Understanding the FF'T

Neil Jones

October 17, 2005

Introduction

The FFT seems like a rather mysterious algorithm at
first, but when you consider its limitations, it is less
so. One reason that many people find it confusing is
that textbooks often conflate the application of the
FFT with the algorithm itself, for example by trying
to explain all at once how to use the FFT to multiply
large numbers. This is harder than it needs to be,
because the FFT is fundamentally an operation on a
single mathematical object, namely, a polynomial.

Polynomials

Any polynomial can be represented in two ways:
as a collection of coefficients, or as a collection of
points. For example, the quadratic equation Q(z) =
z? — 2z + 1 can be written (1,—2,1) in coefficient
form, or as the three points (1,0); (0,1); (—1,4). One
reason that the point representation is not commonly
used to represent a polynomial is that it is quite diffi-
cult to calculate the polynomial at an arbitrary other
point with this representation. For example, )(4.3) is
difficult to calculate with the points representation—
how this can be accomplished is described below—
but it is much easier in the coefficients representa-
tion. On the other hand, the points representation
does allow some operations to be done trivially. Con-
sider the two polynomials Q(z) = 22 — 2z + 1 and
R(z) = 322 — z + 2. In coefficient form, they are
Q = (1,-2,1) and R = (3,—1,2) and in points
form they are Q@ = ((1,0);(0,1);(—1,4)) and R =
((1,4);(0,2); (=1,6)). What is Q(z)R(x)? In coef-
ficient form one needs to multiply all the terms and
add them together, but in the points representation

one can simply multiply the corresponding y values to
get the series ((1,0);(0,2); (—1,24)). Unfortunately,
this last representation has only 3 points to represent
a 4-th degree equation, but this is a minor technical
problem, and it should be clear that the points repre-
sentation is preferrable when you’re multiplying two
different polynomials.

A natural question is how one might go about
transforming between the two representations for a
given polynomial. It’s clear how one can convert
from a coefficient representation to a point repre-
sentation: pick a sufficient number of points and
carry out the calculations in one of the following
ways (the following considers calculating a polyno-
mial A(z) = ap 12" 1 +a, 22" 2+ +ag at T = 4).

Naive Calculate 47~1. Multiply by a,,_;. Calculate
4"=2_ Multiply by a,_2, and add to the previous
result. Repeat until ag. Calculating 4™ is O(n),
and there are O(n) such terms, so this algorithm
takes O(n?) time for each evaluation point.

Methodical, step 1 Create a column vector P such
that P[0] = 4, and P[i] = 4P[i—1]. Create a row
vector a = [an—1,08n—2,...,00]. Multiply aP to
get A(4). This trades O(n) time for O(n) space
and takes O(n) time and O(n) space.

Methodical, step 2 Calculate 4a,—1 + a,—2. Mul-
tiply this by 4 and add a,—3. Multiply this by 4
and add a,_4, etc. This is O(n) time, and O(1)
space (aside from the coefficients). This method
is also called Horner’s rule for polynomials.

Thus, for an arbitrary polynomial of degree n and
an arbitrary point, it will take O(n) time to evaluate



the polynomial at that point if one assumes that mul-
tiplication and addition are O(1) operations.! Since
a degree-bound n polynomial requires n points to
uniquely define it, the conversion of coefficients to an
arbitrary set of points will require O(n?) time. This
result is true in light of the DFT algorithm discussed
below, since the DFT algorithm does not operate on
an arbitrary set of points. The DFT takes O(nlogn)
time for the same task, but operates on a particular
set of points that is determined by the degree of the
polynomial.

