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Abstract— GPU computing has emerged in recent years as a viable
execution platform for throughput oriented applications or regions of
code. GPUs started out as independent units for program execution
but there are clear trends towards tight-knit CPU-GPU integration.
In this work, we will examine existing research directions and future
opportunities for chip integrated CPU-GPU systems.

We first seek to understand state of the art GPU architectures and
examine GPU design proposals to reduce performance loss caused by
SIMT thread divergence. Next, we motivate the need of new CPU
design directions for CPU-GPU systems by discussing our work in the
area. We examine proposals as to how shared components such as last-
level caches and memory controllers could be evolved to improve the
performance of CPU-GPU systems. We then look at collaborative CPU-
GPU execution schemes. Lastly, we discuss future work directions and
research opportunities for CPU-GPU systems.

Index Terms—GPU Computing, CPU-GPU Design, Heterogeneous
Architectures.

I. INTRODUCTION

We are currently witnessing an explosion in the amount of digital
data being generated and stored. This data is cataloged and processed
to distill and deliver information to users across different domains
such as finance, social media, gaming etc. This class of workloads
is referred to as throughput computing applications1. CPUs with
multiple cores to process data have been considered suitable for
such workloads. However, fueled by high computational throughput
and energy efficiency, there has been a quick adoption of Graphics
Processing Units (GPUs) as computing engines in recent years.

The first attempts at using GPUs for non-graphics computations
used corner cases of the graphics APIs. To use graphics APIs for
general purpose computation, programmers mapped program data
carefully to the available shader buffer memory and operated the
data via the graphics pipeline. There was limited hardware support
for general purpose programming; however for the correct workload,
large speedups were possible [35]. This initial success for a few
non-graphics workloads on GPUs prompted vendors to add explicit
hardware and software support. This enabled a somewhat wider class
of general purpose problems to execute on GPUs.

NVIDIA’s CUDA [34] and AMD’s CTM [4] solutions added
hardware to support general purpose computations and exposed the
massively multi-threaded hardware via a high level programming
interface. The programmer is given an abstraction of a separate
GPU memory address space similar to CPU memory where data
can be allocated and threads launched to operate on the data. The
programming model is an extension of C providing a familiar inter-
face to non-expert programmers. Such general purpose programming
environments for GPU programming have bridged the gap between

1GPU architects commonly refer to these as general purpose workloads
as they are not pertaining to graphics. However, these are a portion of the
CPU architects definition of general purpose, which consists of all important
computing workloads.
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Fig. 1. Evolution of CPU-GPU architectures.

GPU and CPU computing and led to wider adoption of GPUs for
computing applications.

Recently AMD (Fusion APUs) [43], Intel (Sandy Bridge) [21]
and ARM (MALI) [6] have released solutions that integrate general
purpose programmable GPUs together with CPUs on the same die.
In this computing model, the CPU and GPU share memory and
a common address space. These solutions are programmable using
OpenCL [25] or solutions such as DirectCompute [31]. Integrating
a CPU and GPU on the same chip has several advantages. First is
cost savings because of system integration and the use of shared
structures. Second, this promises to improve performance because no
explicit data transfers are required between the CPU and GPU [5].
Third, programming becomes simpler because explicit GPU memory
management is not required.

Not only does CPU-GPU chip integration offer performance bene-
fits but it also enables new directions in system development. Reduced
communication costs and increased bandwidth have the potential to
enable new optimizations that were previously not possible. At the
same time, there are new problems to consider. Based on a litera-
ture survey, we have distilled the major research and development
directions for CPU-GPU systems in figure 1.

The top portion of the figure shows the factors that have led to the
development of current GPGPU systems. In [30], [46], [2] NVIDIA
discusses unified graphics-computing architectures and makes a case
for GPU computing. We discuss these papers and examine the ar-
chitecture of GPGPU systems in section II. Continuous improvement
of GPU performance on non-graphics workloads is currently a hot
research topic. Current GPUs suffer from two key shortcomings – loss
of performance under control flow divergence and poor scheduling
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Fig. 2. Contemporary GPU architecture.

policies. In [14] and [32], authors explore mechanism for efficient
control flow execution on GPUs via dynamic warp formation and a
large warp microarchitecture. In [32], the authors propose a better
scheduling policy. We discuss these techniques in section III.

One of the key steps in the development of next generation
systems might be a range of optimizations. As shown in figure 1,
we term the first of these as “holistic optimizations”. Under these,
the CPU+GPU system is examined as a whole to better optimize its
components. Rather than being designed for all workloads, we expect
CPU core design to be optimized for workloads that the GPGPU
executes poorly. The current combination of CPUs and GPU contains
redundant execution components that we expect to be optimized in
future designs. In section IV, we discuss these aspects by explaining
our work on CPU design directions for CPU-GPU systems [7]. There
have been proposals to redesign shared components to account for
the different demands of CPU-GPU architectures and workloads.
In [28], the authors propose a thread level parallelism aware last-
level cache management policy for CPU-GPU systems. In [20], the
authors propose memory controller bandwidth allocation policies for
CPU-GPU systems. We discuss these papers in section V.

Our research survey provides evidence of a second kind of
system optimization that we term as “opportunistic optimizations”.
Chip integration reduces communication latency and but also opens
up new communication paths. For example, previously the CPU
and GPU could only communicate over a slow external interface
but with chip-integration they share a common last level cache.
This enables previously unexplored usage oppourtunities. The ideas
discussed revolve around the use of idle CPU or GPU resources.
COMPASS [47] proposes using idle GPU resources as programmable
data prefetchers for CPU code execution. Correspondingly, in [48],
the authors propose using a faster CPU to prefetch data for slower
throughput oriented GPU cores. We discuss these collaborative CPU-
GPU execution schemes in section VI. We discuss future work
directions in section VII and conclude in section VIII.

II. GENERAL PURPOSE GPU ARCHITECTURES

In this section, we will examine the design of GPU architectures
for general purpose computations.

The modern GPU has evolved from a fixed function graphics
pipeline which consisted of vertex processors running vertex shader
programs and pixel fragment processors running pixel shader pro-
grams. Vertex processing consists of operations on point, line and
triangle vertex primitives. Pixel fragment processors operate on
rasterizer output to fill up the interiors of triangle primitives with
interpolated values. Traditionally, workloads consisted of more pixels
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Fig. 4. Example of warp scheduling.

than vertices and hence there were greater number of pixel processors.
However, unbalance in modern workloads influenced a unified vertex
and pixel processor design. Unified processing, first introduced with
the NVIDIA Tesla [30], enabled higher resource utilization and
allowed the development of a single generalized design.

Figure 2 shows a block diagram of contemporary NVIDIA GPG-
PUs [30], [46], [2]. The GPU consists of streaming multiprocessors
(SMs), 6 high-bandwidth DRAM channels and on-chip L2 cache. The
number of SMs and cores per SM varies as per the price and target
market of the GPU. Figure 3 shows the structure of an SM. An SM
consists of 32 single instruction multiple thread (SIMT) lanes that can
collectively issue 1 instruction per cycle per thread for a total of 32
instructions per cycle per SM. Threads are organized into groups of
32 threads called “Warps”. Scheduling happens at the granularity of
warps and all the threads in a warp execute together using a common
program counter. As shown in figure 3, SIMT lanes have access to a
fast register file and on-chip low latency scratchpad shared memory
/ L1 caches. Banking of the register file enables sufficient on-chip
bandwidth to supply each thread with two input and 1 output operand
each cycle. The operand buffering unit acts as a staging area for
computations.

GPUs rely on massive hardware multithreading to keep arithmetic
units occupied. They maintain a large pool of active threads organized
as warps. For example, NVIDIA Fermi supports 48 active warps for
a total of 1536 threads per SM. To accommodate the large set of
threads, GPUs provide large on-chip register files. Fermi has a per
SM register file size of 128KB or 21 32-bit registers per thread at
full occupancy. Each thread uses dedicated registers to enable fast
switching. Thread scheduling happens at the granularity of warps.
Figure 4 shows an example of warp scheduling. Each cycle, the
scheduler selects a warp that is ready to execute and issues the next
instruction to that warp’s active threads. Warp selection considers
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Date Product Family Transistors Tech GFlops GFlops Processing Register Shared Memory L2 Memory Total
Node (SP MAD) (DP FMA) Elements File (per SM) / L1 (per SM) Size Bandwidth (GB/s) Threads

2006 GeForce 8800 Tesla 681 million 90nm 518 – 128 8KB 16KB – 86.4 12,288
2008 GTX 280 Tesla 1.4 billion 65nm 933 90 240 16KB 16KB – 142 30,720
2009 GF 100 Fermi 3.1 billion 40nm 1028 768 512 32KB 48KB 768KB 142 24,576
2012 GK 110 Kepler 7.1 billion 28nm 2880 960 2880 64KB 64KB 1536KB 192 30,720
2009 Core i7-960 Bloomfield 700 million 45nm 102 51 8 x 4 wide SIMD – 32KB 8MB L3 32 8
2012 Core i7 Extreme Sandy Bridge 2.3 billion (wGPU) 28nm 2042 1022 16 x 4 wide SIMD – 32KB 20MB L3 37 16

TABLE I
GPU PERFORMANCE SCALING DATA FROM PUBLICATIONS [33], [24], [2], [29] AND OPEN SOURCES [1] HAVE BEEN USED TO GENERATE THIS TABLE.

factors such as instruction type and fairness while making a pick.
Instruction processing happens in-order within a warp but warps can
be selected out-of-order. This is shown in the bottom part of figure 4.

A SIMT processor is fully efficient when all the lanes are occupied.
This happens when all 32 threads of a warp take the same execution
path. If threads of a warp diverge due to control flow, the different
paths of execution are serially executed. Threads not on the executing
path are disabled and on completion all threads re-converge to the
original execution path. SMs use a branch synchronization stack to
manage thread divergence and convergence.

GPUs are designed to reduce the cost of instruction and data
supply. For example, SIMT processing allows GPUs to amortize cost
of instruction fetch since a single instruction needs to be fetched
for a warp. Similarly, large on-chip register files reduce spills to
main memory. Programmers have the additional option of manually
improving data locality by using scratchpad style shared memory.
There is explicit programmer support to enable this.

GPUs have been designed to scale. This has been achieved with
the lack of global structures. For example, unlike CPUs, the SMs
have simple in-order pipelines, albeit at a much lower single thread
performance. Instead of seeking performance via caches and out-
of-order processing over large instruction windows, GPUs incor-
porate zero overhead warp scheduling and hide large latencies via
multithreading. There is a lack of global thread synchronization i.e.
only threads within an SM can synchronize together and not across
the whole machine. Lastly, there is a lack of global wires to feed
data. Instead, a rich on-chip hierarchy of large registers files, shared
memory and caches is used to manage locality. Such features reduce
power consumption and allow GPUs to scale with lower technology
nodes [33], [24].

Table I shows GPU scaling since 2006. We observe that floating
point capabilities are scaling at or beyond Moore’s law pace. Single
precision multiple-add performance (MAD) has increased about 6×.
Double precision fused multiply add (FMA), introduced first in 2008,
has grown to about a teraflop of performance in the latest archi-
tectures. The total size of storage structures is increasing somewhat
slowly. Shared memory and register files have increased in size 4×
and 8× respectively, as compared to about 22.5× growth in the
number of ALUs. Memory bandwidth is increasing at an even slower
rate, seeing only about a 2.2× increase.

Memory bandwidth clearly represents a potential scaling bottleneck
for GPUs. This is partially compensated by the nature of workloads.
Typical GPU workloads tend to have high arithmetic intensity and
hence can benefit from scaling in FLOP performance. However,
bandwidth limited workloads are not expected to scale as well. As
varied general purpose workloads start to get mapped to GPUs, there
have been proposals for spatially multitasking [3] bandwidth intensive
workloads together with arithmetically intensive workloads on the
same GPU.

The last two rows of table I show CPU scaling for throughput
oriented applications. Lee et al. [29] compared GTX 280 (row 2) vs
a Core i7-960 (row 5) and found the performance gap to be about
2.5×. However, raw numbers comparing the state of the art GPUs
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Fig. 5. Example of stack based re-convergence.

(row 4) and CPUs (row 6) point to a different picture today. While
CPU raw GFlop performance has doubled, GPU double precision raw
performance has gone up almost 10×. This points to an increasing
performance gap between GPUs and CPUs for throughput oriented
applications.

