
CSE 202 NOTES FOR NOVEMBER 21, 2002

Maximal Bipartite Matching

We consider a new problem to introduce the notion of reduction and to describe
the usefulness of network flow.

Instance: An undirected graph G = (V,E). Vertices in V can be divided
into two disjoint subsets L and R, such that

e = (u, v) ∈ E =⇒ (u ∈ L ∧ v ∈ R)⊗ (u ∈ R ∧ v ∈ L).

Solution Format: A subset M of E.
Constraints: Any node v ∈ V may have only one edge incident to it in the

output set M .
Objective: Maximize |M |.

An example of an m× n bipartite graph is shown in figure 1. Here m > n.
Our solution to this is fairly straightforward: create nodes s and t to the left of

L and right of R respectively, and connect each node in L to s and each node in
R to t. Set the “capacity” associated with every edge in this new graph to 1, and
use the Ford-Fulkerson method on the graph to determine the matching. Because
we’re using Ford-Fulkerson, we know that the matching gives us an integral flow
since the edges are all of integer capacity.

Figure 1. A sample bipartite graph. Nodes s and t (and the edges
incident to them) are not actually part of the bipartite graph; they
are simply a construction that we’ll use to solve the problem.

S T

1

2 CSE 202 NOTES FOR NOVEMBER 21, 2002

How can we prove that this approach is correct? Let f be any integer-value
flow, and let Mf be the set of edges from E (not including the augmenting edges to
connect to s and t, which are artificial constructs) such that f(e) = 1. Why is Mf

a matching? Because (u, v1) ∈ Mf =⇒ 6 ∃v2 st (u, v2) ∈ Mf , and similarly for u.
This particular case would cause flow into an vertex to be 2, but the flow in would
be 1, which can’t happen at nodes-that-aren’t-endpoints.

Now that we’ve shown that we have a matching, can we show that it is optimal?
We know that |Flow| ≥ |Mf | because each edge used from s in the flow feeds into
an edge in Mf and vice versa, since all the weights are unity. We also need to
show that the maximum matching is ≤ the maximum flow; construct a flow from
a matching, and the same reasoning applies in the reverse direction. For every
e = (u, v) ∈ E, send one unit from s → u and from r → t. Because we have a
maximal match, we must have a maximal flow; this was rushed a bit, because of
other topics to cover.

Reductions

A problem reduction is an elegant construct that allows one to frame a particular
computational problem in an alternative light. In general, one shows an algorith-
mic transformation from a problem who’s solution is unknown to a problem that
can be solved easily. There are some mathematical requirements to a reduction
which we will cover shortly. Unlike the reductions in complexity theory, one has
to be concerned with the execution time of the reduction—while a reduction may
be theoretically possible, if it requires an order of n100 or 2n to accomplish the
transformation, then it is hardly a practical technique for solving the problem.

The previous example posed an interesting problem: if we reduce optimization
problem 1 to optimization problem 2, how do we show that our reduction is valid
and that a solution to 2 implies a solution to 1.

Following the basic idea of how we have specified problems so far, we really need
to show that a mapping exists from an instance of the first problem to the instance
of the second problem (call this mapping f). We also need to show that a solution
for 2 is also a solution for 1, and vice versa (call these g and h). We need g to
determine how long it will take to translate the answer back into a form suitable
for problem 1, and we need an h to guarantee that a solution for the first implies
that a solution exists in the second problem. That is, we’re showing that an optimal
solution in 2 is also an optimal solution in 1, and vice versa; if this is not true, then
the reduction doesn’t work because we might miss the solution to 1 if it doesn’t
map to an optimal solution in 2 (our algorithm for 2, after all, finds the optimal
solution for 2.

Approximation Ratios and Reductions

In approximation algorithm reductions, one has to be concerned with breaking
any approximation ratio guarantees during the problem transformation. The reason
that this is a concern is that there are several pieces involved in a reduction, and not
all of them are well-behaved. For example, it may be that, in reducing a problem
Π to a problem Π′ we find that some solution to an instance of Π is really not
a solution to the corresponding instance of Π′. This would imply that, for some
instances of Π, Π′ is not a reasonable reduction. Of course, this was a concern
when reducing exact algorithms too, but we now need to worry about the following

CSE 202 NOTES FOR NOVEMBER 21, 2002 3

case: if it turns out that some solution to Π is (1/10)OPT in Π′ while all other
solutions to instances are (1/2)OPT , then our approximation algorithm can only
be guaranteed to give an AR of 1/10. Despite these caveats, there is a certain class
of reductions which are well-behaved even for approximation algorithms, and we
call these (α, β)-preserving reductions.

