
CSE 202 NOTES FOR OCTOBER 11, 2001

Dynamic Programming

Dynamic programming is like backtracking with one additional idea: save your
work. If your recursive algorithm is calling itself on identical subproblems an ex-
ponential number of times, simply save the answers in some easily-named and
constant-time-addressable data structure so that you can avoid all the re-computation.
In doing this, you will eliminate the recursive structure of your solution by solving
all of the subproblems in a bottom up order.

In other words, we follow these steps:

Find backtracking/recursive solution: Typically the simpler the recur-
sive algorithm you start with, the simpler (more likely you are to find) the
dynamic programming algorithm.

Identify and characterize the subproblems: Generally this involves look-
ing at how the recursion works out from a decision tree point of view, and
then parameterizing the subproblems.

Rewrite recursion in terms of renaming: This generally removes recur-
sion from the problem.

Identify bottom-up order on parameters: This usually consists of prop-
erly initializing whatever data structure you may be using with the appro-
priate base-cases.

Rewrite the recursive algorithm: Initialize any data structures with base
cases
for every subproblem, in bottom-up order do

do rewritten recursion
end for
return main problem

As a toy example, consider the problem of calculating the binomial function:(
n
k

)
(number of sets S of k elements drawn from a larger set U of n elements).

If we took a backtracking approach, we would do something like the following:

if k ≤ 0 then
return 1;

else
return choose(n− 1,k)+choose(n− 1,k − 1)

end if
1
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Figure 1. The chain of calls made by the backtracking choose function
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However, if we were to draw out a tree of the recursive calls made to the choose
algorithm, we’d have a situation like figure 1. In this case, we see that two of
the calls are the same, namely, the calls to

(
n−2
k−1

)
. If we saved this work, we’d

only have to do it once. The dynamic programming version of the algorithm
is:

for m = 1 to n do
for k = 0 to m do

if k = 0 ∨ k = m then
c[k,m]← 1

else
c[k,m]← c[k − 1,m− 1] + c[k, m− 1]

end if
end for

end for
The asymptotic time behavior of this algorithm is O(n2) instead of O(2n). Of

course, there’s a linear iterative algorithm for calculating
(
n
k

)
for particular values

of n and k:
r ← 1
for j = 1 upto k do

r ← r × n−j+1
j

end for
return r

Card Counting

Another example of dynamic programming is the age-old cheating technique of
counting cards: given a deck of n cards A[1..n], figure out how many hands of
length l sum to value t. We will apply the above process.

Find backtracking solution: What are the decision points?
The cards in A[1..n].

How does one decision affect the other decisions?
If we include a card, then we decrease the target t by the value of that card,
otherwise we change the size of the deck.

Are the subproblems self-similar?
Yes. We have t′, a new deck A[2..n] and a hand-length of l − 1 (if we
included the top card, l otherwise).
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The backtracking solution is fairly straightforward, then. At a high level,

Hands(A[1..n], l, t) =


Hands(A[2..n], l, t) if A[1] > t, n > 1
Hands(A[2..n], l, t) + Hands(A[2..n], l − 1, t−A[1]) if l > 0, n > 1, A[1] ≤ t
1 if n = 1, A[1] = t, l = 1
1 if t = 0, l = 0
0 otherwise

Which can be restated fairly easily as an algorithm.
Identify and characterize the subproblems: As we call Hands, we’re chang-

ing the size of the array, the value of the target, and the length of the hand.
So, the parameters of the recursive solution were A, l, and t, and our new
parameters are 1 ≤ I ≤ n, A[I..n], 0 ≤ l′ ≤ l, and 0 ≤ t′ ≤ t ≤ lv (where v
is the maximum value of a card). We can use I, l′, and t′ as our parameters,
and notice that we will fill in a data structure H[I, l′, t′] as we solve our
subproblems. So let’s call H[I, l′, t′] the number of hands summing to t′ in
A[I..n] of length l′. Notice that we have in no way changed the problem,
we’ve simply renamed parts of it to be more data-structure oriented.

Rewrite the recursion with the renamed subproblems: Our new renamed
recursive solution is now:

H[I ′, l′, t′] =


H[I + 1, l′, t′] if A[I] > t′

H[I + 1, l′, t′] + H[I + 1, l′ − 1, t′ −A[I] if l′ > 0, I > n,A[I] ≤ t′

1 if I = n, A[I] = t′, l′ = 1
1 if t′ = 0, l′ = 0
0 otherwise

Identify the bottom-up order on the solution: In the recursive solution,
the index I was increasing. In the DP solution, then, I should be decreas-
ing.

Apply template: We rewrite our solution using the above template.
if t > lv then

return 0;
end if
{Initialization}
Create H[1..n][0..l][0..t]
for I = 1 upto n do

H[I][0][0]← 1
end for
H[n][1][A[n]]← 1 {This corresponds to the t′ = A[n] case}
for I = 1 upto n do

for t′ = 1 upto t do
H[I][0][t′]← 0

end for
end for
for l′ = 0 upto l do

for t′ = 0 upto t do
if l′ 6= 0 and t′ 6= 0 then

H[n][l′][t′]← 0
else

H[n][l′][t′]← 1
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end if
end for

end for
{Computation}
for I = n− 1 downto 1 do

for l′ = 0 upto l do
for t′ = 0 upto t do

if A[I] > t then
H[I][l′][t′]← H[I + 1][l′][t′]

else
H[I][l′][t′]← H[I + 1][l′ − 1][t′ −A[I]] + H[I + 1][l′][t′]

end if
end for

end for
end for
return H[1][l][t]

The time of this dynamic programming algorithm is O(nlt) = O(nl2v) where v
is the maximum value for any card.

As a side note, memoization is very similar to dynamic programming, except
that you use the original recursion, modified by your naming scheme. This is a
popular technique in Perl programs because of autovivification, but memoization
suffers from lack of locality of reference. In fact, memoization is typically a worse
technique except when the overlap between subproblems is sparse, at which point
the savings in memory is generally more beneficial than locality of reference.


