
NOTES FOR OCTOBER 1, 2002

Divide and Conquer

Divide and Conquer a commonly used technique for designing algorithms. We
will study three different algorithms that exploit this: Strassen’s matrix multiply
algorithm, Closest Pair of Points, and the FFT.

Divide and conquer goes a little like this.
• Define subproblems [Divide] (D(n))
• Solve subproblems recursively [Conquer] (C(n))
• Reconstruct from the subsolutions the answer [Recombine] (R(n))

It is usually the case that T (n) = aT (n/b) + C(n) + R(n) and R(n) = O(nk)
and C(n) ∈ O(f(n)) ∈ o(R(n)). Here, T (n) refers to the amount of time it takes
to solve a problem of size n.

The Master Theorem in the book describes how to solve relations in this form,
and divides the solution space into three parts. Please refer to the book for more
information.

Mergesort is the canonical divide-and-conquer algorithm. Mergesort splits a list
in half, and then calls itself recursively on each half. When the input list is only one
element long, mergesort returns it as a trivailly sorted list. Mergesort then takes
the two sorted sublists and merges them as you would a deck of cards. The full
algorithm, its proof of correctness, and the analysis of its running time is in CLRS
somewhere in the first few chapters.

The time complexity of mergesort is T (n) ≤ 2(T (n/2) + O(n). This can be
proved by induction on n to be O(n log n).

As an aside, we’re assuming a lot of things when we design these algorithms.
We’re assuming constant-time access to memory, that arithmetic operations and
comparisons take constant time, and that we have some method of implementing
arrays such that accessing any element in that array takes constant time. These
are the assumptions that underlie the RAM model of computation, and are rea-
sonable for the moment. Other types of computers don’t behave this way, and
even sequential processors have some difficulty with really large input sizes. One
could point out that the asymptotic analyses that we do are sometimes meaning-
less because the asymptotic behavior is exhibited only in regions that fall outside
of these assumptions. But, whatever, that’s not a useful argument: the asymptotic
properties are still fun to study and you’d be missing the larger point—algorithms
are mathematical objects, and can be studied as such.

Returning to the problem of recurrence relations, we can identify three “styles”
of recurrence:

top-heavy: The bulk of the work is done almost entirely at the top level,
which dominates the time for the recursive calls

bottom-heavy: The bulk of the work is done almost entirely in the base
cases

steady-state: Each level of recursion does about the same amount of work.
1



2 NOTES FOR OCTOBER 1, 2002

Each of these cases is represented in the Master Theorem, but this gives you an
intuitive way to quickly guess at the asymptotic behavior.

Figure 1. The recursion tree for mergesort.

∑8
i=1

n
8 = n

∑4
i=1

n
4 = n

n
2 + n

2 = n

n

n
8

n
8

n
4

n
8

n
8

n
4

n
2

n
8

n
8

n
4

n
8

n
8

n
4

n
2

n

The basic idea in solving these recurrences is to create a “recursion tree,” and
watch as the constant associated with the asymptotic order changes on each level.
For example, for mergesort, the recursion tree looks like figure 1. Mergesort is a
perfect example of the “steady-state” case, because the total amount of work on
each level (i.e., the sum of the work done in the nodes of that level) remains constant
for all levels. Here, the root level represents the amount of work performed on the
input list, exclusive of the recursive calls to the function. The first level represents
the amount of work performed in the first batch of recursive calls, and so on. The
figure shows four levels, or the recursion chain for a list of size 8. As you can see, the
total amount of work done on each level is the same, so we have T (n) = 2T (n/2)+n,
to which we can guess the solution to be of the form T (n) ≤ cn log n where c is
some constant, and we prove it by induction, being quite careful of course to make
sure that when we make our inductive conclusion that our new c is not different
than the value of c we made in the inductive hypothesis. Right?

In the steady state case, you can see that each level produces a reasonable amount
of work. In the top heavy case, the work is primarily done in the top few levels
of the tree and lower levels do less and less, so the work is often bounded by a
polynomial. In the bottom heavy case, the work is done mostly in the leaves of
the tree, and the work is bounded by another polynomial (generally formed by
summing the work in the leaves).

In general, you should now have some intuition that if T (n) = aT (n/b)+O(nk),
you can see sort of by inspection what the recursion tree should look like (bottom
heavy, top heavy, steady state) based on the values for a, b and k. From this you
can generate a good guess for the order of T (n). This is not actually a proof, by any
stretch of the imagination, but a lot of this sort of work requires a bit of intuition
at first that eventually gets filled in with formality. If nothing else, you can use this
sort of intuitive approach as a basis of a real proof. Still, don’t confuse the two.

