and 7 := (75, {sk; }ies,), and output (pk, vk, {sk;}ies,, 7)-

16

SimShareDec(pk, vk, 7, (i*, ¢, 5,1, m),m): Parse 7 = (7,5, {ski}ics,), ¢ = (u,v,w), and parse each

secret key as sk; = (a;, bi, t1i, t2i, openy;, openy;). Compute si+ := m/(w[];eg, u®bi).

/

If this is the initial decryption (i.e., s = 1), compute 7 & Sy (crs, T, (pk, vkii, c, 8;+)) and

output (s;=, {i*}, 7).

Otherwise, compute s := s - sp, vk := [[jejq+y vk;, and 7 & Sy(crs, 75, (pk, vkl ¢,).
Output (s', T U {i*}, 7).

With these algorithms in mind, we now argue that they satisfy the definition of share simulatability.
We do this through the following series of game transitions:

Game Gg. The honest share simulatability game for b = 0, in which EncKg and Enc are used.
Game G1. In Step 2 we switch to using a simulated CRS in pk, and in step 3 we switch to
using simulated proofs in the SD oracle only if it is the initial decryption. As this involves
switching directly from proofs produced by the honest prover P, under a CRS produced by the
honest setup CRSSetup, to proofs produced by the simulator Ss, under a CRS produced by 51,
it is indistinguishable from Gy by zero knowledge.

Game G». In Step 3 we switch to using simulated proofs in intermediate decryptions as well.
As this involves switching directly from proofs produced by ZKEval to ones produced by Sy, it
is indistinguishable from G by strong derivation privacy.

Game (3. In Step 3, we change the sole honest decryptor (corresponding to the one uncorrupted
index i*) to “fix” the share it outputs to be consistent with the message. More formally, it
outputs a share s = m/w [jes, u% % as described in SimShareDec above. To see that this
share is in fact identical to the one produced in Gy, observe that if m = Dec({sk;}X) then
by definition m = wu"Y*~1/8. From the way that a; and b; are computed, we know that
w[Len uv¥ = wu =8 = m, and thus u%* v = m/(w [Ljes, u%v®) and Go and G
are identical.

Game G4. In Step 2, we switch to choosing the a; and b; values as we do in SimKg rather than
in the honest EncKg; i.e., instead of choosing the first N — 1 elements at random and then
setting ay 1= —1/a — Z;V:_Ol aj and by == —1/8 — Z;V:_Ol b;, we instead choose a;, b; & IF,, for
i € Sy and then set a;« 1= —1/a =3 -, aj and bi» == —1/8 — > .cg, bj. Again, Games G3
and G4 are identical.

Game G5. In Step 2, we change from using vk;« = (Com(g%; openy;), Com(g%; opens;)) to using
vki+ = (Com(0; openy;), Com(0; openy;)). By the hiding property of the commitment scheme,
and the fact that the commitment openings were unused as all proofs are simulated, this is
indistinguishable from G4. Furthermore, this is now the honest share simulatability game for
b =1, in which SimKg and SimShareDec are used.

As each game was either indistinguishable from or identical to the preceding one, we can therefore
conclude that Gq is indistinguishable from G5, and thus an adversary cannot distinguish with more
than negligible probability between the game for b = 0 and for b = 1. O

4.2

A cm-NIZK for partial decryption

Given our concrete choices in the threshold encryption construction above, we must also show how to
construct a strongly derivation-private malleable NIZKPoK for the relation R defined in Equation 1.
In fact, to use the same framework as in Section 3, we instead do something strictly stronger and show
how to construct a cm-NIZK for this relation. We note that, for greater efficiency, one might instead
directly construct a malleable NIZKPoK from Groth-Sahai proofs. (For example, one could use the

17

following approach: include a commitment in the CRS and use Groth-Sahai to prove knowledge of
an opening to the commitment or a valid witness, in a manner similar to that of the original FLS
approach [15]. Intuitively, by the CKLM result on the malleability of Groth-Sahai OR proofs, the
resulting proof is malleable using the same approach as below. It is furthermore zero knowledge
and strongly derivation private because a simulator can use the opening to the commitment to form
all the proofs and Groth-Sahai proofs are witness indistinguishable, and a proof of knowledge by
the hiding property of the commitment scheme.) On the other hand, there may also be stronger
definitions of threshold decryption for which cm-NIZKs would be necessary; we leave examination of
such definitions as an open problem.

To now show that we can construct a cm-NIZK for this relation, we use the same outline as we
did in Section 3; first, we show that we can satisfy the properties of CM-friendliness. Then, we can
directly apply the results of CKLM to construct a cm-NIZK secure under the DLIN assumption.

o CRSSetup(1¥): Generate and output a prime-order bilinear group (p, G, G, e, g).

e Representable statements. Instances are of the form (vke,c,s), where vk. is a pair of com-
mitments (A, B); as seen above, all these values (as well as the ciphertext ¢ and decryption
share s) are group elements. Witnesses, t; = (g%, %) and open; = (openy;, opens;), are group
elements as well.

e Representable transformations. Transformations are represented by T' = (8, t open). As these
are of the same form as elements in instances/witnesses, we can represent them as group
elements.

e Provable statements. To prove that the share s is a correct partial decryption of the ciphertext
¢ = (u,v,w) performed using the cumulative secret key corresponding to the tokens t; and
ty, committed to in A and B with openings open; and open, respectively, we can use the
following set S (with Equations 2 and 3 expanded into the pairing product equations for
verifying commitments as in previous work):

(1) e(s,g) = e(u,t1)-e(v,ta) -e(w,g), (2) A= Com(t1;open,), and (3) B = Com(ta; opensy).