The reverse conversion of a polynomial from points
representation to coefficients representation is some-
what harder than the conversion of coefficients to
points. The problem under consideration is to design
an algorithm that can take n pairs of points (z;,y;)
that represent a polynomial A(z) of degree-bound n,
and return the n coefficients (a,,_1,a,_2,--.,aq) such
that A(z;) = E;‘;OI a;zl. Conceptually, one could
precompute all n — 1 powers of z; and consider this
problem to be a set of linear equations:

—1
Y1 = ap+zia1 +2%ay +ziaz + -+ 27 tan—1
—1
Yo = ag+T2a1 +T3a0 + 23az + -+ 28 tan—1
—_ 2 n—1
Yn = G0 — TpA1 —Tpa2+ -+ Ty “Anp1

One way to get back the various a;’s is to solve this
linear system of equations, perhaps by inverting the
matrix of the z’s and applying it to the vector of the
y’s. This works for any values of y’s and z’s and will
find the coefficients of the polynomial, provided that
the equations are consistent. This requires calculat-
ing a matrix inverse, which is not terribly efficient
(say, O(n3)). The DFT bypasses this matrix inver-
sion only by virtue of the fact that it does not work
on an arbitrary set of points.

The n-th roots of unity
Some finite sets of numbers are more structured than

other sets. For example, the set {0,1,—1} has the
property that the product of any two elements is also

n this particular context, the multiplication and addition
are of small (32 bit) numbers, rather than huge numbers.

in the set. On the other hand, the set {0,2,4,6} does
not have this property. A set of elements is a group
if it meets two properties:

e if ¢ and b are in the set, then the product ab is
also in the set

e for every a in the set, there is an element b such
that ab=1

i2mj
=€ n :

The set of n-th roots of unity, or {w’
1 < j < n}, has particularly useful properties in the
context of transforming polynomials between coeffi-
cient and point representations. The halving lemma
states that, if n is even and larger than 0, then the
squares of the n complex n-th root of unity are the
n/2 complex n/2-th roots of unity.? Furthermore, if
we use w, to denote the first n-th root of unity, then
w2 is the second n-th root of unity, and w? is easy to
calculate.

The FFT Algorithm

The FFT is an algorithm that can only evaluate a
polynomial on the group of the n-th roots of unity.
The FFT cannot be used to evaluate a polynomial at
any other points, but the fact that the roots of unity
are so structured allows it to skip several multiplica-
tions, leading to an O(n log n) algorithm to evaluate a
polynomial at O(n) points. This is useful in practice
because the multiplication of two polynomials does
not rely on any particular set of points, but it relies
on the fact that there are n points in that set.
Consider expressing a polynomial A(z) as A(z) =
A'(2?) + A" (2?), where A'(z) is a polynomial con-
sisting of all the even coefficients of A and A" is the
polynomial consisting of all the odd coefficients of A.
For example, if A(z) = 525 + 325 — 22* + 23 — 1022 +
7x + 1, then we can write the coefficients of A as
[5,3,-2,1,—10,7,1] and take the evens (5, —2, —10,
1) and write it as A’(z) = 52® —22% — 10z +1 and the
odds as A" (x) = 3z2+2+7. Then A'(2?)+zA"(2?) =

2The proof of this lemma can be found in Cormen, page
832, but you can rationalize it geometrically by considering
where on the unit circle the n-th roots lie, and where their
squares lie.



(52% — 22* — 1022 + 1) + z(3z* + 22 + 7) which gives
us back A(x). The halving lemma should give a hint
as to why this method of dividing the problem makes
the conquering step somewhat easier. The details of
the algorithm are in the RECURSIVE-FFT code in the
text; there, w is a “pointer to the current root of
unity.”

Since the FFT can evaluate a polynomial at 2*
points, it should be thought of only as a machine
that converts a polynomial from its coefficient rep-
resentation to the point form of the polynomial in
O(nlogn) time. Clearly one will often need to con-
vert the points representation back to the coefficient
representation, which we can do with the procedure
described above. Here again the n-th roots of unity
have especially useful properties. Returning to the
matrix approach, the FFT has given to us a matrix
like

Y1 = ag+wpar +wiaz+ - +w la,_g
_ 2 212 —1\2
y2 = agtwiar + (wi)az+ -+ (W Ha,_1
Yo = ao+w? lar + (W) %az + - (WY a,

This matrix equation is really y = Va, where a is
an (n x 1) column vector of coefficients, y is an (n x 1)
column vector of values, and V' is an n x n matrix of
the roots and their powers. The (j, k)’th element of
V is wik, and the inverse of this matrix has a very
simple form because of the unique structure of the n-
th roots of units. The form of the (j, k)’th element in
the inverse matrix V! is 1/nw,,*/, which is proved
in theorem 30.7 in Cormen.

By avoiding the explicit computation of V! we
have avoided an O(n®) step, but the formula V 1y
still requires a matrix product at cost O(n?). Keeping
in mind that we know y, V, and can get V1,

y = Va.
vV ly V1 (Va)
= (V"'V)a
= a.

So

-1 -1
n 1 iy 1 n e
a; = E E—W = — E kW
J Y n n n Y n
k=0 k=0

Writing out the sum, we have
1 iy iy o
a; = E (y0+y1wn1+y2(wn])2+'”y"*1(wn])n 1)

In other words, we now have a polynomial Y (z),
such that a; = Y (z;): the coefficients of our original
polynomial are actually the point values of the poly-
nomial whose coefficients are the point values of the
original polynomial. This is surprising, but so far it
is not particularly helpful. In order to get the coeffi-
cients back we still have to evaluate the polynomial
Y at n points, which would ordinarily take O(n?)
time, but notice that the points that Y is evaluated
at are the complex roots of unity, but in reverse or-
der. Thus, the FFT can also be applied to solve this
problem if we normalize by 1/n and change the order
in which you apply the roots.

Thus, converting from coefficients to points, then
back to coefficients, requires O(n logn) time, with the
caveat that the points are not arbitrary.

Applications

This would seem to be a somewhat theoretical
problem—what use is there to converting between
the point representation and the coefficient represen-
tation of a polynomial? Already we have seen that
multiplying polynomials is easier in point representa-
tion than in coefficient representation, and it is also
more efficient (when you count up the operations).
Other applications spring from the flexibility of the
polynomial representation: many objects can be rep-
resented as polynomials, and multiplication of those
objects often has intrinsic meaning. A few examples
follow.

Multiplication of polynomials

e Take polynomials a and b, both of degree-bound
n

points, = FFT(a, 2n)
points, = FFT(b, 2n)

points,[i] = points,, [{]points,[i]

e ¢ = FFT !(points,, 2n)



Multiplication of large numbers

Consider two n-digit numbers. Each number can be
thought of as a polynomial evaluated at x = 10. Fur-
ther, the product of the two numbers can be thought
of as the product of the polynomials evaluated at
2z = 10. Thus, a recipe for multiplying large numbers
is to apply the above polynomial multiplication (in
O(nlogn) operations) and then the remaining poly-
nomial coefficients are the digits of the product of the
two large numbers.

Convolution of sequences

Any two ordered sequences of numbers can be con-
volved (where “convolution” is a well-defined mathe-
matical term). This is often a very useful operation,
for example, when dealing with probability distribu-
tions.

Caveats

The operations described above are all reasonable for
relatively small values of n. Note that the algorithms
frequently compute sums of many roots of unity. One
problem with the n-th roots of unity is that as n gets
larger, the spacing of the roots around the unit circle
gets smaller, to the point where differences between
successive n-th roots elude the precision of a physi-
cal computer. In this sense the FFT can be consid-
ered unstable, introducing gradually larger numeri-
cal errors as n increases. There are some techniques
to ameliorate this problem in certain contexts (e.g.,
when convolving certain sequences, only a small por-
tion of that sequence really matters), but it is nec-
essary to keep in mind the relative error of any nu-
merical inaccuracies. This error can sometimes be
quantified, albeit very slowly, by using arbitrary pre-
cision arithmetic and a non-FFT algorithm that does
not suffer from round-off error.

The FFT algorithm provided in the text is fast,
but why is it a Fourier Transform? The Fourier
Transform is a mathematical operation on continu-
ous functions that converts an arbitrary (nonperi-
odic) function into a projection onto periodic basis
functions, namely, the space spanned by sines and

cosines of varying frequencies. The connection be-
tween sequences with a discrete number of elements
and arbitrary continuous functions is a complex one.

Sources

This essay was compiled from notes gathered from
Professor Impagliazzo’s Algorithms class (CSE 202)
from 2001 and 2002, from the textbook Introduction
to Algorithms by Cormen, et al, and from Contem-
porary Abstract Algebra by Galian.



