CSE 202 NOTES FOR OCTOBER 11, 2001

DyYNAMIC PROGRAMMING

Dynamic programming is like backtracking with one additional idea: save your
work. If your recursive algorithm is calling itself on identical subproblems an ex-
ponential number of times, simply save the answers in some easily-named and
constant-time-addressable data structure so that you can avoid all the re-computation.
In doing this, you will eliminate the recursive structure of your solution by solving
all of the subproblems in a bottom up order.

In other words, we follow these steps:

Find backtracking/recursive solution: Typically the simpler the recur-
sive algorithm you start with, the simpler (more likely you are to find) the
dynamic programming algorithm.

Identify and characterize the subproblems: Generally this involves look-
ing at how the recursion works out from a decision tree point of view, and
then parameterizing the subproblems.

Rewrite recursion in terms of renaming: This generally removes recur-
sion from the problem.

Identify bottom-up order on parameters: This usually consists of prop-
erly initializing whatever data structure you may be using with the appro-
priate base-cases.

Rewrite the recursive algorithm: Initialize any data structures with base

cases

for every subproblem, in bottom-up order do
do rewritten recursion

end for

return main problem

As a toy example, consider the problem of calculating the binomial function:
(}) (number of sets S of k elements drawn from a larger set U of n elements).
If we took a backtracking approach, we would do something like the following:

if £ <0 then

return 1;
else

return choose(n — 1,k)+choose(n — 1,k — 1)
end if

2 CSE 202 NOTES FOR OCTOBER 11, 2001

FIGURE 1. The chain of calls made by the backtracking choose function

However, if we were to draw out a tree of the recursive calls made to the choose
algorithm, we’d have a situation like figure 1. In this case, we see that two of
the calls are the same, namely, the calls to (Z:f) If we saved this work, we’d
only have to do it once. The dynamic programming version of the algorithm

1S:

for m =1 ton do
for £k =0 tom do
if k=0V Kk =m then
clk,m] — 1
else
clk,m] « clk —1,m — 1] + c[k,m — 1]
end if
end for
end for
The asymptotic time behavior of this algorithm is O(n?) instead of O(2™). Of
course, there’s a linear iterative algorithm for calculating (Z) for particular values
of n and k:

r«—1

for j =1 upto k£ do
r—1rx nojtl

end for

return r

CARD COUNTING

Another example of dynamic programming is the age-old cheating technique of
counting cards: given a deck of n cards A[l..n], figure out how many hands of
length [sum to value t. We will apply the above process.

Find backtracking solution: What are the decision points?
The cards in A[l..n].
How does one decision affect the other decisions?
If we include a card, then we decrease the target ¢ by the value of that card,
otherwise we change the size of the deck.
Are the subproblems self-similar?
Yes. We have ¢/, a new deck A[2..n] and a hand-length of [— 1 (if we
included the top card, [otherwise).

CSE 202 NOTES FOR OCTOBER 11, 2001 3

The backtracking solution is fairly straightforward, then. At a high level,

Hands(A[2..n],1,t) if A[1] >t,n>1

Hands(A[2..n],{,t) + Hands(A[2..n],] — 1,t — A[1]) if L > 0,n > 1, A[1] <t
Hands(A[l..n],l,t) =< lifn=1A4[1]=tl1=1

1ift=0,1=0

0 otherwise

Which can be restated fairly easily as an algorithm.

Identify and characterize the subproblems: As we call Hands, we’re chang-
ing the size of the array, the value of the target, and the length of the hand.
So, the parameters of the recursive solution were A, [, and ¢, and our new
parameters are 1 < I <n, A[I..n], 0 <!’ <[, and 0 < t' <t < lv (where v
is the maximum value of a card). We can use I, I’, and ¢’ as our parameters,
and notice that we will fill in a data structure H[I,l’,t'] as we solve our
subproblems. So let’s call H[I,!’,t'] the number of hands summing to ¢’ in
A[I..n] of length I’. Notice that we have in no way changed the problem,
we’ve simply renamed parts of it to be more data-structure oriented.

Rewrite the recursion with the renamed subproblems: Our new renamed
recursive solution is now:

H[I+1,U,t]if A[I] >t/

HI+1Ut|+HI+1,I'—1,¢ - A ifl'>0,I >n,A[l] <t
HIINU =< 1ifI=nAll]l=¢,I'=1

1if¢Y =0,I'=0

0 otherwise

Identify the bottom-up order on the solution: In the recursive solution,
the index I was increasing. In the DP solution, then, I should be decreas-
ing.

Apply template: We rewrite our solution using the above template.

if t > v then
return 0;
end if
{Initialization}
Create H|[1..n][0..7][0..7]
for I =1 upton do
H[I][0][0] < 1
end for
Hn|[1][A[n]] < 1 {This corresponds to the ¢’ = A[n] case}
for I =1 upto n do
for ¢ =1 upto t do
H[I)[0][t'] < O
end for
end for
for I’ = 0 upto ! do
for ¢ = 0 upto t do
if I’ #0 and t’ # 0 then
Hn|[l'][t'] <0
else
Hn)[)[#) — 1

4 CSE 202 NOTES FOR OCTOBER 11, 2001

end if
end for
end for
{Computation}
for I =n — 1 downto 1 do
for I’ =0 upto [do
for ¢/ = 0 upto ¢ do
if A[I] >t then
H[I[[t] — H[I +1][I"][t']
else
HIL)V)f#) — HIL+ 1)[= 1)[¢ — A[L]) + H[I + 1[][¢)
end if
end for
end for
end for
return H[1][I][¢]

The time of this dynamic programming algorithm is O(nit) = O(nl?v) where v
is the maximum value for any card.

As a side note, memoization is very similar to dynamic programming, except
that you use the original recursion, modified by your naming scheme. This is a
popular technique in Perl programs because of autovivification, but memoization
suffers from lack of locality of reference. In fact, memoization is typically a worse
technique except when the overlap between subproblems is sparse, at which point
the savings in memory is generally more beneficial than locality of reference.