e Provable transformations. To prove Ty (2') = x for T € T, we must first prove that Ting
does not change ¢; if we represent x = (vk. = (A, B),c,s) and o’ = (vkl, = (A', B"),c,), this
means checking that ¢ = ¢’. We also want to check that for T = (3, ({1,t2), (openy, opens)),
it is the case that vk. incorporates the new commitments, ¢ incorporates the new tokens, s
incorporates the new share, and 5 is a valid share. This means that S’ consists of the following
equations:

(1) e(c,g) =e(c,g), (2) A= A"-Com(ty;openy), (3) B = B'-Com(ty;open,),
(4) e(s,g9) = e(s',9) -e(3,g), and (5) e(3,9) = e(u,t1) - e(v, t2).

e Transformable statements. To change the statement (z,w) € R into (Tinst(z), Twit(w)) € R, we
use the fact that CKLM already showed that multiplying in constants is a valid transformation;
i.e., is allowed for Groth-Sahai proofs. For T = (3, (f1,%2), (openy, opens)), we therefore add
e(3,g) to the left-hand side of Equation 1 in S and e(u,t;) - e(v, f2) to the right-hand side. We
similarly change the commitment equations by adding Com(f1; open;) and Com(ts; openy) to
the right-hand sides of Equations 2 and 3 respectively.

e Transformable transformations. To change the statement Ting(z') = = into T 4 © Tinst(2') =
T! (), we leave the equality check for ¢ (Equation 1 in S) alone. For T' = (3, (t1,12), (open,

openy)), we change the commitment equations by multiplying in Com(t1; open;) and Com(ts;

opensy) to both sides of Equations 2 and 3 respectively. Next, we multiply e(§,g) into both

18

sides of Equation 4, e(3, g) into the left-hand side of Equation 5, and e(u, ;) - e(v,2) into the
right-hand side of Equation 5.

If we use Groth-Sahai proofs for our sets S and S’ of pairing product equations, then we can
achieve perfect extractability. In particular, unlike in Section 3, our representations of instances,
witnesses, and transformations are now perfect; this means the entire proof system is perfectly
extractable and thus we achieve perfect CM-friendliness.

5 A Secure Voting Scheme

In this section, we bring together the components constructed in the previous two sections to con-
struct an electronic voting scheme from a compact verifiable shuffle (Setup, ShuffleKg, Shuffle, Verify),
a secure threshold decryption scheme (EncKg, Enc,ShareDec, ShareVerify), and a simulation-sound
extractable proof (CRSSetup, P, V).

e Setup. The voting authorities jointly compute the parameters params & Setu p(1¥) and thresh-
old keys (pk, vk, {dk;};) & EncKg(params). The mix authorities compute the shuffling keys

({pk;}i, {ski}i) & ShuffleKg(params), and the values params, pk, and vk are added to the
bulletin board.

e Voting. Each voter i forms ¢; & Enc(pk, v;) (using some randomness r;) and proves knowledge
of his vote by computing m; & P(crs, (pk,c), (vi,73)). The resulting ballot (¢;, ;) is added to
the bulletin board.

e Ballot processing. The mix authority with public key pk; picks the most recent valid shuf-

fle ({c}}i,m,{pk;};); e.g., the one with the most public keys, or the one that has used the

correct sequence of public keys (if an order has been imposed). It performs ({c/};,7') &

Shuffle(params, {c;, mi}i, {ci }i, ™, {pk;}j, (Pky,, ski)) and posts ({c] }i, 7', {pk;}; U {pk;}) to the
bulletin board. The ballot processing phase ends once there is a valid sequence of shuffle proofs
with sufficiently many mix authorities.

e Tallying. Let ({c}i, 7, {pk;};) be the completed shuffle. Each decryption authority looks
for the valid decryption shares (s;, I, ¢;) with the largest set I. The k-th decryption authority
performs (s}, TU{k}, ¢}) & ShareDec(pk, vk, dky, ci, (si, I, ¢;)) for all ¢ and posts (s}, TU{k}, ¢})
on the bulletin board.

Theorem 5.1. The wvoting scheme outlined above satisfies basic voter privacy, as defined in Sec-
tion 2.4.

To prove this, we proceed through a series of game transformations; formal proofs of their indis-
tinguishability can be found in Appendix D:

e Game Gg. The honest game with b = 0.

e Game (1. In the setup phase, we switch to using SimKg to generate the threshold keys, and in
the tallying phase we switch to using SimShareDec. This is indistinguishable from Gy by share
simulatability (Definition 2.4).

e Game Gy. In the tallying phase, we switch to giving m; := Dec(sk, p(¢;)) to SimShareDec
instead of m; := Dec(sk, ¢}) for all i, where ¢ is a random permutation. This is indistinguishable
from G by compact verifiability (Definition 2.3).

e Game Gj. In the voting phase, we switch to using simulated proofs of knowledge ;. This is
indistinguishable from G5 by zero knowledge.