Bottom Heavy Recurrence



NOTES FOR OCTOBER 1, 2002 3

AllSums(A[1..N ]): S[N,N ], array of integers.
1: S[1..n

2 , 1..n
2 ]← AllSums(A[1..n

2 ]) {Upper left corner}
2: S[n

2 + 1..n, n
2 + 1..n]← AllSums(A[n

2 + 1..n] {Lower right corner}
3: for i = 1 upto n

2 do
4: for j = n

2 + 1 upto n do
5: S[i, j] = S[i, n

2 ] + S[n
2 + 1, j]

6: end for
7: end for

Algorithm 1: Intra-array summation

Figure 2. A (partial) recursion tree for the AllSums algorithm

n
4

n
4

n
2

n
4

n
4

n
2

n

4c(n
4 )2 = 4cn2

16 = cn2

4

2c(n
2 )2 = 2cn2

4 = cn2

2

cn2

We will now look at a new algorithm: summation of all array entries. The input
is an array A[1..n] of integers, and the output is Sum[N,N ] where Sum[i, j] =∑j

k=i A[k]. Not surprisingly, this algorithm will be O(n2), but we’ll look at it as an
example of how we should analyze algorithms. The algorithm is shown in algorithm
1.

The recursion tree here looks something like figure 2. What we see is that
Ti(n) = 1

2i cn
2 where i is the level of recursion, so to calculate T (n) we do

T (n) =
log n∑
i=0

Ti(n)

=
log n∑
i=0

1
2i

cn2

≤ 2cn2.

where this last inequality is due to the summation of a harmonic series; see appendix
A in the text for more information.

The math worked out here as our intuition expected: because we divided the
array into halves and then performed quadratic work on inputs of size n/2, and
then (in some sense) interpolated the information for the other parts of the matrix
in less than n2 time, we’re dominated by the work done in the first iteration so a
rough time analysis for the first iteration would be a good guess for the order.

�



4 NOTES FOR OCTOBER 1, 2002

Figure 3. A set of points, divided into a left set and a right set

Recall that the generic recursion relation that we’re somewhat familiar with is
T (n) = aT (n/b) + f(n). One constraint on f(n) is that it be a polynomial, that is,
of the form cnk. One algorithm we will look at today will violate this constraint,
and we’ll see how to deal with it.

At the ith level of a recursion tree with this type of recurrence relation, we have
ai nk

bik amount of work to do. This term forms a geometric series in i (taking k and
n to be constants for this particular instance of the problem). This is where the
idea of “phase-changes” comes into play: if a

bk > 1 we have the bottom heavy case,
since work increases as i increases. If we have a

bk < 1 then work decreases and we
have the top-heavy case. When a

bk = 1 we’re in steady-state.
As an aside, this seems like a motivation for the Master Theorem. Eventually we

will need to deal with non-constant a’s and b’s, and cases where f(n) is not a simple
polynomial function, but neither this method nor the Master Theorem cover this.
A good place to learn about these sorts of things is the ACM Computing Surveys
article done a while back on this, or the back of Neapolitan and Naimapour.

Closest Pair of Points

Let’s examine a new problem of finding the two points that are closest together
in a set of points. Clearly the input is a set of points pi = (xi, yi), and we’ll
use the Euclidean distance between two points pi and pj as the metric that we’re
minimizing: ‖pi, pj‖ =

√
(xi − xj)2 + (yi − yj)2.

The naive way of handling this problem would be to take all combinations of
two points in the set and to calculate the distance between each pair, saving the
smallest pair. Since there are n(n−1)

2 different ways of combining two items from a
set of n things, this algorithm runs in O(n2) time. This is not good enough.

If we look at the divide-and-conquer approach, we might consider dividing the
points into two sections, as indicated in figure 3. Suppose for an instant that we
could find the minimum distance (and the corresponding points) between the points
in a set. Then, if we had such a function we could run it on each half of the original
set of points, and then do some weird stitching together at the boundary; just
because we found the closest two points in each set doesn’t mean that we found the
closest points between the sets. We are helped to some extent by the fact that we
already have an upper bound for the smallest distance (it’s the smallest of the two
minimal distances that were calculated through this mystery function) so we know
that there are only certain points that we’ll need to check, and each of those points
will have only finitely (and in fact, small) many neighbors that we need to look at.



NOTES FOR OCTOBER 1, 2002 5

Figure 4. Points at the boundary
δ
2

2δ(Px, Py)

In particular, let’s just say δ is the smallest distance in either of the sets. Then we
should look at points in each set that are only δ from the boundary. Furthermore,
any point on the other side of the boundary would have to be at least as close
as δ to the boundary, and within 2δ of the altitude (because each point could be
within δ above or below the current altitude. Note that this bounding box does
not represent points that necessarily are less than δ away from the candidate point,
but points that might be closer. The situation is presented in figure 4: we have 8
boxes, each of height δ/2 and each of width δ/2 that we need to check.

Intuitively, you can see that there may be at most two points in this δ × 2δ
bounding box and that they must be at least δ apart, so we don’t need to consider
distances between points on the same side of the boundary (another way to motivate
this is that you have already computed the smallest possible distance, through this
magical function).

A first pass at an algorithm is shown in algorithm 1.
An interesting insight is that because you can determine a constant upper bound

on the number of points to check on each iteration, and because you have an initial
upper bound for the minimum distance δ, you can limit the search space a priori.

So how does the timing for this algorithm work out? If we take a naive approach
to calculating the median, and if we do the sorting of the y-coordinates, then we
have the recurrence relation T (n) = 2T (n/2)+Θ(n log n). This, of course, does not
work in the set of equations we have above since f(n) is not a polynomial. What we
need to do is form a common-sense bound to show how this function behaves. For-
tunately, as is generally the case, we’re not trying to solve the recurrence relation,
but simply to put some sort of reasonable bound on it.

Basically, what’s happening in this recurrence is that at each level of the recursion
tree, the amount of work is changing predictably, but not as a harmonic series. At
some point, this stops being a top-heavy recursion and starts being steady-state.
We need to figure out an upper and lower bound for the way that this work is
changing, and then bound the time as the sum of two pieces. A recursion tree for
the first few levels is shown in figure 5, and you can see how the work is changing
as a function of the level i: T (n) = Σlog n

i=1 cn log n
2i .

We still need to determine a decent bound for this. We see that there are 2i

problems of cn
2i log n

2i size each, and we see that the work starts off in a steady-
state case and then switches to top-heavy. What we’ll do is pick the top row of
the tree, multiply that by the depth of the tree, and call that an upper bound.
That is, T (n) ≤ cn log n × log n = cn log2 n, or T (n) ∈ O(n log2 n). We can get



6 NOTES FOR OCTOBER 1, 2002

CPoP({p1, p2, . . . pn}): two points
1: xm ← median ofxi

2: L← pi : xi ≤ xm, R← pi : xi > xm

3: (pi, pj) = CPoP(L), (pk, pl) = CPoP(R)
4: δ ← min(‖pi, pj‖ , ‖pk, pl‖)
5: L← {pi ∈ L : xi ≥ xm − δ}
6: R← {pi ∈ R : xi ≤ xm + δ}
7: Sort L and R by y-coordinate
8: i← 1, j ← 1.
9: for all points in L do

10: (x′, y′)← Li

11: (x′′, y′′)← Rj

12: repeat
13: increment j
14: until y′′ > y′ − δ
15: k ← j, (x′′′, y′′′)← Rk

16: repeat
17: save i, k as champion
18: until y′′′ > y + δ
19: end for

Algorithm 2: First take at Closest Pair of Points algorithm

Figure 5. The Recursion Tree for T (n) = 2T (n/2) + Θ(n log n)

8cn
8 log n

8

4cn
4 log n

4

2cn
2 log n

2

cn

n
8

n
8

n
4

n
8

n
8

n
4

n
2

n
8

n
8

n
4

n
8

n
8

n
4

n
2

n

a lower bound on T (n) by noticing that at the level k halfway up the tree that
2k = 21/2 log n =

√
n, so that cn log n/2k = 1/2cn log n. We know that the work

in the upper part of the tree must be greater than the depth of this row times the
work it performs, which is 1/2cn log n × 1/2 log n, and T (n) ∈ Ω(n log2 n). Thus,
T (n) ∈ Θ(n log2 n), but we had to go about it the long way.

A particular problem that we have is that the algorithm is still kind of slow,
mostly because we are redoing some repetitious work repeatedly over and over
again the same way. Specifically, we are resorting a list of points at each recursive
step; we sort it in the x direction to find the median, and we sort it in the y direction



NOTES FOR OCTOBER 1, 2002 7

to do the stitching together of the two sides of the recursion. If we pre-sorted the
lists and then maintained a mapping of each point into the sorted x list and the
sorted y list, then this algorithm falls completely into the steady-state case with
f(n) = n and we get T (n) ∈ O(n log n). We will see, fairly shortly, a method
(actually, two methods) for calculating the median in linear time, but this won’t
help us since for this algorithm we have to process the L and R lists in sorted order
of y.�


