
CSE 202 NOTES FOR NOVEMBER 7, 2002

Methods for Proving Greedy Algorithms Correct

If you haven’t figured it out yet, greedy algorithms are usually incorrect but
efficient. Therefore, you need to be really careful to show that your greedy strategy
doesn’t somehow screw up the result. Here are three main arguments that you can
use to show that your greedy rule is sound.

Modify-The-Solution: Covered in the last two lectures, this approach is
often (but not always) very easy, and is usually the way to approach the
problem.

Achieves-The-Bounds: This is a somewhat more insightful proof, though
it is often a bit harder than the Modify-The-Solution approach. In this
argument, you define a set of “obstacles” and a function bound(o), o ∈
Obstacles. To show that the greedy algorithm works, prove two lemmas:

Lemma 0.1. For all solutions S, obstacle o, Cost(S) ≥ bound(o), or if it’s
more appropriate, Value(S) ≤ bound(o).

Lemma 0.2. Let Sg be the greedy solution. Then there exists an o ∈
Obstacles such that Cost(Sg) = bound(o), or if it’s more appropriate, Value(Sg) =
bound(o).

If both of these lemmas are true, then the following theorem applies.

Theorem 0.3. Sg is optimal.

Proof: Let o be as in lemma 2, and let S′ be any solution. Cost(Sg) =
bound(o) ≤ CostS′ by lemma 1.

This technique is also useful for judging hill-climbing algorithms. It isn’t
always a possible approach for proving greedy algorithms correct, but as
mentioned before, it’s somewhat more insightful into the problem.

Unique local optimum: In this technique, you define and characterize “small”
changes to a solution S, ∆i(S). Then show that the following lemma is true.

Lemma 0.4. If S 6= Sg, ∃i such that ∆i(S) � S.

Here I use ≺ and � to mean “is worse than” and “is better than” re-
spectively.

If this lemma holds, then you can prove the following theorem by con-
tradiction.

Theorem 0.5. Sg is the only optimal solution.

Proof: Let Sopt 6= Sg. Then, there exists ∆i(Sopt) such that ∆i(Sopt) �
Sopt, which is a contradiction. Therefore Sg is the only optimal solution.

This particular proof technique makes it very easy to prove Sg’s optimal-
ity by using a fallacy: if you were to show that ∀i,∆i(Sg) ≺ Sg, then you
are simply showing local optimality. The reason that there is a difference

1

2 CSE 202 NOTES FOR NOVEMBER 7, 2002

Figure 1. A sample schedule for a set of events in conference
rooms. Double arrows represent events. Two events that are
aligned vertically occur in the same room.

E1(1, 3) 1

E2(2, 5) 2

E3(3, 6) 3

E4(2, 8) 4

E5(4, 7) 5

E6(5, 6) 6

E7(7, 7) 7

8

between ∆i(Sg) ≺ Sg and ∆i(S) � S is that there is only one Sg but many
S’s: by showing that every S (except Sg) has a ∆ associated with it, you’re
actually making a strong statement about Sg). By showing that Sg has
no small changes ∆ that will improve it you’re really only making a weak
statement about Sg, unless you can show that the set of all ∆’s is the set
of all solutions.

Multiple Conference Room Scheduling

To illustrate the Achieves-The-Bound argument form, we will examine a new
problem.

Instance: List of events e = (s, f).
Solution Format: Integer k and mapping r(ei) ∈ {1, 2, . . . , k} that assigns

ei to a room k.
Constraints: No two events overlap in time. All events are assigned to a

room.
Objective: Minimize k, the number of rooms needed.

As an example, consider the following set: {(1, 3), (2, 5), (3, 6), (2, 8), (4, 7), (5, 6), (6, 7)}.
The situation is depicted graphically in figure 1. Notice that at 4:00, we have events
E3, E2, E4, E5 all at the same time, so we need a minimum of 4 rooms.

Since we are focusing on the proof of a greedy algorithm and not the design
of a greedy algorithm, I’ll just blurt out the greedy algorithm: sort the events
according to their start time. Walk down the list, in sorted order, of course, and
place each event in the smallest numbered conference room that doesn’t already
have something going on at that time.

What were the obstacles?
Times t.

What are the bounds?
The number of events happening at time t: you can never do better than the
number of things going on at one particular point in time.

True to Achieve-The-Bound form, we will prove the following lemmas.

CSE 202 NOTES FOR NOVEMBER 7, 2002 3

Lemma 0.6. Let t be any time, and let R : events 7→ Rooms be any valid schedule.
Furthermore, let B(t) = |{e ∈ E : es ≤ t ∧ ee ≥ t}|. Then, R ≥ B(t) for all t.