19

e Game G4. In the tallying phase, we switch to using m; := Extract(7, p(m;)) for the adver-

sarial ballots (¢;, m;); i.e., the value extracted from the permuted proof of knowledge. This is
indistinguishable from G5 by simulation-sound extractability (Definition A.2).

e Game (5. In the tallying phase, we switch to using m; := ¢(v;9), where, for the i-th ballot,

the adversary queried (v;p,v;1) to its oracle. This is identical to G4 by the correctness of the
encryption scheme.

e Game Gg. In the tallying phase, we switch to using m; := ¢(v;1), where, for the i-th ballot,

the adversary queried (vip,v1;) to its oracle. This is identical to G5 because {vio}; and {v;1};
are guaranteed to lead to the same election result.

e Game G7. In the voting phase, we switch to using Enc(pk,v1) instead of Enc(pk,vo). This is

indistinguishable from Gg by IND-CPA security.

e Game Gg. In the tallying phase, we switch back to using m; := Dec(sk, ¢(¢;)) instead of vy; for

the ballots formed by query. This is again identical to G7 by the correctness of the encryption
scheme.

e Game Gy. In the tallying phase, we switch back to using m; := Dec(sk, ¢(c;)) instead of

m; = Extract(7e, ¢(m;)) for the adversarially-formed ballots. This is again indistinguishable
from (GGg by simulation-sound extractability.

e Game G1g. In the voting phase, we switch back to using honest proofs of knowledge; this is

again indistinguishable from Gg by zero knowledge.

e Game G7;. In the tallying phase, we switch back to using m; := Dec(sk, ¢}) instead of m; :=

Dec(sk, ¢(c;)). This is again indistinguishable from G by compact verifiability.

e Game G13. In the setup phase, we switch back to using EncKg and ShareDec instead of SimKg

and SimShareDec. This is again indistinguishable from G711 by share simulatability, and is now
the honest game for b = 1.

Acknowledgments

We thank Stephan Neumann for spurring our interest in the application of malleable proofs to
threshold decryption. Anna Lysyanskaya was supported by NSF grants 1012060, 0964379, 0831293,
and by a Sloan Foundation fellowship, and Sarah Meiklejohn was supported by a MURI grant
administered by the Air Force Office of Scientific Research.

References

1]

M. Abe. Universally verifiable mix-net with verification work indendent of the number of mix-servers. In Pro-
ceedings of EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages 437-447. Springer,
1998.

B. Adida and C. A. Neff. Efficient receipt-free ballot casting resistant to covert channels. Cryptology ePrint
Archive, Report 2008/207, 2008. http://eprint.iacr.org/2008/207.

J. D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.

D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and B. Warinschi. Adapting Helios for provable ballot privacy.
In V. Atluri and C. Diaz, editors, ESORICS, volume 6879 of Lecture Notes in Computer Science, pages 335-354.
Springer, 2011.

M. Blum, A. de Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge. SIAM Journal of Computing,
20(6):1084-1118, 1991.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of Crypto 2004, volume 3152 of
LNCS, pages 41-55. Springer-Verlag, 2004.

20

http://eprint.iacr.org/2008/207

[7] R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against adaptive chosen
ciphertext attack. In J. Stern, editor, EUROCRYPT ’99, volume 1592 of LNCS, pages 90-106. Springer Verlag,
1999.

[8] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications. In
Proceedings of Eurocrypt 2012, pages 281-300, 2012.

[9] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications. Cryptology
ePrint Archive, Report 2012/012, 2012. http://eprint.iacr.org/2012/012.

[10] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Succinct malleable NIZKs and an application to
compact shuffles. Cryptology ePrint Archive, Report 2012/506, 2012. http://eprint.iacr.org/2012/506.

[11] I. Damgard. On sigma protocols. http://www.daimi.au.dk/~ivan/Sigma.pdf.

[12] 1. Damgard, J. Groth, and G. Salomonsen. The theory and implementation of an electronic voting system. In
Proceedings of Secure Electronic Voting (SEC), pages 77-100, 2003.

[13] A. de Santis, G. di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero knowledge.
In Proceedings of Crypto 2001, volume 2139 of LNCS, pages 566—598. Springer-Verlag, 2001.

[14] Y. Desmedt and Y. Frankel. Threshold cryptography. In CRYPTO ’89, volume 435 of LNCS, pages 307-315.
Springer-Verlag, 1990.

[15] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs under general assumptions.
SIAM Journal of Computing, 29(1):1-28, 1999.

[16] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems. In
Proceedings of Crypto 1986, volume 263 of LNCS, pages 186—194. Springer-Verlag, 1986.

[17] J. Furukawa and H. Imai. An efficient aggregate shuffle argument scheme. In S. Dietrich and R. Dhamija, editors,
Financial Cryptography, volume 4886 of Lecture Notes in Computer Science, pages 260-274. Springer, 2007.

[18] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Proceedings of PKC 2003, volume 2567 of
LNCS, pages 145-160. Springer-Verlag, 2003.

[19] J. Groth. Non-interactive zero-knowledge arguments for voting. In ACNS, volume 3531 of LNCS, pages 467—482.
Springer-Verlag, 2005.

[20] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Proceedings
of Asiacrypt 2006, volume 4284 of LNCS, pages 444-459. Springer-Verlag, 2006.

[21] J. Groth and S. Lu. A non-interactive shuffle with pairing-based verifiability. In Proceedings of Asiacrypt 2007,
volume 4833 of LNCS, pages 51-67. Springer-Verlag, 2007.

[22] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero-knowledge for NP. In Proceedings of Eurocrypt
2006, volume 4004 of LNCS, pages 339—-358. Springer-Verlag, 2006.

[23] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Proceedings of Eurocrypt
2008, volume 4965 of LNCS, pages 415-432. Springer-Verlag, 2008.

[24] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In D. Chaum, M. Jakobsson,
R. L. Rivest, P. Y. A. Ryan, J. Benaloh, M. Kutylowski, and B. Adida, editors, Towards Trustworthy Elections,
volume 6000 of Lecture Notes in Computer Science, pages 37—63. Springer, 2010.

[25] C. A. Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings of ACM CCS 2001, pages
116-125. ACM press, Nov. 2001.

[26] D. Sandler, K. Derr, and D. S. Wallach. Votebox: A tamper-evident, verifiable electronic voting system. In
USENIX Security Symposium, pages 349-364, 2008.