III. TOWARDS BETTER GPGPU ARCHITECTURES

We anticipate the integration of better general purpose GPGPU
designs as one of the next steps in the evolution of CPU-GPU
systems. One of the challenges in GPU architectures is efficient
handling of control-flow. In this section, we will examine proposals
to reduce the performance loss caused by SIMT thread divergence.
We also discuss an improved warp scheduling scheme.

SIMT processing works best when all threads executing in the warp
have identical control-flow behavior. Pure graphics code tends to not
have control flow divergence. But as diverse code gets mapped to the
GPU, there is a need to effectively manage performance loss because
of divergence. GPUs typically employ the stack based reconveregence
stream to split and join divergent thread streams. We will first describe
this baseline scheme and then discuss enhancements.

A. Stack based Re-Convergence

Figure 5 illustrates the stack based divergence handling procedure
employed by current GPUs. In this example we consider a single
warp consisting of 4 threads. The threads execute the code with the
control flow shown in the top portion of the figure. At address A,

2Estimated from Core i7-960 numbers assuming same frequency of oper-
ation.
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there is a conditional branch and 3 threads follow path with address
B and the one remaining thread follows path given by address C. The
control flow merges at address D. Since a warp can have only a single
active PC, on control flow divergence, one of the paths is chosen and
the other pushed on to the re-convergence stack and executed later.
The re-convergence stack is also used to merge threads in the warp
when the threads reach the control flow merge point. Each stack entry
consists of three fields: a re-convergence PC, an active mask and an
execution PC. Diverging paths execute serially but the re-convergence
stack mechanism is used to merge back threads by operating in the
following manner:

1) When a warp encounters a divergent branch, an entry with both
the re-convergence and execute PCs set to the control flow merge
point is pushed on to the stack. The control flow merge points are
identified by the compiler. The active mask of the entry is set to the
current active mask of the executing branch.

2) One of the divergent paths is selected for execution and the PC
and active mask for the warp are set to that of the selected path.
Another entry for the yet to execute path is pushed on to the stack.
The execute PC and active masks are set according to the yet to
execute path. The re-convergence PC is set to the merge point PC.
The second stack in figure 5 shows the status of the stack.

3) Each cycle, the warp’s next PC is compared to the re-
convergence PC at the top of the stack. If the two match, then the
reconvergence point has been reached by the current execution path.
Then the stack is popped and the current PC and active mask are
set to the execution PC and active mask entries of the popped stack
entry. This ensures that execution begins for the other divergent path.
This is shown in the third stack in figure 5.

The stack re-convergence mechanism guarantees proper execution
but not full machine utilization. As shown in figure 5, diverging paths
execute serially and only the active threads of a path occupy the
machine. The SIMD units corresponding to inactive threads remain
un-utilized. In [14], Fung et al., propose “dynamic warp creation” to
improve machine utilization during divergence. We will now discuss
their scheme.

B. Dynamic Warp Formation

If there was only a single thread warp for execution, then the
performance loss due to divergence is unavoidable. Typically GPUs
support about 32 – 48 active warps and if there are multiple warps
available at the same diverge point, then threads from the same
execution path, but of different warps, can be combined to form new
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warps. Since these new warps follow the same execution path, there
is no divergence and better machine utilization. The thread scheduler
tries to form new warps from a pool of ready threads by combining
threads whose PC values are the same. Figure 6 illustrates the idea.
In this example, there are two warps named warp 0 and warp 1.
Threads from these warps diverge over paths A and B. However, the
scheduler dynamically combines threads from warp 0 and warp 1.
Threads following the execution paths A and B are combined into
new warps – warp 0+1 path A and warp 0+1 path B. The newly
formed warps have no thread divergence. In this way, the pipeline
can be better utilized under divergent control flow.

Dynamic warp formation mechanisms can reduce area overheads
by accounting for the register-file configuration used in typical GPUs.
This variant is called as ”Lane-Aware” dynamic warp formation. The
need for such a scheme arises because the SIMT lanes in which each
thread executes is statically fixed in order to reduce the number of
ports in the register file. The registers needed during the execution
of a specific lane are allocated to its respective bank. For example,
current GPU register files have 32 banks which are sufficient to
simultaneously feed 32 SIMT lanes as shown in the left half of
figure 7. When forming warps dynamically, the scheduler needs to
ensure that all threads in the new warp map to different SIMT lanes
and register file banks. Such a scheme removes the need for having a
cross bar connection between different ALUs and register file banks.
This simplifies design. If the warp formation scheduler can ensure
this then the register file accesses would be as shown in the right
half of figure 7. This particular scheme removes the need to add
expensive ports to the register file. Another possible scheme is to
stall the pipeline on a bank conflict and transfer data to the ALU via
an interconnection network, but lane-aware dynamic warp formation
removes the need for such modifications.

Dynamic warp formation has good potential to fully utilize the
SIMT hardware but is dependent on the availability of many warps
executing the same PC. If the warps progress at different rates, then
there would be not enough warps available to dynamically regroup
threads. To tackle this problem, the authors propose warp issue
heuristics. A “majority heuristic”, which issues warps with the most
common PC amongst all ready to schedule warps was found to give
good performance.

The authors analyzed overheads required to implement the lane-
aware dynamic warp formation scheme with majority heuristics.
They found an area overhead of about 4.7% needed for the scheme
including that for extra register file multiplexing logic. The storage
required to find the majority PC over 32 warps was the highest portion
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Benchmark Suite Application GPU CPU Time Kernel GPU Mapped Portions Implementation
Domain Kernels (%) Speedup (×) Source

Kmeans Rodinia Data Mining 2 51.4 5.0 Find and update cluster center Che et al. [9]
H264 Spec2006 Multimedia 2 42.3 12.1 Motion estimation and intra coding Hwu et al. [19]
SRAD Rodinia Image Processing 2 31.2 15.0 Equation solver portions Che et al. [9]

Sphinx3 Spec2006 Speech Recognition 1 25.6 17.7 Gaussian mixture models Harish et al. [17]
Particlefilter Rodinia Image Processing 2 22.4 32.0 FindIndex computations Goomrum et al. [15]
Blackscholes Parsec Financial Modeling 1 17.7 13.7 BlkSchlsEqEuroNoDiv routine Kolb et al. [26]

Swim Spec2000 Water Modeling 3 8.9 25.3 Calc1, calc2 and calc3 kernels Wang et al. [45]
Milc Spec2006 Physics 18 8.4 6.0 SU(3) computations across FORALLSITES Shi et al. [39]

Hmmer Spec2006 Biology 1 5.7 19.0 Viterbi decoding portions Walters et al. [44]
LUD Rodinia Numerical Analysis 1 4.6 13.5 LU decomposition matrix operations Che et al. [9]

Streamcluster Parsec Physics 1 3.3 26.0 Membership calculation routines Che et al. [9]
Bwaves Spec2006 Fluid Dynamics 3 2.9 18.0 Bi-CGstab algorithmn Ruetsche et al. [37]
Equake Spec2000 Wave Propagation 2 2.8 5.3 Sparse matrix vector multiplication (smvp) Own implementation

Libquantum Spec2006 Physics 4 1.3 28.1 Simulation of quantum gates Gutierrez et al. [16]
Ammp Spec2000 Molecular dynamics 1 1.2 6.8 Mm fv update nonbon function Own implementation
CFD Rodinia Fluid Dynamics 5 1.1 5.5 Euler equlation solver Solano-Quinde et al. [41]

Mgrid Spec2000 Grid Solver 4 0.6 34.3 Resid, psinv, rprj3 and interp functions Wang et al. [45]
LBM Spec2006 Fluid Dynamics 1 0.5 31.0 Stream collision functions Stratton et al. [22]

Leukocyte Rodinia Medical Imaging 3 0.5 70.0 Vector flow computations Che et al. [9]
ART Spec2000 Image Processing 3 0.4 6.8 Compute train match and values match functions Own implementation

Heartwall Rodinia Medical Imaging 6 0.4 7.9 Search, convolution etc. in tracking algorithm Szafaryn et al. [42]
Fluidanimate Parsec Fluid Dynamics 6 0.1 3.9 Frame advancement portions Sinclair et al. [40]

TABLE II
CPU-GPU BENCHMARK DESCRIPTION CPU TIME IS THE PORTION OF APPLICATION TIME ON THE CPU WITH 1× GPU SPEEDUP. KERNEL SPEEDUP IS
THE SPEEDUP OF GPU MAPPED KERNELS OVER SINGLE CORE CPU IMPLEMENTATION. ALL NUMBERS ARE NORMALIZED TO THE SAME CPU AND GPU.

1 1 0 0 

0 1 0 1 

0 0 1 1 

1 1 1 1 

1 1 0 0 

0 1 0 1 

0 0 1 1 

1 1 1 1 

- - 0 0 

0 1 0 - 

0 0 - 1 

1 1 1 1 

- - 0 0 

0 - 0 - 

0 0 - - 

- 1 - 1 

T = 0 T = 1 T = 2 T = 3 

1 1 1 1 

Activity Mask 

1 1 1 1 

Activity Mask 

1 1 

Activity Mask 

- - 

Time 

Original 
Large Warp 

Fig. 8. Dynamic sub-warp creation.

of this overhead. The authors demonstrate an average performance
benefit of 20.7% for the scheme.

C. Large Warp Microarchitecture and Two-Level Scheduling

Large warp microarchitecture proposed by Narasiman et al. [32]
is a similar technique to create warps at runtime. However, it differs
in method used to create the warps. The scheme starts out with a
warp that is significantly larger in size than the SIMT width. It then
dynamically creates SIMT width sized smaller-warps out of the large
warp at run-time. While creating the new warps, it groups threads
following the same divergence paths. This is illustrated in figure 8.
The figure shows a large warp consisting of 16 threads arranged in
a two-dimensional structure of 4 smaller warps of 4 threads each.
In this example we assume that our SIMT width is 4 threads. As
shown in the figure, each cycle, the scheduler creates threads from
the original large warp that map to different lanes. Their scheme
assumes a similar register file organization and access scheme as
used in Fung et al’s. [14] dynamic warp formation method.

The paper also proposes an improved scheduling algorithm known
as “two-level scheduling”. GPUs typically use a round-robin warp
scheduling policy giving equal priority to all concurrently executing
warps. This is beneficial since there is a lot of data locality across
warps. The memory requests of one warp are quite likely to produce

row buffer hits for memory requests of other warps. However as
a consequence, all warps arrive at a single long latency memory
operation at the same time. The key to fixing this problem is to
have some warps progress together and arrive at the same long
latency operation together, but to have other sets of warps that can be
scheduled when all the warps of the first set are waiting. The authors
achieve this by performing a two-level warp scheduling. The idea is
to group the large set of warps into smaller sets. Individual warps
of the sets are scheduled together but on long latency operations the
scheduler switches to the different set of warps. The authors evaluated
a combined large warp microarchitecture and two-level scheduling
overhead scheme and found it to improve performance by 19.1%.
Both the schemes combined have an area overhead of 224 bytes.

D. Dynamic Warp Formation vs Large Warp Microarchitecture

Dynamic warp formation gives better performance than the large
warp architecture alone. This is because the combination of threads
happens from only within the large warp but across all warps in
dynamic warp formation. However large warp architecture when
combined with two-level scheduling gives better overall performance.
Since two-level scheduling is an independent scheme, it can be com-
bined with dynamic warp formation to given even better performance
than both the proposed schemes.

IV. HOLISTICALLY OPTIMIZED CPU DESIGNS

In this section, we discuss our work on CPU architecture design
directions and optimization opportunities for CPU-GPU systems. The
combination of multicore CPUs and GPUs in current systems offers
significant optimization oppourtunities.

Although GPUs have emerged as general purpose execution en-
gines, not all code maps well to GPUs. The CPU still runs perfor-
mance critical code, either as complete applications or portions that
cannot be mapped to the GPU. Our work [7] shows that the code
running on the CPU in a CPU-GPU integrated system is significantly
different than the original code. We think that the properties of this
new code should form the basis of new CPU design.

Kumar et al. [27] argue that efficient heterogeneous designs are
composed of cores that each run subsets of codes well. The GPGPU is
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already a good example of that, it performs quite well on throughput
applications but poorly on single threaded code. Similarly, the CPU
need not be fully general-purpose. It would be sufficient to optimize it
for non-GPGPU code. Our aim in this work is to first understand the
nature of such code and then propose CPU architecture directions.
We base our conclusions by partitioning important benchmarks on
the CPU-GPU system. We begin by describing benchmarks used in
the study.

