CSE 202 NOTES FOR NOVEMBER 19, 2002

NETWORK FLows

Network flows are an important problem because they can be used in many
reductions, a topic we will discuss shortly. The basic idea is that you need figure
out how much stuff you can move between two nodes in a graph while obeying the
intuitive conservation laws. More formally, the problem is listed below.

Instance: Symmetric, directed, weighted graph. That is, (u,v) € E =
(v,u) € E, but w(u,v) # w(v,u) in general. Two nodes, s,t € V are also
given, where s is the source and t is the sink.

Solution Format: A sequence of paths and “flows” that determine the total
quantity of “material” that moves from s to t. More specifically, the output
is a set of pairings (e, f) where e is an edge in E and f is a real number
indicating the flow of material on e. We will use f(u,v) to denote the f
associated with edge (u,v).

Constraints: f(u,v) < w(u,v) A f(u,v) = —f(v,u),YVu,v € V. Further,
VueV — {Sat} ’ ZUGV f(uvv) =0. Finau}’7 ZUEV f(sa ’U) = Z'UGV f(?),ﬁ).

Objective: Maximize), f(s,v).

An example graph is shown in figure . We will describe the Ford-Fulkerson
method for determining network flow, and introduce a set based on an idea that
actually debuted in Dijkstra’s algorithm for determining the Minimum Spanning
Tree. We will also explore several properties of network flows that are determined
through the Ford-Fulkerson method.

FIGURE 1. An example graph to illustrate the Ford-Fulkerson
method. The edges that cross the borders between the regions
labelled A and B are the Cut of the graph G.

\

A

2 CSE 202 NOTES FOR NOVEMBER 19, 2002

The Ford-Fulkerson method proceeds by labelling all edges with a current flow
of 0, and residual capacity of the edge weight . Next, it finds an arbitrary path
with positive “residual capacity” (that is, locate s — --- — v where for each
(u,v) in the path, f(u,v) < w(u,v). From this path, select the edge with the
lowest residual capacity, and use this entire capacity for the entire path; modify
the “residual capacities” of all the other edges in the path. For links going in the
opposite direction, add the absolute value of the flow to it, and repeat the process.

As in the figure, you should see that any path between s and ¢ must also go
between regions A and B. The total capacity of all links crossing A and B is 5,
so there couldn’t possibly be a larger flow than 5. This forms the heart of the
achieves-the-bound argument: the sum across all of the inbound links never gets
larger than some number.

To formalize this, let’s introduce some definitions.

Definition 0.1. Let S be a set of vertices, s € S,t ¢ S. Then Cut(S) =
{(u,v) e E:ue S,vg S} Also, let Cost(Cut(S)) = >, »)ecur(s) w(u,v). Also,
a bit of notation, f(p,q) =0 if (p,q) € E. Finally, let Flow(f) =", f(s,v).

We will state and prove two important lemmas regarding Cuts and Costs.

Lemma 0.2. VS, s € SAt &S, and any flow f,

Zf(sav): Z f(u7v)

veV (u,v)€ Cut(S)

Proof: Note that >, ocg 2, f(s',v), is 0 by construction: this double sum
calculates the flow from any one node (that is not the starting point) to any other
node in the graph. This must be 0 because we will always add f(s’,v) and f(v,s’)
for all pairs of adjacent nodes, since we sum across all nodes in the vertex set; also
keep in mind that we augmented our definition of f to include edges that were
missing from E to be 0, so this will not affect our total. Keep in mind to avoid
future confusion that s’ is not related to s here, except by the relation that s’ IS
NOT s. So, we have:

(0.1) Do flsv) = Y flsv)+ > Y [

s'#s,s'€S v
(0.2) = Z Z f(s,0)
seSveV
(0.3) = ZZf<S>S/)+ZZf(S7U)
seSs'esS seSv¢gS
(0.4) = Z Z f(u,v)
ueS vgS

(0.5) = > fluw).D

(u,v)eCut(S)

Where 0.1 is due to the above logic. 0.2 incorporates the first single sum into the
double sum of the second term, 0.3 partitions this into two more meaningful pieces:
the sum between pairs of things where both elements are inside S and the sum
between pairs of things where one is in S and the other isn’t. 0.4 can be concluded

CSE 202 NOTES FOR NOVEMBER 19, 2002 3

because as mentioned before the first term of 0.3 is 0, and we finally arrive at 0.5
by the definition of Cut(S).
Our second lemma is central to the achieves-the-bounds argument.

Lemma 0.3. Let S be any set as above and let f be any flow. Then Flow(f) <
Cost(Cut(9)).

Proof: By definition, Flow(f) = >, f(s,v). By the above lemma, this is
> (uw)ecut(s) f (u,v) and because we know that all f(u,v) < w(u,v), we know
that 3-, vyecus(s) F (W 0) < X(uvmecus) w(w, v) = Cost(Cut(S)).

Finally, we state and prove the lemma that shows that the Ford-Fulkerson
method actually achieves this bound that we’ve placed on the Cuts and the Costs.

Lemma 0.4. Let F' be the flow achieved by the Ford-Fulkerson method. Then
38 : Flow(F) = Cost(Cut(S5)).