Proof: Let Ei1 , Ei2 , . . . EiB(t) be the events running at time t. Each Ei scheduled
in a separate room by Dirichlet’s pigeonhole principle.

Lemma 0.7. Let Rg be the k picked by the greedy algorithm. Then ∃t such that B(t) ≥
k. That is, at least k events are happening at t.

Proof: Let t be the starting time of the event in room k. There was an event
ei1 = (si1 , fi1) in room 1, ei2 = (si2 , fi2) in room 2, and so on to eik−1 , since
si∗ < t < fi∗ for each j = 1, 2, . . . k − 2 and si < sj when j > i since we sorted
the events. Therefore, all of these events are going on at time t, and our lemma is
proved. (In other words, if k was picked by the greedy solution, then there must
have been k events going on because the greedy solution would have chosen some
conference room k′ < k, but it apparently didn’t.)

Theorem 0.8. The greedy algorithm uses the minimum number of rooms.

Proof: Let k be the number of rooms that the greedy algorithm uses, and let R
be any valid schedule. There exists a t when k events are happening simultaneously,
so by lemma 1, R uses at least k rooms. So, R uses at lesat as many rooms as Rg,
and this holds for R = Ropt. QED.

Dijkstra’s Algorithm for Single-Source Shortest Path

To drive home the Achieves-The-Bound technique, let’s look at one more exam-
ple, Dijkstra’s Single-Source Shortest Path algorithm. This is sometimes known as
a “Breadth-first Search” of a graph G.

Instance: A directed weighted graph with all wij > 0. A source node s ∈ V .
Solution Format: A set of paths from s to all nodes u ∈ V .
Constraints: Paths are only listed once. (Ok, there aren’t really any con-

straints that aren’t blatantly obvious.)
Objective: Minimize the cost from s to each node u ∈ V .

Note that this is different than finding the minimum spanning tree because you’re
specifying the source. Is it the same as minimizing the total distance of the paths
from s to each node u? I believe it is. Since the total distance is the sum of all
the distances from s to each node u, by not having the total distance minimized,
it means that there is some u′ such that d(s, u′) is not as small as it could be. But
that’s a contradiction because these are supposed to be shortest paths!

What are the decisions?
For each node u, decide what predecessor node from u to take.

What is the greedy property?
Pick the decision point where the distance from s to u is smallest (and u has not
yet been seen).

What is the greedy rule?
Choose the edge, and set the shortest path from s to u.

The algorithm is shown in more detail in algorithm 1.
Let D(u) be the shortest distance from s to u. We want to prove the following

invariant: at any step j, ∀u ∈ S, d(u) = D(u). We’ll prove this by induction on
j. As a base case, d(s) = 0 = D(s). As our inductive assumption, assume that
this is true for every u ∈ S before iteration j; we need to show that the distance is

4 CSE 202 NOTES FOR NOVEMBER 7, 2002

SSSP(G = (V,E, w), s): directed weighted graph, all weights positive:

S ← {s}
d(s)← 0
p(s)← s {Or some sentinel value}
p(v)← NIL, d(v)←∞ for all v ∈ V, v 6= s.
for n− 1 times do

Let Σ be {e = (u, v) ∈ E : u ∈ S ∧ v 6∈ S}
Let eg = (ug, vg) ∈ Σ be the edge with the smallest cost: w[u, v] + d(u).
S ← S ∪ {v}
d(vg)← w[ug, vg] + d(p(ug))
p(vg)← ug

end for

Algorithm 1: Dijkstra’s Single-Source Shortest Path Algorithm

properly configured after iteration j, that d(vg) = D(vg). In order to do this, we
will use the achieves-the-bound argument.

We will state and prove two lemmas about this algorithm.

Lemma 0.9. Let P be any path between s to vg. Then D(vg) ≥ d(vg). (eg =
(ug, vg) is the edge that would be picked in iteration j by the greedy algorithm.)

Proof: P = sx1x2 . . . xj−1vg, where all the s · · ·xj−1 are in S and vg is not
in S. Let e′ = (xi, xi+1) ∈ Σ be the edge in Σ with the shortest distance. Then
Cost(P) ≥ Cost(s, . . . , xi) + w(e′) ≥ D(xi) + w(e′) = d(xi) + w(e′). Furthermore,
by the algorithm above, w(e′) ≥ w(eg). So, e′ is some edge in Σ, and eg is the
smallest edge in Σ, so Cost(e′) ≥ Cost(eg). Therefore, D(vg) ≥ d(vg).�

Lemma 0.10. There is a path P such that Cost(P) = Cost(eg).

Proof: ∃P ′ = s · · ·ug of cost d(ug). Let P = P ′ ∪ eg.