A. Benchmarks
A large number of important CPU applications and kernels with

varying levels of GPU offloading have been ported to GPUs. In
this work, we relied as much as possible on published GPU im-
plementations. We did this in order to perform code partitioning
based on the decisions of the community and not by our abilities.
We performed our own CUDA implementations for three important
SPEC benchmarks. For all other applications, we use 2 mechanisms
to identify the partitioning of the application between the CPU and
GPU. First, we base it on the implementation code if available. If
the code is not available, we use the partitioning information as
stated in publications. Table II summarizes the characteristics of our
benchmarks. The table lists out the GPU mapped portion and provides
statistics such as time spent on the CPU and normalized reported
speedups. We will also collect statistics for benchmarks with no
publicly known GPU implementations. Together with the benchmarks
listed in the table, we have a total of 11 CPU-heavy benchmarks, 11
mixed and 11 GPU-heavy benchmarks.

B. Methodology
Our goal is to identify fundamental characteristics of the code,

rather than the effects of particular architectures. This means, when
possible, we characterize as types, rather than measuring hit or miss
rates. We do not account for code to manage data movement as
this code is highly architecture specific and expected to be absent
in chip integrated CPU-GPU systems [5]. We use a combination
of real machine measurements and PIN [36] based measurements.
Using the CPU/GPU partitioning information we modify the original
benchmark code. We insert markers indicating the start and end of
GPU code. This allows microarchitectural simulators built on top of
PIN to selectively measure CPU and GPU code characteristics. We
also insert measurement functions. This also allows us to perform
timing measurements. All benchmarks are simulated for the largest
available input sizes. Programs were run to completion or for at least
1 trillion instructions.

CPU Time is calculated by using measurement functions at the
beginning and end of GPU portions and for the complete program.
Post-GPU CPU time was calculated by dividing the GPU portion of
the time with the reported speedup. Time with conservative speedups
was obtained by capping the maximum possible GPU speedup value
to 10.0 (single-core speedup cap from [29]).

Based on measurements of address streams, we categorize loads
and stores into four categories – static, strided, patterned and hard.
Static loads and stores have their addresses as constants. Loads and
stores that can be predicted with 95% accuracy by a stride predictor
with up to 16 strides per PC are categorized as strided. Patterned loads
and stores are those that can be predicted with 95% accuracy by a
large Markov predictor with 8192 entries, 256 previous addresses,
and 8 next addresses. All remaining loads and stores are categorized
as hard. We categorize branches similarly as – biased (95% taken
or not taken), patterned (95% prediction accuracy using a large local
predictor, using 14 bits of branch history), correlated (95% prediction
accuracy by a large gshare predictor, using 17 bits of global history),
and hard (all other branches).

We use the Microarchitecture Independent Workload Characteriza-
tion (MICA) [18] to obtain instruction level parallelism information.
MICA calculates perfect ILP by assuming perfect branch prediction
and caches. We modified MICA to support instruction windows up to
512 entries. We define thread-level parallelism (TLP) as the speedup
we get on an AMD Shanghai quad core × 8 socket machine. We
used parallel implementations available for Rodinia, Parsec, and some
SPEC2000 (those in SPEC OMP 2001) benchmarks for the TLP
study. The TLP results cover a subset of all our applications. We
could only perform measurements for applications where we have
parallel source code available (24 out of 33 total benchmarks).

C. Results

In this section we examine the characteristics of code executed
by the CPU, both without and with GPU integration. For all of our
presented results, we group applications into three groups — CPU-
heavy, mixed and GPU-heavy. We start by look at CPU time – the
portion of the original execution time that gets mapped to the CPU.

CPU Execution Time To identify the criticality of the CPU
after GPU offloading, we calculate the percentage of time in CPU
execution after the GPU mapping. The first bar in Figure 9 is the
percentage of the original code that gets mapped to the CPU. The
other two bars represent the fraction of the total time spent on the
CPU. The second and third bars account for GPU speedups with the
third bar assuming that the GPU speedup is capped at 10×. While
the 11 CPU-heavy benchmarks completely execute on the CPU, for
the mixed and GPU-heavy set of benchmarks about 80% and 7-14%
of execution is mapped to the CPU respectively. On average, program
execution spends more time on the CPU than the GPU. We see that
the CPU remains performance critical. In the figure we have sorted
the benchmarks by CPU time. We will use the same ordering for
subsequent graphs. We weight post-GPU average numbers by the
conservative cpu time (third bar) in all future graphs.

ILP is a measure of instruction stream parallelism. It is the
number of average independent instructions within the window size.
We measured ILP for two window sizes – 128 entries and 512
entries. As seen in figure 10, in 17 of the 22 applications, ILP drops
noticeably, particularly for large window sizes. For benchmarks such
as swim, milc and cfd, it drops by almost 50%. For the mixed set
of benchmarks, the ILP drops by over 27% for large window sizes.
In the common case, independent loops with high ILP get mapped
to the GPU, leaving dependence-heavy code to run on the CPU.
Occasionally dependent chains of instructions get mapped to the
GPU. For example, the kernel loop in blackscholes consisted of long
chains of dependent instructions. Overall, we see a 4% drop in ILP
for current generation window sizes and a 11% drop for larger sizes.
The gains from large windows sizes are degraded for the new CPU
code.

Branches Figure 11 plots the distribution of branches based on
our previously defined classification. We see a significant increase
in hard branches. The frequency of hard branches increases by 65%
(from 11.3% to 18.6%). Much of this is the reduction in patterned
branches, as the biased branches are only reduced by a small amount.
The overall increase in hard branches is because of the increase
in hard branches for mixed benchmarks and a high number of
hard branches in the CPU-heavy workloads. Hard branches increase
primarily because loops with easily predictable backward looping
branches get mapped to the GPU. This leaves irregular code to run
on the CPU, increasing the percentage of hard branches. Occasionally,
data-dependent branches are mapped to the GPU such as in equake
and cfd benchmarks. Since data-dependent branches are more difficult
to predict, the final CPU numbers appear as outliers. We simulated a
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realistic branch predictor, in order to evaluate the performance impact
of hard branches on real branch prediction rates. We found our miss
prediction rate to increase by 56%. We have omitted the graph in
order to conserve space.