We will review here the basics behind problem reductions, and then briefly in-
troduce the notion of (α, β) preserving reductions.

In the following, let Π and Π′ be problems (or rather, the set of all instances of
two particular problems). Furthermore, let Π′ be well-characterized, in the sense
that an exact algorithmic solution exists for all π′ ∈ Π′. Suppose that Π does not
have this property—some, or all of its instances are not solvable by any known
algorithmic means. In the following, let S(Π) be the set of solutions for instances
of a problem Π. A reduction from Π to Π′ consists of three functions, f : Π→ Π′,
g : S(Π′) × Π → S(Π), and h : S(Π) × Π′ → S(Π′). Perhaps a more informative
way of putting this is in a picture:

π ∈ Π →f(π) π′ ∈ Π′

s ∈ S(Π) ←g(s′,π) s′ ∈ S(Π′)

t ∈ S(Π) →h(s,π′) t′ ∈ S(Π′)

Furthermore, we must have the guarantee that:

ValΠ(s) > ValΠ(t) =⇒ ValΠ′(s′) > ValΠ′(t′)
s′ = h(s, π′)
t′ = h(t, π′)

ValΠ′(s′) > ValΠ′(t′) =⇒ ValΠ(s) > ValΠ(t)
s = g(s′, π)
t = g(t′, π)

In words, these inequalities are stating that if s′ is an optimal solution for π′,
then s = g(s′, π) is an optimal solution for π. If s were not optimal, then there
would be another solution t′ in π′ that had a better value than s′, which is clearly
impossible. A similar line of reasoning holds for optimal solutions in π as applied
to π′.

The generalization of this algorithm design technique to approximation algo-
rithms relies on changing these two inequalities to the following:

ValΠ(s) > ValΠ(t) =⇒ ValΠ′(s′) > αValΠ′(t′)
s′ = h(s, π′)
t′ = h(t, π′)

ValΠ′(s′) > ValΠ′(t′) =⇒ ValΠ(s) > βValΠ(t)
s = g(s′, π)
t = g(t′, π)

In other words, if s is a better solution than t for some instance π, then the
corresponding s′ is some factor α better than the corresponding t′. The converse
must also be true, but note that there may be a different factor β involved in
the opposite direction: this means that the approximation error introduced by the

4 CSE 202 NOTES FOR NOVEMBER 21, 2002

reduction depends on the direction, regardless of whether or not you use the h
function in your actual algorithm.

If both of the above inequalities are true, then we can say that our approxima-
tion algorithm is preserved across reduction, or that this is an (α, β)-preserving
reduction. Not surprisingly, the adjustment to the approximation ratio in such a
reduction is αβ.

A reduction, then, is a triplet of functions (f, g, h) with the following signatures:

π ∈ Π →f π′ ∈ Π′

s ∈ S(Π) ←g s′ ∈ S(Π′)
t ∈ S(Π) →h t′ ∈ S(Π′)

We call a reduction (α, β)-preserving if we can also ensure that the following two
inequalities hold for all solutions in S(Π) and S(Π′) respectively:

CostΠ(g(s′)) ≤ αCostΠ′(s′)
CostΠ′(h(s)) ≤ βCostΠ(s)

Lemma 0.1. If A is an algorithm for Π′ that achieves approximation ratio δ and
(f, g, h) is an (α, β)-preserving reduction, then g(A(f(π))) achieves approximation
ratio αβδ.

Proof: Let π′ = f(π). Let OPT ′ be an optimal solution to π′. Since
Costπ′(A(π′)) ≤ δCostπ′(OPT ′), we can say that Costπ(g(A(π))) ≤ αδCostπ(OPT ′)
by the first inequality combined with the assumed optimality of OPT ′. Further-
more, let OPT be an optimal solution to π. We know that CostΠ′(OPT ′) ≤
CostΠ′(h(OPT)) (again, by the assumed optimality of OPT ′ for π′). We know fur-
ther that CostΠ′(h(OPT)) ≤ βCostΠ(OPT) by the second inequality above. Thus,
CostΠ(g(A(π′))) ≤ αδ(βCostΠ(OPT)) as desired. �

