CSE 202 NOTES FOR OCTOBER 31, 2002

DyYNAMIC PROGRAMMING PART 11

Recall that in dynamic programming, we follow these steps:

Find backtracking/recursive solution: Typically the simpler the recur-
sive algorithm you start with, the simpler (more likely you are to find) the
dynamic programming algorithm.

Identify and characterize the subproblems: Generally this involves look-
ing at how the recursion works out from a decision tree point of view, and
then parameterizing the subproblems.

Rewrite recursion in terms of renaming: This generally removes recur-
sion from the problem.

Identify bottom-up order on parameters: This usually consists of prop-
erly initializing whatever data structure you may be using with the appro-
priate base-cases.

Rewrite the recursive algorithm: Initialize any data structures with base

cases

for every subproblem, in bottom-up order do
do rewritten recursion

end for

return main problem

ALL-PAIRS SHORTEST PATHS

Consider a new problem: given a weighted directed graph G = (V, E,w), find
the shortest path between each pair of vertices in V' (here, “length” means the sum
of weights of the edges in the path). There are two variations to this problem:
one where all weights in w are positive, and the other where weights in w may be
negative. We will solve here only the w; > 0 case, since that constraint has the
effect that only simple loops can be considered optimal.

I will abbreviate Shortest Path Length as SPL. We could say that SPL(s,t) =
min {wls, t] : min{w(s,s’) + SPL(s',t)},s’ € N(s)}, but this is problematic be-
cause it will get caught in loops. To take care of this problem, we could keep
track of every node that gets visited on a path from s to ¢t and check each time we
visit a node that it hasn’t been visited before on this path, but that leads to an
exponential bookkeeping problem. Instead, we can just keep track of the number
of steps in the path: it will never be larger than the number of edges in the graph,
because all weights are positive and the paths must be simple.

So let’s redefine our function SPL(s,t) and augment it with a length I, which is
an upper bound on the number of edges we will allow in our path:

wls,t]ifl =1,(s,t) € E
SPL(s,t,1) = { ocifl=1,(s,{)¢ E
min { SPL(s,t,l — 1), mingen(s) {SPL(s',t',1 — 1) + w[s, s']} }
1

2 CSE 202 NOTES FOR OCTOBER 31, 2002

How many subproblems are in this new algorithm? We have [that varies from 1
to n, and we have s € V and t € V, so n® possible subproblems (here n is the size
of V). (Note that this O(n?) is not the amount of work that our algorithm will do,
but the number of subproblems there are to solve.)

What is the bottom-up order? Well, in the top-down order, ! decreases, so in
the bottom-up order, [increases.

The new algorithm written in the form of the template above is:

for s €V do

for t € V do
if (s,t) € E then
SPL[s][t][1] <« w]s,]
else
SPL[s][t][1] < o
end if
end for
end for
for [= 2 upto n do
for s €V do
fort €V do

wls,t]ifl=1,(s,t) € E
SPL[s|[t]l]] = ¢ ooifl=1,(s,t) ¢ E
min { SPL[s][t][l — 1], ming e n(s) {SPL[s')['][l — 1] + wls, ']} } {*}

end for
end for
end for

We're really doing O(n) operations on all the neighbors in the innermost loop,
which isn’t O(n?) but O(m) (m = |E|). Of course, on dense graphs, this is the
same thing, but it’s more accurate to say O(m). Thus, our time is O(n?m).

This is the Bellman-Ford algorithm. Notice that for dense graphs this is quite
bad: O(n?) (as m — n?).

A Dense Graph Algorithm. We just described a dynamic programming algo-
rithm for the APSP problem, and we arrived at it through the usual approach
of finding a backtracking solution and then working out the repetitive subprob-
lem structure. However, just because we did this with one backtracking algorithm
doesn’t mean we couldn’t do something similar with other backtracking algorithms.
The decision points in the Bellman-Ford algorithm are nodes, and the options are
what the next node in the shortest path will be. We could instead consider the
edges e € E and an option could be whether or not e is in a shortest path, and if
so, how it fits in. If e is in the path, then there must be an edge to the left of it
and an edge to the right of it, unless it is one of the terminal edges.

We can write the backtracking version of this algorithm, also known as the Floyd-
Warhsall algorithm, as follows. We use N»(z) to denote the neighborhood of x,
that is, all vertices connected by edges to x. N; is the set of inbound neighbors,
and N, is the set of outbound neighbors. As usual, we only concern ourselves with
the length of the path and leave out the details that return the path itself.

BTFW(G = (V,E),z €V, y € V):

CSE 202 NOTES FOR OCTOBER 31, 2002 3

vy, <— some node in G that is not x or y.
s« BTFW(G — {v,},z,y)
for u € N;(v,) do
for v € N,(v,,) do
temp «— BTFW(G—{v,},z,u)+BTFW(G—{v,}, v, y)+w(u, v,)+w(v,, v).
if temp < s then
s « temp {We know that v,, is in the path, then.}
end if
end for
end for
return s

Clearly BTFW is an exponential algorithm. However, we can consider the sub-
problem structure as we did for the Belman-Ford algorithm. Each invocation of the
backtracking algorithm is on a graph G’ and two nodes a and b. If we establish an
ordering of the vertices (it doesn’t really matter how), then we define an ordering
on the calls for the graphs G’, as long as “some node in G” in the backtracking
algorithm is replaced with “the last node in G that is not x or y”. In this case,
our graph G’ is a list of vertices v1,vs,...,v; at iteration 7 and edges on only these
vertices. We can construct a datastructure Da, b,] that holds the minimum dis-
tance of a path from a to b whose interior nodes come from G;. In this context, G;
represents the set of allowable vertices for a path to pass through. The dynamic
programming version of the Floyd-Warshall algorithm is shown below.

FWI[G]

for w € V do

for v € V do
Dlu,v,1] « min {w(u,v),w(u,v1) + w(vi,v)}
end for

end for

fori=2,3...,N do

for u € V do
for v € V do
Dlu,v,i] < min{D[u,v,i — 1], D[u,v;,i — 1] + D[v;,v,i — 1]}.
end for
end for
end for

This is clearly O(n?). Thus, for dense graphs, Floyd-Warshall APSP is an order
of n faster.