[27] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. In Proceedings of
Eurocrypt 1998, volume 1403 of LNCS, pages 1-16. Springer-Verlag, 1998.

A Non-Interactive Proof Systems

Definition A.1. [8] A set of algorithms (CRSSetup, P, V)? constitute a non-interactive (NI) proof
system for an efficient relation R with associated language Ly if completeness and soundness below

2 Although we deal here with the standard definition of a non-interactive proof, using these three algorithms, we
mention that the definitions can be easily extended to consider the malleable proofs (CRSSetup, P, V), ZKEval) defined
in Section 2. In fact, the definitions can simply ignore the ZKEval algorithm and are thus unmodified.

21

http://eprint.iacr.org/2012/012
http://eprint.iacr.org/2012/506
http://www.daimi.au.dk/~ivan/Sigma.pdf

are satisfied. A NI proof system is extractable if, in addition, the extractability property below is
satisfied. A NI proof system is witness-indistinguishable (NIWI) if the witness-indistinguishability
property below is satisfied. An NI proof system is zero-knowledge (NIZK) if the zero-knowledge
property is satisfied. A NIZK proof system that is also extractable constitutes a non-interactive zero-
knowledge proof of knowledge (NIZKPoK) system. A NIWI proof system that is also extractable
constitutes a non-interactive witness-indistinguishable proof of knowledge (NIWIPoK) system.

1. Completeness [5]. For all crs & CRSSetup(1%) and (z,w) € R, V(crs,z,7) = 1 for all proofs
rd P(crs,z,w).

2. Soundness [5]. For all PPT A, and for crs & CRSSetup(1¥), the probability that A(crs) outputs
(z,7) such that x ¢ L but V(crs,x,m) = 1 is negligible. Perfect soundness is achieved when
this probability is 0.

3. Extractability [22]. There exists a PPT extractor E = (E1, E3) such that E1(1¥) outputs
(Oeaty Te), and Ea(0egt, Te, x, ™) outputs a value w such that (1) any PPT A given o cannot
distinguish between the honest CRS and one output by E1; i.e.,

Pricrs & CRSSetup(1F) : A(crs) = 1] & Pr{(0eq, 7o) < E1(1F) : A(oew) = 1], and

and (2) for all PPT A, the probability that A outputs (xz,m) such that V(0eg, z,m) = 1 but
R(z, Ex(0ext, Te, x, ™)) = 0 is negligible; i.e., there exists a negligible function v(-) such that

Pr(0esty 7o) & Br(1%); (2, 71) & A(0ear) : V(0eats 2, 7) = LA (2, Ea(0eat, Tor 2, 7)) & R] < v(k).

Perfect extractability is achieved if this probability is 0, and o4 ts distributed identically to crs.
4. Witness indistinguishability [15]. For all (x,wi,ws2) such that (z,w1),(x,w2) € R, any PPT
A cannot distinguish between proofs for wi and proofs for wo; i.e.,

Prlcrs & CRSSetup(1%); (2, w1, wy) & A(ers); & P(crs, z,wp) : A(m)), (z,w1) € R]

1A (z,wp
A (x,wp), (x,w1) € R].

~ Pr{crs & CRSSetup(1%); (2, w1, ws) & Alcrs);m & Plers,z,wy) : A(m) =1

Perfect witness indistinguishability is achieved when these two distributions are identical.

5. Zero knowledge [15]. There exists a polynomial-time simulator algorithm S = (S1, S2) such that
S1(1%) outputs (Osim, 7s), and So(Csim, Ts,) outputs a value ms such that for all (z,w) € R, a
PPT adversary A cannot distinguish between proofs produced by the prover and simulator; i.e.,
for all PPT adversaries A,

Prcrs & CRSSetup(1¥) : APC) (crs) = 1] & Pr{(csim, Ts) & S1(1F) : AS@sim o) (g) = 1],

where, on input (x,w), P outputs L if (x,w) ¢ R and 7 & P(crs,x,w) otherwise, and S also

outputs L if (z,w) ¢ R, and returns & S2(0 sim, Ts,) otherwise. Perfect zero knowledge is
achieved if for all (x,w) € R, these distributions are identical.

Additionally, we recall the notion of simulation-sound extractability, which combines extractabil-
ity and zero knowledge.

Definition A.2. [20] Let (CRSSetup,P,V) be a NIZKPoK system for an efficient relation R with
a simulator (S1,S2) and an extractor (E1, E3), and let SE1 be an algorithm that outputs (crs, s, Te)
such that these first two values are distributed identically to the (crs, Ts) output by S1. Then consider
the following game:

22

o Step 1. (crs,Ts,Te) & SE(1%).

o Step 2. (x,7) ﬁASZ(CrSﬂ—S")(CrS,Te)-
o Step 3. w < Es(crs, 7o, x,m).

Then the NIZKPoK satisfies simulation-sound extractability if for all PPT algorithms A there ex-
ists a negligible function v(-) such that the probability (over the choices of SE1, A, and S3) that
V(ers,z,m) =1 but (z,7) ¢ Q (where Q is the set of Sa queries and their responses) and (x,w) ¢ R
is at most v(k).

B The Shuffle Construction of CKLM

Recall from Section 2.2 that a compactly verifiable shuffle is a tuple (Setup, ShuffleKg, Shuffle, Verify),
defined with respect to an re-randomizable encryption scheme (EncKg, Enc, Dec, ReRand). The con-
struction given by CKLM of such a shuffle combines a hard relation with generator G, a proof of
knowledge (CRSSetup, P, V), and a cm-NIZK (CRSSetup’, P’, V'):

e Setup(1¥): Generate crs & CRSSetup(1¥) and crs’ & CRSSetup/(1%). Output params :=
(crs,crs’).

o ShuffleKg(params): For each mix authority i, generate (pk;, sk;) & G(1%). Output ({pk;}s,

e Enc(params, pk,{m;}?_,). Parse params = (crs,crs’). Each user i now picks randomness r;
and encrypts his message m; as ¢; := Enc(pk, m;;r;); he also forms a proof of knowledge
T & P(crs, (pk,ci), (m4, 7). Aggregated across all users, this produces {(¢;, m;)} .

e Shuffle(params, {c;, m;}i, {c;}i, ™, {pk;};): First check if this is the initial shuffle by checking if
7= 1 and {c}}; = {pk;}; = 0. If it is, check that V(crs,¢;,m;) = 1 for all 4, 1 <4 < n; if this
check fails for some ¢, abort and output L. Otherwise, pick a random permutation ¢ & Sn

and compute ¢, l ReRand(pk, ¢(c;)) for all i. Next, form a proof 7 for the shuffle performed
by the user in possession of the secret key corresponding to pk; (i.e., the initial mix server).

Output ({ci, mi}i, {cj}i, ™, {pk1})-
Otherwise, if this is not the initial mix server, check that V'(crs’, (pk, ({ci}i, {c} }i, {pk;}5), ™) =
1; if this check fails abort and output L. Otherwise, continue by choosing a random per-
mutation ¢ & S, and randomness {R;}; for the encryption scheme, and computing ¢ &
ReRand(pk, ¢(c}); R;) for all i. If the public key for the current mix server is pk; define
T = Tl i} (shrphe).) and compute 7/ & ZKEval(crs', T, (pk, ({c:}i, {¢}}i, {pk;};), 7). Out-
put ({ci}i, {¢'}i, 7', {pk;}; U{pky}).

o Verify(params, {c;,m;}, {c;}, 7, {pk;}): Check that V(crs,c;,m;) = 1 for all i, 1 <4 < n; if this
fails for any 4 abort and return 0. Otherwise, check that V'(crs', ({c;}, {ci}, {pk;}), 7) = 1;
again, if this fails output 0 and otherwise output 1.

As proved by CKLM, this construction constitutes a secure compactly verifiable shuffle (as defined
in Definition 2.3).

C Constructing a cm-NIZK Using CM-Friendliness

In Section 3, we saw our modified definition for CM-friendliness that weakened the CKLM definition
to allow for computationally sound proofs in addition to ones that are perfectly sound. As we would

23

like to argue that, for a relation R and transformation class T, any instantiation (.5, S’, CRSSetup)
meeting our definition still allows us to construct a cm-NIZK, we prove here a modified version of
the corresponding theorem from the full CKLM paper [9, Theorem 4.1]:

Theorem C.1. Given a derivation-private NIWIPoK (CRSSetuppp,Ppp, Vop, ZKEvalpp) that is mal-
leable for the set of all valid transformations and a structure-preserving signature scheme (KeyGen,

Sign, Verify), if (S, S’, CRSSetup) is a CM-friendly instantiation for some relation and transformation
class (R, T) then we can construct a em-NIZK for (R, T).

Proof. Let R’ be the relation
{((z,vk), (w,2',T,0)) | (x,w) € R Vv (Verify(vk,0,2") = 1Az = Tist(2') AT € T)}

needed by the generic construction of CKLM; our goal is to embed this relation into a set of pairing
product equations using the underlying sets S and S’. By the definition of S and S’ and CM-
friendliness, we know that (x,w) € R implies that Fs(params,x) and F,,(params,w) satisfy S (for
params & CRSSetup(1%)), and if values X and W satisfy S then with overwhelming probability
(F;Y(params, X), F; Y (params, W)) € R. We similarly have that if + = Ti(2') for T € T then
Fs(params,x), Fs(params,z'), and Fy(params,T) satisfy S’, and that the reverse direction is also
true with overwhelming probability. Finally, by the definition of a structure preserving signature,
there exists a set of pairing product equations S, such that Verify(vk,o,2’) = 1 if and only if vk,
Fs(params,z’), and o satisfy S,.

Looking at these three equations, we observe that S, and S’ share the variables in F(params,z');
without loss of generality, we assume that these are the first n variables in each. We then set

Tpp := Or(S(Fs(params, x)), And(S,(vk), S'(Fs(params, z));n)) (2)
and

wpp 1= Ory, (S(Fs(params, x)), And(S,(vk), S’ (Fs(params, x));n), Fyy(params, w),
Andy, ((Fs(params, '), o), (Fs(params, 2'), Fy(params, T), o), n)). (3)

Using such an instance and witness, it is straightforward to check that if ((x, vk), (w,2',T,0)) € R’
then (zpp, wpp) € Rpp, Where Ry consists of all statements than can be proved using pairing product
equations. We can therefore implement a NIWIPoK for R’ as follows:

e CRSSetup(1¥): Compute crsp, & CRSSetuppp(lk) and params & CRSSetup(1¥) and output
crs := (crspp, params).

e P(crs,z, (w,2',T,0)): Let zpp and wp, be as defined in Equations 2 and 3 respectively, and
return 7 < Pop(Crspps Tpp, Wep)-

e V(crs,x,m): Again, let z,, be as defined in Equation 2, and output Vpp(crspp, Zpp, 7).

e ZKEval(crs, T, xz,m): Let Ts := s(T) and T} := Lift(id, ¢(T")), where s(T") and ¢(T") are the respec-
tive transformations on statements and transformations defined by CM-friendliness. Output
ZKEvalyp(crs, LR(T}, T3),).