Loads Figure 12 shows the classifications of CPU loads. We show
the breakdown of loads as a percentage of non-static loads i.e. loads
that are not trivially cached. We see that there is a sharp decrease
in strided loads and a corresponding increase in hard loads. In the
common case, regularly ordered code maps well to the GPU. We
observe that in our results. The hard loads remaining on the GPU are
not easily handled by existing hardware prefetchers or inline software
prefetching. The percentage of strided loads is almost halved, both
overall and for the mixed workloads. Patterned loads are largely
unaffected, but hard loads increase and become the most common
type. Applications such as lud and hmmer see an almost complete
change in behavior from strided to hard. We see an exception in
bwaves which goes from being almost completely hard to strided.
This is because the kernel with highly irregular loads is successfully
mapped to the GPU. To conserve space, we do not show results for
stores in this paper. We found stores to exhibit similar results as
loads.

Vector Instructions We find the usage of SSE instructions to drop
significantly as shown in figure 13. We saw an overall reduction of
44.3% in the usage of SSE instructions (from 15.0% of all dynamic
instructions to 8.5%). This shows that SSE ISA enhancements target
the same code regions as the GPGPUs. For example, in kmeans
we found the find nearest point functions to heavily utilize SSE
instructions. This function was part of the GPU region.

Thread Level Parallelism TLP captures parallelism that can be
exploited by multiple cores or thread contexts. This allows us to
measure the application level utility of having an increasing number
of CPU cores. Figure 14 shows TLP results. Let us first consider the
GPU-heavy benchmarks. CPU-only implementations of the bench-
marks show abundant TLP. We see an average speedup of 14.0× for
32 cores. However, post-GPU the TLP drops considerably, yielding
only a speedup of 2.1×. Five of the benchmarks exhibit no TLP post-
GPU, in contrast, five benchmarks originally had speedups greater
than 15×. Perhaps the most striking result is that no benchmark’s
post-GPU code sees any significant gain from going from 8 cores to
32. Overall for the mixed benchmarks, we again see a considerable
reduction in post-GPU TLP; it drops by almost 50% for 8 cores and
about 65% for 32 cores. We see that applications with abundant TLP
are good GPU targets. In essence, both multicore CPUs and GPUs
are targeting the same parallelism. However, as we have seen, post-
GPU parallelism drops significantly. On average, we see a striking
reduction in exploitable TLP. 8 core TLP dropped by 43% from 3.5
to 2.0 and 32 core TLP dropped by 60% from 5.5 to 2.2. While going
from 8 cores to 32 cores yielded a nearly two fold increases in TLP,
post-GPU the TLP grows by just 10% over that region. Post-GPU,
extra cores provide almost no benefit.

D. Impact on CPU Design

We group the architectural implications of the changing CPU
code base into two sets – CPU core optimizations and redundancy
eliminations.

CPU Core Optimizations Since out-of-order execution benefits
from large instruction windows, we have seen a steady increase in
processor window sizes for commercial designs and research that
increases window sizes or creates such an illusion [13]. We do not
see evidence that large windows are not useful. However the gains
from increasing window sizes might be muted. We see that post-
GPU, pressure increases on the branch predictor. Recently proposed
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Fig. 15. Chip integrated CPU-GPU architecture.

techniques [38] that use complex hardware with very long histories
might be more applicable because they better attack harder branches.
Memory accesses will continue to be a performance bottleneck
for future processors. The commonly used stride-based or next-
line prefetchers are likely to become significantly less relevant. We
recommend using significant resources towards accurate prediction of
loads and stores. Several past approaches that can capture complex
patterns including Markov-based predictors [23], predictors targeted
at pointer-chain computation [12], [10] and helper-thread prefetch-
ing [8], [49], [11] should be pursued with new urgency.

Redundancy Eliminations With the addition of a GPU, SSE
instructions have been rendered less important. Much of code that
gets mapped to CPU vector units can be executed faster and with
lower energy on the GPU. While there is no empirical evidence to
completely eliminate SSE instructions, some cores might choose to
not support SSE instructions or share SSE hardware with other cores.
Recent trends show that both CPU and GPU designs are headed in the
same direction with ever increasing core and thread counts. Our data
suggests that the CPU should refocus on addressing highly irregular
code with low degrees of parallelism.

V. HOLISTIC OPTIMIZATION OF SHARED STRUCTURES

In this section, we will discuss the design of two important shared
components. Figure 15 shows a block diagram of an integrated
CPU-GPU system. As we can see from the figure, last level caches
and the memory controller are shared amongst the CPU and GPU.
The integrated system brings new challenges for these components
because of CPU and GPU architectural differences.

While CPUs depend on caches to hide long memory latencies,
GPUs employ multithreading together with caching to hide latencies.
TAP [28] utilizes this architectural difference to allocate cache
capacity for GPU workloads in CPU-GPU systems. GPUs trade-off
memory system latency to bandwidth by having a lot of outstanding
requests to the memory system. Memory intensive CPU workloads
can potentially cause GPU delays and lead to missed real-time
deadlines on graphics workloads. In [20], Jeong et al. discuss a
CPU-GPU memory bandwidth partitioning scheme to overcome this
problem. We start by describing the TAP [28] system.

A. Shared Last-level Cache Design

In TAP [28], the authors utilize two key insights to guide decisions
on GPU workload cache capacity allocation. First, since GPUs are
massively multi-threaded, caching is effective only when the benefits
of multi-threading are limited. While for CPU workloads cache hit
rates can directly translate to performance, this is not always the
case for GPUs because of multi-threading based latency hiding. They
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find that traditional cache management policies are tuned to allocate
capacity on higher hit-rates. This might not hold for GPUs where hit
or miss rates do not always direct translate to performance increase or
loss. To solve this problem they propose a ”core sampling controller”
to measure actual performance differences of cache policies.

Second, GPUs and CPUs have different access rates. GPUs have
orders of magnitude more threads and generate more caches accesses
than CPU workloads. The authors propose a ”cache block lifetime
normalization” method to enforce similar cache lifetimes for both
CPU and GPGPU applications, even under the GPGPU workload
producing excessive accesses. Using the core sampling controller and
cache block lifetime normalization blocks, the authors propose TLP
aware cache partitioning schemes. We will now describe the design
on core sample controller and cache block lifetime normalization
blocks. Next we will explain how the authors modified the utility
based cache partitioning (UCP) scheme to propose TAP-UCP.

