On the Complexity of Graph Cuboidal Dual Problems for 3-D Floorplanning of Integrated Circuit Design

Renshen Wang
Chung-Kuan Cheng

Department of Computer Science & Engineering
University of California, San Diego
Goal of Today’s Talk

- Discuss 2-D \rightarrow 3-D
- Introduce a cuboidal dual problem which differentiates #dimensions
- Measurable complexity in the problems
- Hardness of 3-D cuboidal dual
- Hardness of 2.5-D cuboidal dual
 - Single layer, i.e. 2-D cuboidal dual
 - 3 or more layers
 - ...
Introduction

- “Moore’s law” enabled by
 - Reduction on lithographic structures
 - New technologies and methodologies
- 3-dimensional circuit
 - To overcome the interconnect bottleneck, ideally $\sqrt{n} \rightarrow 3\sqrt{n}$
- 3-D challenges
 - Thermal behavior, cooling
 - Higher complexity in design, CAD, fabrication
How much higher complexity?

- Placement of sub-circuit blocks
- “Rectangular dual” formulation
 - Kozminski & Kinnen. “An algorithm for finding a rectangular dual of a planar graph for use in area planning for VLSI integrated circuits” DAC’84

- Planar graph $G \rightarrow$ Rectangle dissection with adjacency graph isomorphic to G
Graph Cuboidal Dual

- Generalize to 3-D: Given a graph $G=\langle V,E \rangle$, can we find a set of **cuboids** as V with **contact relations** as E?
 - No longer a “dissection” (for simplicity)

- Variations
 - 3-D
 - 2.5-D
 - Layered 3-D case
 - 2-D
 - Single layer 2.5-D case
3-D Cuboidal Dual

- General 3-D cuboidal dual is NP-complete
- 3-COLOR reduces to 3-D cuboidal dual
 - Orientation of cuboids [xyz] → 3 colors
 - Gadget of directions

Lemma 1. In the cuboidal dual of the 7-vertex gadget, the cuboids of two opposite vertices on the octahedron (e.g. v_1, v_4) are on opposite sides of the central cuboid
3-D Cuboidal Dual (cont.)

- $d_{1,4}$ denotes the direction of $v_1 \rightarrow v_0 \rightarrow v_4$
 - 3 possible directions: x, y, z
- Enforcing 2 gadgets in different directions
 - Analogous to an edge in 3-COLOR

Bi-clique between $\{v_1, v_4\}$ and $\{v'_1, v'_4\}$
3-D Cuboidal Dual (cont.)

- Alignable gadgets
 - Add 6 vertices
 - Shape defined
- 2-alignment and 3-alignment
3-D Cuboidal Dual (cont.)

Theorem 1. 3-COLOR reduces to 3-D cuboidal dual.

- 3-COLOR graph $G_{3C} = (W, E_0) \rightarrow G = (V, E)$

Each w_i, 13-vertex gadgets $s_{i,1} \ldots s_{i,n}$

- $s_{i,j}$ 2-aligns with $t_{1,i,j}$
- $t_{1,i,j}$ 3-aligns with $t_{2,i,j}$
- $t_{2,i,j}$ 2-aligns with $t_{3,i,j}$
- $t_{3,i,j}$ 2-aligns with $u_{i,j}$

Each edge (w_i, w_j), enforce $u_{i,j}$ and $u_{j,i}$ in different directions (biclique connection)
2-D Cuboidal Dual

Theorem 2. G has a 2-D cuboidal dual \(\iff \) G can be drawn as a plane graph with no 3-vertex cycle with interior vertices

Conclusion of [Kozminski & Kinnen 84]
2.5-D Cuboidal Dual

- Given a layered graph
 - $G = (V, E, n, L : V \rightarrow \{1, ..., n\})$
 - (v_i, v_j) only exists when $|L(v_i) - L(v_j)| = 1$
 - Reduced freedom

- 2.5-D gadgets
 - Orthogonal contacts & diamond gadget
Theorem 3. Planar 3-SAT reduces to 2.5-D cuboidal dual with 3 layers.

The 2-layer subgraph has a 2.5-D cuboidal dual at least one 6-vertex gadget has horizontal $v_0 \rightarrow v_3$.
2.5-D Cuboidal Dual (cont.)

- Planar 3-SAT: n variables and m clauses
 - Each variable a diamond gadget
 - Each clause a clause gadget
 - m clause gadgets aligned by 3rd layer vertices

Paths as planar graph edges

The only 2 vertices on the 3rd layer
Hardness of Problem Variations

- 3-D cuboidal dual: NP-complete
- 2.5-D cuboidal dual
 - Single layer, i.e. 2-D: P
 - Double layer: open
 - 3 or more layers: NP-complete
- Analogy between colorability and cuboidal dual problems
 - 2-COLOR \rightarrow 3-COLOR
 - 2 dimensions \rightarrow 3 dimensions
Q & A

- Thank you for your attention