Proof: Define a new graph from G called G g, where Gp = {(u,v) : w.(u,v) — f(u,v) > 0}
(in other words, the graph of vertices and edges that can still accept more stuff).
Let S be the set of all nodes that are reachable from s in Grp. We know that t € S
because if it were, then a path from s to ¢t with positive flow would exist, and the
Ford-Fulkerson method would have picked it. The set S, then, is the set of ver-
tices in the lemma above. We know from lemma 0.2 that Flow(F) = 3" f(s,v) =
> (wwecus(s) F'(w,v); we also know that for any e = (u,v) € Cut(S) that the
residual capacity of the edge is 0 (because of the logic above involving Gg), so we
have that 3, yecus) £ (V) = (0 w)ecu(s) W(w, v); therefore this particular
cut achieves the bound and we have optimality. [J

We have two corollaries regarding this algorithm. First, the maximum flow is
equal to the cost of the minimum cut in a graph; in fact, the maximum flow happens
across the minimum cut, so you can quickly find the minimum cut. Secondly, and
possibly more importantly, if all of the capacities (that is, the weights) are integers,
then there is an integral max flow.

Now that we have proved that the Ford-Fulkerson method is correct, I'll list it
here slightly more completely.

while Positive paths can be found do
Find a path in Gpg, through Depth-First-Search, such that the total flow is
positive.
Augment the flow in the graph by the minimum residual capacity of an edge
in the path you’ve chosen.
Modify the residual capacities along the path.
end while
The first step may involve a depth-first-search, so it’s O(]E|). The second step
may require adjusting everything in the path, and the path can be at most |V| since
we will never use loops in a flow, so it’s O(|V|). Modifying the residual capacities
similarly takes at most O(|V]) time, and we iterate at most O(|E|) times. Can we
bound the number of iterations, though? The answer is yes — we can bound it
above by the flow in the following manner. Assume that all of the link capacities are
integers for simplicity. Flow(f) increases by at least one on each iteration, so the
number of iterations is at most Flow(f). Therefore, the total time of the algorithm
is O(|Flow| (|E| + |V])) = O(|Flow| |E).

4 CSE 202 NOTES FOR NOVEMBER 19, 2002

FIGURE 2. The worst-case scenario for the Ford-Fulkerson algo-
rithm. Note that the edge (a,b) flips its direction each time; be-
cause its capacity is so much smaller compared to the rest of the
graph, it is a bottleneck.

Unfortunately, this gives us a perfect worst case scenario, shown in figure 2. In
this case, it is possible that the Ford-Fulkerson method will choose the incorrect
path every time that involves (a,b); at this point, the flow for (a,b) reverses. This
clearly takes a really long time to run, and meets the O(|Flow||E|) bound.

There is another approach to solving the network flow problem that will eliminate
this worst case, and it will involve a greedy heuristic on Ford-Fulkerson.

GREEDY/HILL-CLIMBING NETWORK FLOW

To remedy this worst-case situation, let’s try to use a greedy heuristic to aug-
ment Ford-Fulkerson. Find the highest capacity augmented path, recalling that the
capacity of a path is the smallest capacity of any link in the path. One particularly
easy-to-think-about approach to finding the highest capacity augmented path is
to delete edges in G until there is no path from s to ¢t. If we sort the edges in
increasing order of capacity and delete edges in order until a path no longer exists
between s and t, then choose this path and augment and adjust the graph, we have
a workable greedy solution, though we won’t prove that it works. In this case, the
running time is O(|E|* +|E|log | E|) to sort the edges and then iterate O(|E|) times
performing O(|E|) work (that is, a depth-first-search) each iteration.

Perhaps instead of deleting paths until s v~ ¢ we can approach this the opposite
way and add edges from the largest to the smallest until s ~» ¢. Is this any better?
Not asymptotically, but the Professor claims that if we do the addition of paths
that we can get this down to O(|E|). In fact, if you think about this from the
perspective of amortized analysis, you will see that it is true. Read on...

In doing a Depth-First-Search you are looking for nodes that are connectable
from s, but you're really performing an additive operation. On each iteration you
can only perform a Depth-First-Search to a particular set of nodes, say S; when
you add another edge, you may get another set, S’ that is strictly larger than S.
In fact, if node u € S, then by definition v € S’, and S C S’. This holds for all
sets of nodes that are reachable until all edges are added (at which point we have
E). So, if you consider the amount of E that’s added to the set at each iteration,
you will see that across all iterations you will never visit any edge more than once
(when it makes the transition from F — S to S as S — E).

So we figure that we can find the largest path in O(]E|) time, though we have
to sort the edges. If we use a red-black tree we can actually maintain sorted order,

CSE 202 NOTES FOR NOVEMBER 19, 2002 5

so we have O(|E| + |V|log |V]); T haven’t thought about this too much so I'll just
take it on faith. We now need to figure out how long it will take to perform the
entire algorithm with this new bound, and it’s not very interesting. It works out to
O(|E|* log |E|log |[Flow|) by my notes. Thus, this new greedy-hill-climbing method
is better than Ford-Fulkerson when |Flow| > |E|, but a bit worse otherwise.