Core sampling controller measures the cache sensitivity of work-
loads. It does so by using two completely different cache policies
on cores (e.g. first core LRU insertion and second core MRU inser-
tion) and checking if core performance is different. A performance
different indicates cache sensitivity for the particular GPU workload.

Cache block lifetime normalization first measures number of cache
accesses for each workload. Next the ratio of caches access counts
are calculated for all workloads. TAP uses these ratios to enforce
similar cache residual times for CPU and GPU applications.

TAP-UCP algorithm proposed by the authors is a modification of
the well known UCP scheme. UCP is a dynamic cache partitioning
scheme that divides cache ways amongst applications at runtime.
UCP uses a hardware mechanism to calculate the utility of allocating
ways to particular applications. The goal is to maximize hit-rate
and hence cache ways are periodically allocated to applications
with higher marginal utility (utility per unit cache resources). In
UCP, hit-rate is assumed to lead to better performance. The authors
modify UCP to allocate just a single way for GPGPU applications
with little benefit. They scheme allocates less number of ways for
cache insensitive GPGPU applications. The performance sensitivity
measurement is achieved using the core sampling controller. They
also modify the UCP scheme such that GPGPU applications hit-rates
and utilities are normalized by the ratios of workload access counts
calculated by the cache block lifetime normalization block.

On similar lines, the authors propose modifications to the re-
reference interval prediction algorithm and propose the TAP-RRIP
algorithm. We omit the details of the scheme to conserve space.
The authors evaluated the TAP-UCP scheme over 152 heterogeneous
workloads and found it to improve performance by 5% over UCP
and 11% over LRU.

B. Memory Controller Design

Jeong et al. [20] propose dynamic partitioning of off-chip memory
bandwidth between the CPU and GPU to maintain a high quality of
service for the overall system. Typical memory controllers prioritize
CPU requests over GPU requests as the CPU is latency sensitive and
the GPU is designed to tolerate long latencies. However, such a static
memory controller policy can lead to an unacceptably low frame rate
for the GPU. Correspondingly, prioritizing GPU requests can degrade
the performance of the CPU. The authors scheme is targeted towards
system-on-chip architectures with multicore CPUs and graphics only
GPUs. Nevertheless the technique is quite relevant in the context of
systems consisting of general purposes GPUs.

Figure 16 (from [20]) shows the impact of prioritizing CPU
workloads over GPU. In the top part of the figure we see that with
the dual core mcf-art workload the GPU is barely able to maintain

Fig. 16. GPU bandwidth consumption and CPU performance. GPU
has up-to 8 outstanding requests and CPU requests have higher priority.
Vertical lines represent frame deadlines (from [20]).

deadlines. However for the bandwidth-intensive CPU workload art-
art, and with the same policy of prioritizing CPU workloads, GPU
deadlines are missed.

Since static management policies cause problems for bandwidth
intensive CPU workloads, the authors propose a dynamic quality of
service maintenance scheme. In this scheme, the memory controller
first evaluates the current rate of progress on the GPU frame. Since
the frame is decomposed into smaller tiles, progress can be measured
by counting the number tiles completed versus the total number of
tiles. This current frame rate is then compared with the target frame
rate. They use a default policy to prioritize the CPU requests over
the GPU. However, if the current frame progress is slower than the
target frame rate the CPU and GPU priorities are set to equal. This
provides some opportunity for the GPU to catch up as its priority
increases from lower than CPU to same as CPU. However, if the
GPU is still lagging behind, when close to the frame deadline, the
GPU priority is boosted over the CPU.

The authors evaluated the proposed scheme over a variety of
CPU and GPU workloads. They found the proposed mechanism to
significantly improved GPU frame rates with minimal impact on CPU
performance.

VI. OPPORTUNISTIC OPTIMIZATIONS VIA COLLABORATIVE
EXECUTION

In this section, we will discuss opportunistic optimization schemes
for CPU-GPU systems. The CPU-GPU combination is shaping to-
wards a system where the GPU is expected to run throughput oriented
portions of code and CPU runs the non-parallel regions of code.
However, the GPU, while occupying significant area budgets does not
contribute towards the performance of serial applications. Similarly,
the CPU is idle while running parallel GPU applications. Woo et al.’s
COMPASS [47] proposes the use of GPU resources to boost CPU
performance. We discuss their scheme first. Next we will discuss
Yang et al. [48] scheme to use CPU resources to boost GPGPU
performance.

A. Idle GPU Shader based Prefetching

COMPASS [47] proposes the use of idle gpu resources to act
as data prefetchers for CPU execution. The authors suggest using
GPU resources in two specific ways. First, they propose the use of
large GPU register files as prefetcher storage structures. The 32KB
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– 64KB of register file space per SM provides sufficient storage for
the implementation of state of the art prefetching algorithms. These
schemes have prohibitive costs which makes their inclusion into com-
mercial designs difficult. Using GPU resources drastically reduces
overhead. Second, the authors propose the use of programmable GPU
execution threads as logic structures to flexibly implement prefetching
algorithms.

Instead of a completely hardware based scheme, the authors
propose the use of an OS based interface to control the GPU based
prefetcher operation. The authors describe a Miss Address Provider
(MAP) hardware block to provide an interface between the GPU,
shared last-level cache (LLC) and the OS. Figure 17 illustrates MAP.
Once the OS has no pending GPU job, it assigns a prefetching shader
via the shader pointer. Upon an LLC miss or prefetched line hit,
the PC and miss address are forwarded to MAP, which first sends
a GPU command to assign a GPU shader and or thread to generate
prefetch requests for the particular program address. If a GPU shader
has already been allocated, the shader stores the miss information
in the GPU register files and executes prefetching algorithms to
bring future data into the LLC. The OS disables COMPASS shaders
before context switching and then re-enables after the context switch.
Since COMPASS is programmable, the OS can select prefetching
algorithms from a collection of different such implementations.

In the paper, the authors demonstrate different COMPASS based
prefetching algorithms such as strided prefetching, markov prefetch-
ing and application custom predictors. One of the problems of the
GPU is poor single thread performance. This could increase the
latency of processing the miss information to generate timely prefetch
requests. The authors address this by demonstrating multithreaded
GPU prefetchers that reduce prefetch calculation latency. Overall the
authors report low area overheads since most of the GPU hardware
is used as it is. They demonstrate a average performance benefit of
68% with their scheme.

B. CPU Assisted GPGPU Processing

Yang et al. [48] propose the use of CPU based execution to prefetch
requests for GPGPU programs. First, they develop a compiler based
infrastructure to extract memory address generation and accesses
from GPU kernels to create a CPU pre-execution program. Once the
GPU kernel is launched, the CPU runs the pre-execution program. To
make the pre-execution effective, the CPU needs to run sufficiently
ahead so as to bring relevant data into the shared LLC. However, the
execution should not run too far ahead that the prefetched data are
replaced before being utilized. The authors propose schemes to man-
age prefetch effectiveness. The authors argue that while CPUs have

__global__ void VecAdd (float *A, *B, *C, int N) { 
    int I = blockDim.x * blockIdx.x + threadIdx.x; 
    C[i] = A[i] + B[i] } 

float mem_fetch (float *A, *B, *C, int N) { 
    return A[N] + B[N] + C[N] } 

void cpu_prefetching (…) { 
     unroll_factor = 8 
    //traverse through all thread blocks (TB) 
    for (j = 0;  j < N_TB; j += Concurrent_TB) 
    //loop to traverse concurrent threads TB_Size 
        for (i = 0; i < Concurrent_TB*TB_Size;  
        i += skip_factor*batch_size*unroll_factor) { 
           for (k=0; j<batch_size; k++) { 
               id = i + skip_factor*k*unroll_factor  
                   + j*TB_Size 
               //unrolled loop 
               float a0 = mem_fetch (id + skip_factor*0) 
               float a1 = mem_fetch (id + skip_factor*1) 
               . . . 
               sum += a0 + a1 + . . . } 
               update skip_factor 
}}}  

Fig. 18. GPU kernel and the generated pre-execution program.

considerably less throughput than GPUs, very few CPU instructions
are required to perform address generation and prefetching. This is
primarily because each prefetching request can bring in a single LLC
block, which is considerably large in size and serves multiple GPU
threads together.

Figure 18 shows an example of a vector add GPU kernel and
the compiler generated pre-execution program. As shown, the pre-
execution generation algorithm first extracts memory accesses with
address generation. All stores are converted into loads. Next, loops
are added to prefetch data for concurrent threads organized into
separate thread blocks. The iterator update is set as a product of three
factors. The first, skip factor is used to adjust the timeliness of CPU
prefetching by skipping threads. The authors propose an adaptive
scheme to vary skip factor by tracking the LLC hit rate. A too high
hit rate value means that the data is already in the cache because of
GPU execution. A too low hit rate might indicate that the CPU is
running too far ahead. The batch size parameter is used to control
how often the skip factor parameter is updated. The unroll factor
parameter is used to boost CPU requests under CPU-GPU memory
contention.

The authors proposed scheme has two drawbacks. First they
assume that blocks are scheduled linearly i.e. the block with id
0 is scheduled first, then with id 1 and so on. However, block
scheduling policies could differ and in that case GPU would need
to communicate the executing block id information to the CPU.
This communication could impact the timeliness of the prefetcher.
Secondly, since the CPU pre-execution program is stripped of actual
computation, any data or computation dependent memory accesses
cannot be handled by this approach. Most of the benchmarks used
in the study did not have data dependent memory accesses. This is a
drawback of the scheme under increasing code diversity. The authors
demonstrate a 21% performance benefit of their proposal.

VII. FUTURE WORK DIRECTIONS

In this section we will discuss oppourtunities for future work in
the area of CPU-GPU systems. We characterize these oppourtunities
into 4 categories – continued system optimization, research tool
development, oppourtunities in power, temperature and reliability and
lastly the use of emerging technologies in CPU-GPU systems.

Continued System Optimizations We see both holistic and op-
portunistic optimizations to continue on CPU-GPU systems. The
shared LLC and memory controller works presented in this report
are the first papers on the area, providing abundant scope to improve
performance further. For example, the LLC paper suggests TLP aware
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cache management based on effective utilization of cache capacity.
It would be interesting to consider bandwidth effects for shared
cache management policies. For the memory controller, it would be
interesting to explore the effects of GPU bandwidth usage on CPU
workloads. Previously, several techniques have been proposed that
use idle CPU cores to boost performance of CPU execution threads.
Perhaps techniques such as these could be applied to gpgpu systems,
where we could use idle gpu resources to boost the performance of
gpu execution.

Research Tools One of the major factors that is limiting research
in the area is the lack of research tools. While GPGPU performance
models are available, there are no GPGPU power models. There
is some work in the area with the use of empirical measurement
and modeling but the academic community desires flexible analytical
GPU power models. Once developed, further work needs to be done
to integrate such GPGPU models with CPU power models. Similarly,
there are no tools available to model GPU temperature. The devel-
opment of such tools represents short term research oppourtunities.

Power, Temperature and Reliability Although GPUs are severely
power and energy constrained, there is almost no work in the area
of effective power and temperature management for GPUs. Similarly,
there is no work in the area of GPU reliability. Lack of work in these
areas can perhaps be attributed to the lack of tools. We expect this
to change as tools become available. As a first order work, it will be
interesting to study the application of CPU power and temperature
management techniques to GPU systems.

Emerging Technologies There has been almost no work in the
application of emerging technologies such as non-volatile memory
(NVM) technologies and 3D stacking to GPUs. Low leakage and
low power NVMs offer performance benefits to power constrained
GPUs. The key would be to find structures with low write activity
to mitigate some of NVM disadvantages. Similarly, 3D stacking has
the potential to provide much needed memory system bandwidth to
GPU systems. Hence, it would be interesting to investigate stacked
CPU-GPU-Main memory systems. They key would be the effective
management of temperature effects.

VIII. CONCLUSIONS

In this work we investigate the architecture and evolution of
general purpose CPU-GPU systems. We started by describing state
of the art in GPGPU designs. We considered solutions to key
GPGPU problems – performance loss due to control-flow divergence
and poor scheduling. As a first step, chip integration offers better
performance. However, reduced latencies and increased bandwidth
are enabling optimizations previously not possible. We described
holistic CPU-GPU system optimization techniques such as CPU core
optimizations, redundancy elimination and the optimized design of
shared components. We studied opportunistic optimizations of the
CPU-GPU system via collaborative execution. Lastly, we suggested
future work oppourtunities for CPU-GPU systems.
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