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Attack on RSA-CRT [BdML97,L97] factors N given one faulty 
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Signature inherits Φ-RKA security from one-way function

Many natural one-way functions (e.g., RSA) are Φ-RKA-secure with 
no additional assumptions

Creating new RKA-secure signatures is easier!

Our construction [Bellare M Thomson Eurocrypt14]

φ-RKA-OWF

SE-NIZK
φ-RKA signature

12

actually

quite natural

simple construction [DHLW10,CKLM14]

}
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• Exponentiation (f(x)=gx) is secure w.r.t. linear functions

• Learning with errors (f(s,e) = As+e mod q) is secure w.r.t. addition

Our result can pave the way for easier RKA constructions
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To spend bitcoins, a user must indicate the previous transaction

All bitcoins received in a transaction must be spent all at once

How do bitcoins get spent?
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How to identify users? [MPGLMVS IMC13]

Cluster

Transact
us

them

Collapse into a more manageable graph of clusters of public keys 
representing distinct entities

Collect ground truth data by participating in transactions

20

Users can use arbitrarily many public keys (pseudonyms); as a result 
the Bitcoin graph is complicated and has 12 million public keys
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Clustering by inputs
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Heuristic #1: the same user controls these addresses 
[N08,RH11,RS13,A+13]

6



Change addresses

2

1

3

22

7

15



Change addresses

2

1

3

22

7

15



Change addresses

2

1

3

22

7

15 14
14



Change addresses

2

1

3

22

7

15 141
14



Change addresses

2

1

3

22

7

15

All bitcoins received in a transaction must be spent all at once

141
14



Change addresses

2

1

3

22

7

15

All bitcoins received in a transaction must be spent all at once



Change addresses

2

1

3

22

7

15

All bitcoins received in a transaction must be spent all at once



Change addresses

2

1

3

22

7

15

All bitcoins received in a transaction must be spent all at once



Change addresses

2

1

3

22

7

15

All bitcoins received in a transaction must be spent all at once

1
1

0 14
14



Change addresses

2

1

3

22

7

15

All bitcoins received in a transaction must be spent all at once

In the standard idiom, change addresses are used at most twice: to 
receive change and to spend it

pk

1
1

0 14
14



Clustering by change

2

1

3 14

23

7

0 14

1
1



Clustering by change

2

1

3 14

23

7

0

pk

14

1
1

identify using one-time behavior



Clustering by change

2

1

3 14

23

7

0

pk

14

1
1

identify using one-time behavior

Heuristic #2: the same user also controls this address
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Data collection
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Engaged in transactions with:

• Exchanges

• Mining pools

• Wallet services

Scraped published tags

Found addresses discussed on forums

• Vendors

• Gambling sites

• Mix services
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Interacted with 31 MtGox addresses, tagged 518,723!


Participated in 344 transactions and tagged 1.3M public keys
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Clustering using Heuristic 2

satoshi dice
btc dice

clone dice

mtgox

silk road

instawallet

bicycle wheel with

gambling at center

strongly connected component

with most of our named users
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Following bitcoins

Can see when bitcoins meaningfully cross cluster boundaries

Identifying recipients potentially de-anonymizes user

29

meaningful

recipient change address

Hypothesis: if you subpoena exchanges, you can identify users
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Tracking technique

[HDM+ NDSS’14]

...

tracking heists

= exchange

service interaction

30

individual thefts

>1,794 BTC ≈2,084 BTC

We traced over $3M back to illicit activities!
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Our analysis provides a real-world way to track flows of bitcoins

Seems hard to launder significant quantities of money

Takeaway
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How much anonymity does Bitcoin really provide?
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