CSE 202 NOTES FOR OCTOBER 22, 2002

BACKTRACKING AND MAXIMUM INDEPENDENT SET

We have been trying to cover general techniques for algorithm design, and so
far we’ve examined divide and conquer. This technique works really well if you
can divide problem into multiple subproblems that are all some multiplicative fac-
tor smaller than the original—if you consider the recurrence relation where you
simply subtract off an integer at each step, you’ll see that the problem quickly
becomes exponential. Nonetheless, even this latter type of recursion—often called
backtracking—is occasionally useful, at least in practice.

A vague taxonomy of algorithm design techniques is shown in figure 1.

Consider a new problem: calculate the maximum independent set of a graph
G. A MIS of a graph G = (V,E) is a subset of V such that Ve = {u,v} €
E, either u € S or v € S. The problem is to find the largest independent subset
in G: maximize |S|. In English, the idea is to find the largest subset such that at
most one endpoint of an edge is present, in other words that no two vertices in the
new set are neighbors.

For example, consider the graph in figure 2. An independent set would be {4, C'},
but not {A, B}. More formally,

Input: Graph G = (V, E)
Solution Space: S CV
Constraint: Ve € E,(ue S = v¢S)V(veS = u¢g?s).

In this case, exhaustive search generates the power set of V', where every com-
bination of v in the set and v out of the set for every v is represented. There

FIGURE 1. A rough taxonomy of algorithm design techniques that

we’ll learn about in this class
Divide and Conquer

Backtracking

N

Dynamic Programming Memoization Greedy

FIGURE 2. An undirected graph. {A, C'} form an independent set,
while {A, B} do not.

2 CSE 202 NOTES FOR OCTOBER 22, 2002

are 2" possible sets, and we have to measure the size of each, so the exhaustive
search technique takes O(2") time. We can improve on this a little bit by deciding
to imagine the solution space as a set of binary numbers, and then ordering the
binary numbers by the number of 1’s in their representation and then starting from
11111 ---111 and looking until 0000 - - - 000, stopping at the first independent set.
It’s still slow as hell, and O(2").

Backtracking applies a different approach: pick a decision point and perform a
case analysis for each option for constructing other decision points. Then solve each
subproblem recursively and take the best solution (the optimization method — a
"search” problem would simply terminate).

In general you need to have self-similarity in backtracking—by doing your case
analysis you should be solving recursively the same problem (otherwise, how is it
recursive?). The book makes a big deal about this, but Russell basically implies
that you can generalize a problem until it is necessarily self-similar. There’s a bit
of an art to that, from what I've seen, but it appears to hold.

The Maximum-independent set algorithm is shown in algorithm 1.

MIS(G = (V, E): a graph): largest set of independent vertices

if |V| =0 then

return .
end if
if |[V| =1 then

return V.
end if
pick u € V.
Gout — G — {u} {remove u from V and E}
Gin — G —{u} — N(u) {N(u) are the neighbors of u}
Sout — MIS(Gout)
Sin — MIS(Gin) U {u}
: return maxsize(Sout, Sin)

{return S, if there’s a tie — there’s a reason for this.}

== =
N =2

Obviously, first check to see if you're in a base case. If so, you terminate nicely.
If you’re not, you choose a vertex in the vertex set, and then posit that the vertex
is in the MIS. If it is, then you can remove the vertex from consideration, along
with all of its neighbors, and then recursively call the same MIS routine on the
smaller problem. At this point, you might have returned a non-empty MIS, but
you don’t know if it’s as large as possible: you assumed that the vertex was in the
set, so now assume that the vertex is not in the set—remove it from the graph
and recurse. The idea here is that you're decreasing the size of the search space
by the degree of u each time you visit a point u. At least some of the time you're
getting a reasonable savings, but what about the worst case? What is the worst
case? We have T'(n) < T(n — 1) +T(n — 1 — d,) + ©(n¥), where the k doesn’t
particularly matter (in other words, this recurrence is very bottom heavy for this
exponential algorithm, so we’re more concerned with the number of leaves, rather
than the polynomial work done). We'll ignore the ©(n*) term and just deal with
Tn)<T(n—-1)+T(n—-1-d,). If d, =0 then T'(n) < 2T (n — 1), which implies
that T'(n) € O(2™). That’s no good. We can shortcut this case by noticing that if

CSE 202 NOTES FOR OCTOBER 22, 2002 3

dy, = 0 that we can just leave the node u in S, so we only recurse on Sy if d,, # 0.
Otherwise, just recurse Sj,.

Now what’s the worst case? Try d,, = 1, then T'(n) < T'(n—1)+T(n—2), and we

n

get a Fibonnaci sequence, T'(n) € O((HT‘/g)) &~ O(2:™). This is still exponential,
but it’s much better than 2" (well, maybe not much better, but it’s still better).
Maybe we can use a linear sequence of nodes as the next worst case? Or a binary
tree. Then we can put new decisions into the algorithm and find new worst cases
and so on. The point is that we generally end up with more efficient exponential
algorithms, not poly-time algorithms.

Backtracking is usually a very general solution technique—you can exploit almost
any problem-specific characteristic to improve the efficiency, and the algorithm
frequently does well in practice; worst-case inputs are often unlikely in the real
world. One caution about backtracking algorithms, though, is that a rough upper
bound is generally very easy to see, but narrowing in on the upper bound gets very
difficult very quickly.