In their Theorems B.1 and B.3 [9], CKLM show that LR(Ts, T}) is a valid transformation that turns
an instance Tpp into an instance

Ty i= Or(s(T)(S(Fs(params, x))), And(S, (vk), t(T) (S’ (Fs(params, x));n))).

24

The properties of Or and And further guarantee that this xj,, € Lpp if there exists a tuple (w, 2, 7", o)
such that ((Tinst(z), vk), (w,2',T",0)) € R’; in other words, for every T := (Tinst, Twit) € T, LR(Ts, T})
realizes a transformation 7" € 7.

Putting everything together, we see that the proof system described above is indeed a derivation-
private NIWIPoK for the relation R/, malleable with respect to the class 7’. The theorem then
follows by the proofs of security (Theorems 3.2, 3.3, and 3.4) that CKLM provide for their generic
cm-NIZK construction. O

D

A Proof of Voting Security (Theorem 5.1)

We follow the proof outline described in Section 5, which we replicate here for convenience:

Game Gg. The honest game with b = 0.

Game G1. In the setup phase, we switch to using SimKg to generate the threshold keys, and in
the tallying phase we switch to using SimShareDec. This is indistinguishable from Gy by share
simulatability (Definition 2.4).

Game Gj. In the tallying phase, we switch to giving m; := Dec(sk, p(c;)) to SimShareDec
instead of m; := Dec(sk, ¢}) for all i, where ¢ is a random permutation. This is indistinguishable
from G by compact verifiability (Definition 2.3).

Game G3. In the voting phase, we switch to using simulated proofs of knowledge ;. This is
indistinguishable from G2 by zero knowledge.

Game G4. In the tallying phase, we switch to using m; := Extract(7e, p(m;)) for the adver-
sarial ballots (¢;,m;); i.e., the value extracted from the permuted proof of knowledge. This is
indistinguishable from G5 by simulation-sound extractability (Definition A.2).

Game Gj5. In the tallying phase, we switch to using m; := ¢(vip), where, for the i-th ballot,
the adversary queried (v;p,v;1) to its oracle. This is identical to G4 by the correctness of the
encryption scheme.

Game Gg. In the tallying phase, we switch to using m; := ¢(v;1), where, for the i-th ballot,
the adversary queried (vjo,v1;) to its oracle. This is identical to G5 because {vjo}; and {vi1 };
are guaranteed to lead to the same election result.

Game G7. In the voting phase, we switch to using Enc(pk,v1) instead of Enc(pk,vg). This is
indistinguishable from Gg by IND-CPA security.

Game Gg. In the tallying phase, we switch back to using m; := Dec(sk, ¢(c;)) instead of vy, for
the ballots formed by query. This is again identical to GGy by the correctness of the encryption
scheme.

Game Gg. In the tallying phase, we switch back to using m; := Dec(sk,p(c;)) instead of
m; := Extract(7e, p(m;)) for the adversarially-formed ballots. This is again indistinguishable
from (g by simulation-sound extractability.

Game G1g. In the voting phase, we switch back to using honest proofs of knowledge; this is
again indistinguishable from Gg by zero knowledge.

Game G1;. In the tallying phase, we switch back to using m; := Dec(sk, ¢}) instead of m; :=
Dec(sk, ¢(c;)). This is again indistinguishable from G by compact verifiability.

Game G12. In the setup phase, we switch back to using EncKg and ShareDec instead of SimKg
and SimShareDec. This is again indistinguishable from G711 by share simulatability, and is now
the honest game for b = 1.

So, we first switch in Game G to using SimKg and SimShareDec instead of EncKg and ShareDec,
and argue that this is indistinguishable by the security of the threshold decryption.

25

Lemma D.1. If the threshold encryption scheme (EncKg, Enc, ShareDec, ShareVerify) satisfies share
simulatability, as defined in Definition 2.4, then Game G1 is indistinguishable from Gjy.

Proof. To prove this, we show that if there exists an adversary A that distinguishes between Gy and
(1 with some non-negligible advantage € then we can use it to construct an adversary B that wins
at the threshold security game with the same advantage.

To start, A specifies the sets S and T of mix and decryption authorities it wants to corrupt. B
then specifies the same set S in its own game and gets (pk, vk, {sk;}ics) in return. It then generates
all the parameters for the shuffle itself, and gives all the appropriate values to A. During the voting
and ballot processing phases, B behaves completely honestly (by encrypting vy and performing the
honest shuffle). During the tallying phase, if A queries the ShareDec oracle on input (j, k, sk, I, ¢r),
B sends the query (j, ¢k, sk, I, ¢r) to its SD oracle and publishes the resulting (s', T U {j}, ") to the
bulletin board. Finally, if A guesses G then B guesses b = 0, and if B guesses G1 then B guesses
b=1.

To see that interactions with B are indistinguishable from those that A expects, we observe that
the only phase in which B is not behaving completely honestly is the tallying phase. Here, if the keys
B gave to A were generated by EncKg and its S'D oracle is using ShareDec then B is executing the
exact code of Gy, while if the keys were generated by SimKg and the SD oracle is using SimShareDec,
it is executing the exact code of G1. A will therefore have the same advantage ¢ when interacting
with B; as B furthermore guesses correctly whenever A does, B will succeed at the threshold security
game with the same advantage. O

Next, we switch in Game G to using m; := Dec(sk, p(¢;)) in the share decryption oracle instead
of m; := Dec(sk, c;), where ¢ is a random permutation.

Lemma D.2. If the shuffle (Setup, ShuffleKg, Shuffle, Verify) is compactly verifiable, as defined in
Definition 2.3, then Game G is indistinguishable from G1.

