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The ongoing success of the proteomics endeavor is the result of a prolific symbiosis between experimental
ingenuity [2, 3, 4] and efficient bioinformatics [5, 6, 7, 8, 9, 10, 11]. Without these, ground-breaking landmarks
such as the human genome project [12, 13] or the HUPO initiative [14] would likely not have seen the light
of day. But despite valuable contributions, the road to a better understanding of disease proteomics is still
hurdled by significant difficulties in the extensive identification of post-translational modifications and in the
sequencing of novel proteins like cancer fusion proteins or antibody chains.

Recently, tandem mass spectrometry (MS/MS) based approaches seemed to be reaching the limit on
the amount of information that could be extracted from MS/MS spectra [15, 16, 17]. However, a closer
look reveals that a common limiting procedure is to analyze each spectrum in isolation, even though high
throughput mass spectrometry regularly generates many spectra from related peptides.

By capitalizing on this redundancy we have shown that, similarly to the alignment of protein sequences [5],
unidentified MS/MS spectra can also be aligned for the identification of modified and unmodified variants of
the same peptide. Moreover, this alignment procedure can be iterated for the accurate grouping of multiple
peptide variants (Figure 1). The highly correlated peaks in spectra from variants of the same peptide allowed
us to reliably identify all known and even some unknown modifications in a sample of cataractous lenses
proteins [18, 19].

Furthermore, the combination of shotgun proteomics [20] with the alignment of spectra from overlapping
peptides led us to the development of Shotgun Protein Sequencing [21] - similarly to the assembly of DNA
reads into whole genomic sequences, we have shown that assembly of MS/MS spectra enables the highest
ever de-novo sequencing accuracy, while recovering over 85% of the target proteins sequence1 [22](Figure 2).
Similar mixtures of venom proteins have previously provided essential clues for the design of important
drugs [23, 24].

Beyond providing the proof-of-concept for these methods, we are actively collaborating on quantify-
ing drug and age-induced changes in post-translational modifications, and on sequencing of cancer fusion
proteins, antibody light/heavy chains and unknown snake venom proteins. Additionally, our tools will be
available to the community as open-source packages and web services 2.

1Covered by at least 3 overlapping spectra.
2Soon to be introduced to a wide audience at an invited tutorial affiliated with the Computational Systems Bioinformatics

(CSB’2006) conference in Stanford, USA.
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Figure 1: Identification of post-translational modifications through spectral alignment; a) Spectral alignment
between modified and unmodified variants of the peptide TETMA (b-ions shown in blue, y-ions in red); b)
Grouped modification states of the peptide MDVTIQHPWFK from a sample of cataractous lenses; c) Highly
correlated MS/MS spectra from the indicated peptide variants.

MSWSPSLTTQTCGAWEMKERLGTGGFGNVIRWHNQETGEQIAIKQCRQELSPRNRERWCLEIQIMRRLTHPNVVAARDVPEGMQNLAPNDLPLLAM

EYCQGGDLRKYLNQFENCCGLREGAILTLLSDIASALRYLHENRIIHRDLKPENIVLQQGEQRLIHKIIDLGYAKELDQGSLCTSFVGTLQYLAPE

LLEQQKYTVTVDYWSFGTLAFECITGFRPFLPNWQPVQWHSKVRQKSEVDIVVSEDLNGTVKFSSSLPYPNNLNSVLAERLEKWLQLMLMWHPRQR

GTDPTYGPNGCFKALDDILNLKLVHILNMVTGTIHTYPVTEDESLQSLKARIQQDTGIPEEDQELLQEAGLALIPDKPATQCISDGKLNEGHTLDM

DLVFLFDNSKITYETQISPRPQPESVSCILQEPKRNLAFFQLRKVWGQVWHSIQTLKEDCNRLQQGQRAAMMNLLRNNSCLSKMKNSMASMSQQLK

AKLDFFKTSIQIDLEKYSEQTEFGITSDKLLLAWREMEQAVELCGRENEVKLLVERMMALQTDIVDLQRSPMGRKQGGTLDDLEEQARELYRRLRE

KPRDQRTEGDSQEMVRLLLQAIQSFEKKVRVIYTQLSKTVVCKQKALELLPKVEEVVSLMNEDEKTVVRLQEKRQKELWNLLKIACSKVRGPVSGS

PDSMNASRLSQPGQLMSQPSTASNSLPEPAKKSEELVAEAHNLCTLLENAIQDTVREQDQSFTALDWSWLQTEEEEHSCLEQAS

a) Spectral alignment between spectra S1/S2 b) Glue spectrum peaks matched by spectral alignment (dotted lines).     

Glues between S2/S3 and S1/S4 come from 2 additional spectral alignments.

c) Final graph after replacing repeated edges with edge multiplicity

      (multiplicity shown in square brackets)
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d) Sequenced portions of the target protein sequence:

Figure 2: Shotgun Protein Sequencing through assembly of tandem mass spectra; a) Spectral alignment
between spectrum S1 (from peptide SVSCILQEPK) and spectrum S2 (from peptide SVSCILQEPKR) reveals
the common sequence information in both spectra. b) Matching peaks in spectral alignments become pairwise
gluing instructions between every pair of aligned spectra. Additional spectra S3 (from PESVSCILQEPK) and
S4 (from SVSCILQ+22EPK) respectively illustrate additional types of spectral alignment: partial peptide
overlap and alignment of modified/unmodified variants of the same peptide; c) Repeated edges are replaced
by single edges with weight proportional to their multiplicity and the consensus sequence for all assembled
spectra is found by the heaviest path in this graph; d) Recovered portions of a target protein in our
sample [22]. Correct amino acid predictions are shown in red (93%) and incorrect in blue (7%).
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