CSE 202 NOTES FOR OCTOBER 8, 2002

PREFACE

The FFT was voted to be one of the “algorithms of the century” in a recent
Science article. It has led to many improvements in lots of different fields, and can
generally be considered just an all-around cool thing.

MULTIPLICATION AND THE FFT

Integer multiplication is a curious beast. Every algorithm we have thought of so
far is O(n?), and that’s no good. We will see an algorithm today that multiplies
integers in O(nlogn) time.

Let’s ignore numbers for the moment and just think about polynomials. When
we need to multiply two polynomials P4 and Pg, we need to multiply all terms
together and then add like-degreed terms. This is obviously a long drawn-out
process, taking O(n?) time. Of course, this is only true when we’re talking about
polynomials that are represented as sequences of coefficients; we know from algebra
that any polynomial of degree n can be represented by n + 1 points that lie on the
polynomial curve. If we are given 2n of these points for each of the polynomials
P4 and Pg, multiplication is relatively easy: simply multiply each of these points
pairwise (2;,¥;4y;5) and you have the new polynomial. We need 2n points, clearly,
because the product polynomial P4 Pp will be of degree 2n, give or take. The
problem is that if you are given a coeflicient list and you want a coefficient list out
the other end of this algorithm, then this fact doesn’t help very much.

To relate this to the problem of multiplying integers, note that the number
10230 is the same as lz* + 023 + 222 + 32 + 0 where 2 = 10. Thus, if we can
take two integers formulated in this polynomial fashion, turn them into “point-
value representation”, do a pairwise multiplication, and then convert them back
to coefficient representation then we will have multiplied them. Of course, that
doesn’t seem like it’s any easier than the naive shift-and-add methods, but let’s
just give it a whirl.

The basic idea is that we will need to create a coefficient representation for a
polynomial, evaluate it at a number of points, do pairwise multiplication, and then
convert it back to coefficients. We have some latitude in exactly which points we
use to evaluate the polynomial—by choosing the complex roots of unity we end
up with very nice evaluation properties. In fact, the evaluation of a polynomial of
degree m at the m complex roots of unity is called the DFT, or Discrete Fourier
Transform. Why this is, I don’t know. I alluded to this earlier: the issues here run
deep, my friend, whereas you probably do not.

The FFT, then, is a divide and conquer approach to evaluating a polynomial at
the roots of unity.



2 CSE 202 NOTES FOR OCTOBER 8, 2002

To show the motivation for this idea from a mathematical standpoint, consider
the following:

A = r10"? 4+
B = tl0"?4u
AB = rt10" + (ru+ st)10"2% + su

In this process, T'((n) = 4T(n/2) + O(n) € O(n?). Let’s construct a polynomial Pa
from A such that A = P,(10"/2) and similarly for B. Multiply the polynomials,
evaluate at 10™/2 and we’ll have multiplied A and B. Consider what would happen
if we did some sort of approach like Strassen’s algorithm: multiply (r + s)(t +u) =
P4(1)Pp(1). We could also choose 0 as an evaluation point, which gives us su, and
we could also use —1 as a point, which gives us (s—r)(u—t). We can get the middle
coefficient of P4 Pg by taking 1/2P,B(1)—1/2P4B(—1), and do something similar
for the first and third coefficients. Here, T'(n) = 3T (n/2)+0O(n), which falls into the
bottom-heavy case and off the cuff we can say that T'(n) € O(n!8s2) = O(n~7).
Better than O(n?), but not great.

Let’s do reducto ad absurdum: if we broke this into 2 pieces and it gave us
some improvement, then breaking it into 3 pieces should give us an even better
improvement. In this case, we define a P4 and Pg like this:

Pa = a10"? + 010" + ag
Pz = 031023 4 5,10™/3 4 by
PyB = P4Pg
P4B(X) = AB when X =10"/3

The process that we’ll go through is:

Construction of the polynomial: Determining the a coefficients and b co-
efficients.

Evaluating the polynomial: Evaluate the new polynomials at a small num-
ber of points, multiply pointwise.

Interpolate: Based on the two steps above, figure out what the value is at
the later point.

So far, we don’t have a good way of picking the small number of points that
you evaluate at, but that doesn’t matter in light of a larger problem: when the
degrees get to near 10” for some value of x, then this just turns into a shift-and-
add approach. In the case above, P4 Pp will be a quartic polynomial, so we’ll need
5 points. Try {0,1,—1,2,—2}. Again, we can see the expression that corresponds
to PaB(1) is (a2 + a1 + ag)(ba + by + by), and if we did something similar to the
other evaluation points we could do some algebra, but let’s not get carried away
here. The point is that each subproblem consists of about n/3 digits, and there
are 5 of them. Evaluations are shifts and adds, which takes O(n) time, so we end
up with T(n) = 5T(n/3) 4+ O(n) which works out to T(n) € O(n'°¢:% € O(n?/?)
(ny/n). If 3 groups of n/3 gave us an improvement, try k groups of n/k. In
this case, the recurrence relation works out to be T'(n) = (2k — 1)T(n/k) + O(n)
which is still bottom heavy since k < 2k — 1 for £ > 1. By the master theorem,

log 2+log k
T(k) € O(n'osr(2k=1)) and ploss(k—1) < plogn 2k — ™ %" and we end up with

the result that for large k, this multiplication procedure is in time n'*¢ where € is
an arbitrarily small number (provided k is arbitrarily large).




CSE 202 NOTES FOR OCTOBER 8, 2002 3

Step back for a moment — what we’ve done is parameterize the problem of
multiplying n digit numbers (or polynomials, if you will) at k points. Let’s choose
k = n. In this case A = a,,_110" " + - - - ag, and similarly for B. If n > 10, though,
we suddenly have a problem: we have to evaluate the P4 B polynomial at n = 10,
which is exactly what we’re trying to evaluate by evaluating the P4 B polynomial
at n = 10. Hmm. That’s no good. Oh! Try using the rational numbers! Hmm,
that’ll give us the same problem, but sort of in reverse.

Let’s try complex numbers. There are many properties to the roots of unity that
I won’t go into—they are in the book in chapter 35, and well worth the read. Class
time ran out quickly, but the algorithm from the book is listed in algorithm 1.

RECURSIVE-FFT(a: array of numbers

n «— length(a)
if n =1 then

return a;
end if
Wy, — e?ﬂi/n
w1
a[O] — (a(); az, ..., an72)
all' — (a1, as,...,an_1)
yl «— RECURSIVE-FFT(al%)

10: y1) « RECURSIVE-FFT(al!)
11: for k < 0 upto n/2 —1 do

120 Yprnjz — Uk — Yo + wyb!
13: W Wwy

14: end for

15: return y;

This algorithm divides a polynomial P into two pieces: Peyen and Poqq. The
idea is that Payen = ag + a2z + a4x? .. ., and similarly for the odd polynomial, and
Pa(x) = £Paoda(2?) + Pacven(2?). The reason that this works is that w?,; =
wf””j = w%j = w]z, because of the properties of w (if you haven’t guessed, w;
is the j-th complex n-th root of unity. What algorithm 1 is doing is dividing
the polynomials into two parts, evaluating the subparts, and then stitching them
back together through Horner’s rule. Note that the property of ws listed above is
referred to as the “Halving lemma”, and makes the problem feasible through divide
and conquer methods. The halving lemma is listed on page 832 of CLRS. Read it.

Because the Fourier Transform is its own inverse, by a suitable substitution of
variables the same algorithm can change the point-value representation back to the
coefficient representation. To really understand this you have to understand more
about Fourier transforms than I do. I used them a lot in college, but how this all
magically works out like this is completely mystifying to me.

Note that in the book, in the lecture, and in the notes for both the book and the
lecture, I have been really vague and handwavy: I have not shown that a polynomial
evaluated at the complex roots of unity is the same as the Fourier Transform of
the original polynomial! This is deliberately avoided, since this isn’t a course in
analysis. It would be a good thing to learn why all of this works out at a deeper
level, but for the purposes of multiplication we can just claim this as proof by



4 CSE 202 NOTES FOR OCTOBER 8, 2002

authority (our teacher told us so). Anyway, divide and conquer once again saves
the day.
|