Proof. To prove this, we show that if there exists an adversary A that distinguishes between G and
G2 with some non-negligible advantage ¢ then we can use it to construct an adversary B that wins
at the compact verifiability game with the same advantage.

To start, B gets as input params, the encryption key pk, and T := {pk;}. It now generates all
the threshold parameters using SimKg(pk, N, S), and gives the parameters and the appropriate keys
for the corrupted parties to A. In the voting phase, B behaves completely honestly. In the ballot
processing phase, when A queries its initial shuffle oracle B will query its own initial shuffle oracle,
and when A queries the regular shuffle oracle B will query its own shuffle oracle. When the final
shuffle ({c}},m, {pk;}) gets posted, B outputs ({c;,m;},{c;}, 7, {pk;}). If the game continues (i.e.,
this tuple is valid), then B gets back some collection {m;}. In the tallying phase, when B is queried
on a tuple (j, k, sk, I, ¢r), it computes the code of SimShareDec honestly, using my, as input. At the
end, if A guesses GG1 then B guesses b = 0, and if A guesses G5 then B guesses b = 1.

To see that interactions with B are indistinguishable from the ones that A expects, we observe
that the parameters B gives to A are identical to what they would be in either game, as is its behavior
in the voting phase. As for the shuffle, B’s behavior is again identical to both games. As for the
tallying phase, if b = 0 then B gets back {m; := Dec(sk, c;)}, which means it is executing the exact
code of G;. Similarly, if b = 1 then B gets back {m; := Dec(sk, ¢(c;)) for a random permutation,
which means it is executing the exact code of Go. As A will therefore have the same advantage €
when interacting with B, and furthermore B guesses correctly whenever A does, B will succeed with
advantage e. O

Next, we switch in Game G3 to using simulated proofs of knowledge in the voting phase.

26

Lemma D.3. If the proof (CRSSetup, P, V) is zero knowledge, then Game G3 is indistinguishable
from Gs.

Proof. To prove this, we show that if there exists an adversary A that distinguishes between G2 and
('3 with some non-negligible advantage € then we can use it to construct an adversary B that breaks
zero knowledge with the same advantage.

To start, B gets as input a CRS crs. It then forms all the other parameters as in G2, and gives
the parameters and the appropriate keys for the corrupted parties to A. In the voting phase, if A
outputs a query of the form (vg,v1), B will pick some randomness r for the encryption scheme and

form ¢ <& Enc(pk,vp). It then queries its own oracle on ((pk,c), (vo,7)) to get back a proof 7, and
returns (¢, 7) to A. In both the ballot processing and tallying phases, B behaves exactly as in both
G2 and in G3. At the end of the game, if A guesses Gy then B guesses it is interacting with the
prover on an honest CRS, and if A guesses G'3 then B guesses it is interacting with the simulator on
a simulated CRS.

To see that interactions with B are identical to the ones that A expects, we observe that the value
of the CRS and the proofs 7 are the only way in which B is not identical to both games. Furthermore,
if the CRS is an honest CRS and the proofs 7 are formed by the prover then B is executing the exact
code of Go, while if the CRS and proofs are both simulated then B is executing the exact code of
G3. A will therefore have the same advantage € when interacting with B; furthermore, as B guesses
correctly whenever A does, it guesses correctly with the same advantage. O

Next, we switch in Game G4 to extracting from the proofs rather than decrypting the cipher-
texts; i.e., for adversarially-generated ballots (c;,7;), we use (crs, 7, 7e) & SE(1%) and m; =
Extract(7e, p(m;)) instead of m; := Dec(sk, p(c;)).

Lemma D.4. If the proof system (CRSSetup,P,V) satisfies simulation sound extractability, as de-
fined in Definition A.2, then Game Gy is indistinguishable from Gs.

Proof. To prove this, we show that if there exists an adversary A that distinguishes between Gg
and G4 with some non-negligible advantage € then we can use it to construct an adversary B that
breaks simulation-sound extractability with some related non-negligible probability ¢. We first
observe that, in order to distinguish between the games, there must exist some index i such that
Extract(7e, p(m;)) # Dec(sk, ¢(c;)), as otherwise the two games are identical.

To start, B will get as input (crs,7.). It now computes all the other parameters completely
honestly, and gives the parameters and the appropriate keys for the corrupted parties to A; note
that this means it will also know the decryption key sk. In the voting phase, if A outputs a query of

the form (vg,v1), B will form ¢ & Enc(pk,vg) and query its Sy oracle on (pk,c) to get back a proof
m; it then returns (¢, 7) to A and posts it to the bulletin board. If A instead posts its own ballot
(c,m), B checks that Dec(sk,c) = Extract(re,). If this check fails, then B outputs ((pk,c),), and
otherwise it continues the game. If it reaches the end of the voting phase without observing such a
ballot, B aborts and outputs L.

To see that interactions with B are indistinguishable from those that A expects, we observe that
if Dec(sk, ¢) = Extract(7e,), then B is in fact executing the code of both games completely honestly.
If Dec(sk,c) # Extract(re,), then B has output a tuple ((pk,c),) such that w := Extract(7e,)
but w # Dec(sk,c), meaning ((pk,c),w) ¢ R. In any case in which A could distinguish between
the games, B therefore wins at its game, meaning that if A distinguishes with some non-negligible
advantage €, B will successfully output such a tuple with probability e. O

Next, in Game G5, we switch away from decrypting for the ballots produced by query as well;
as the proofs here are simulated and thus we cannot extract from them, this means that, if the

27

adversary queried on (v;p, v;1) and got back a ballot (¢;, 7;), then in the share decryption oracle we
use m; := ¢(v;o) in place of m; := Dec(sk, p(c;)).

Lemma D.5. If the threshold encryption scheme (EncKg, Enc,ShareDec, ShareVerify) is complete,
then Game G5 is identical to Gy.

Proof. Completeness tells us that, if ¢ & Enc(pk,m), then Dec(sk,c) = m. On a query of the form
(vio,vi1), the vote v; is encrypted honestly to form ¢;. By correctness then, we must have that
Dec(sk, ¢;) = vio, and thus we can use Dec(sk, ¢;) and v interchangeably. O

Next, in Game Gg, we switch to using ¢(v;1) in place of ¢(vio) in the share decryption oracle.

Lemma D.6. If {vig}; and {vi1}; result in the same election outcome, then Game Gg is identical to
Gs.

Proof. 1f {vio}; and {v;1}; result in the same outcome, then we know that, as sets, they must be
equal. This means that for any ¢ € Sy, there exists another ¢’ € Sy, such that when we consider
the effect of the permutations just on the queried votes, we get p({vio}i) = ¢'({vi1}i). As the
permutation in our game is chosen uniformly at random from Sy, picking ¢ as above is equally likely
as picking ¢’, meaning the distributions Dy := {¢ & St p({vio}i)} and Dy := {p & St p({vinh)}
are identical. O

Next, now that we are not using the secret key anywhere, and only the ciphertext returned to A
reveals information about the vote, we switch in Game G7 to encrypting the right-hand votes; i.e.,

using ¢ & Enc(pk,v1) rather than ¢ & Enc(pk, vo).

Lemma D.7. If the threshold encryption scheme (EncKg, Enc,ShareDec, ShareVerify) is IND-CPA
secure, then Game Gy is indistinguishable from Gg.

Proof. To prove this, we show that if there exists an adversary A that distinguishes between Gg and
G'7 with some non-negligible advantage € then we can use it to construct an adversary B that breaks
IND-CPA security with advantage €/q, where ¢ is the number of queries .4 makes in the voting phase.
To do this, we proceed through a series of hybrid games Hy through H,. In each game H;, the first
1 queries are answered using b = 0, while the next ¢ — i are answered using b = 1. We therefore have
that H, = G and Hy = G7, so to show that G7 is indistinguishable from Gj it suffices to show that
H; 1, is indistinguishable from H; for all ¢, 0 < i < g. We then show that if there exists an adversary
A’ that distinguishes between H; and H; 1 with some non-negligible advantage ¢ then we can use it
to construct an adversary B’ that breaks IND-CPA security with the same advantage.

To start, B’ receives as input a public key pk. It then forms all the other parameters completely
honestly, and gives the parameters and the appropriate keys for the corrupted parties to A’. In
the voting phase, if A’ outputs a query of the form (vg,v;), for the first ¢ — 1 queries B’ will form

c & Enc(pk,vp) and 7 & Sy (crs, 75, (pk, ¢)) and return (¢, 7) to A’ (and writes it to the bulletin
board). For the i-th query, B’ queries its own oracle on (vp,v1) to get back a ciphertext ¢; it

then forms 7 & Ss(crs, 75, (pk, ¢)) and returns (¢, 7) to A’. For the rest of the queries, B’ forms

c & Enc(pk,v1) and = & Sa(crs, 7, (pk, ¢)) and returns (¢,) to A’, and in all the other phases, B’
behaves completely honestly. At the end of the game, if A’ guesses H; then B’ guesses b = 1, and if
A’ guesses H; 1 then B’ guesses b = 0.

To see that interactions with B’ are indistinguishable from those that A’ expects, we observe that
if the oracle uses b = 0 then B’ answers the first 7 + 1 queries using b = 0 and thus is executing the
exact code of H;,1, while if it uses b = 1 it is executing the exact code of H;. As B’ furthermore

28

behaves identically to both games the rest of the time, A’ will have the same advantage with B’ as
it does in distinguishing games 6 and 7. As B’ succeeds in guessing whenever A’ does, B’ will also
succeed with non-negligible advantage e and thus B will succeed with advantage €/q. O

Now that we are using b = 1 (i.e., encrypting right-hand votes), we can switch everything else
back. In Game Gg, we switch back to using m; := Dec(sk, p(c¢;)) for query-generated ballots; this
is identical to GG7 by the completeness of the encryption scheme, and the proof is analogous to the
proof of Lemma D.5. In Game Gy, we switch back to using m; := Dec(sk, ¢(c;)) for adversarially-
generated ballots; this is indistinguishable from Gg by simulation-sound extractability, and the proof
is analogous to the proof of Lemma D.4. Next, in Game G1g, we switch back to using honest proofs
of knowledge; this is indistinguishable from Gg by zero knowledge, and the proof is analogous to the
proof of Lemma D.3. Next, in Game G11, we switch back to using Dec(sk, }); this is indistinguishable
from G719 by compact verifiability, and the proof is analogous to the proof of Lemma D.2. Finally,
we switch back to using EncKg and ShareDec in the tallying phase; this is indistinguishable from Gy
by share simulatability, and the proof is analogous to the proof of Lemma D.1.

29

	Introduction
	Definitions and Notation
	Controlled malleable proofs (cm-NIZKs)
	Compactly verifiable shuffles
	Threshold encryption
	Compactly verifiable voting

	A Compactly Verifiable Shuffle
	Threshold Decryption
	Our construction
	A cm-NIZK for partial decryption

	A Secure Voting Scheme
	Non-Interactive Proof Systems
	The Shuffle Construction of CKLM
	Constructing a cm-NIZK Using CM-Friendliness
	A Proof of Voting Security (Theorem 5.1)

