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Abstract
Foundational verification allows programmers to build soft-
ware which has been empirically shown to have high levels
of assurance in a variety of important domains. However,
the cost of producing foundationally verified software re-
mains prohibitively high for most projects, as it requires
significant manual effort by highly trained experts. In this
paper we present Proverbot9001, a proof search system using
machine learning techniques to produce proofs of software
correctness in interactive theorem provers. We demonstrate
Proverbot9001 on the proof obligations from a large prac-
tical proof project, the CompCert verified C compiler, and
show that it can effectively automate what were previously
manual proofs, automatically producing proofs for 28% of
theorem statements in our test dataset, when combined with
solver-based tooling. Without any additional solvers, we ex-
hibit a proof completion rate that is a 4X improvement over
prior state-of-the-art machine learning models for generat-
ing proofs in Coq.

CCS Concepts: • Computing methodologies → Sym-
bolic and algebraic manipulation; Machine learning.
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1 Introduction
Apromising approach to software verification is foundational
verification. In this approach, programmers use an interac-
tive theorem prover, such as Coq [14] or Isabelle/HOL [35],
to state and prove properties about their programs. Foun-
dational verification has shown increasing promise over the
past two decades; it has been used to prove properties of pro-
grams in a variety of settings, including compilers [28], op-
erating systems [23], database systems [31], file systems [8],
distributed systems [39], and cryptographic primitives [3].

One of themain benefits of foundational verification is that
it provides high levels of assurance. The interactive theorem
provermakes sure that proofs of program properties are done
in full and complete detail, without any implicit assumptions
or forgotten proof obligations. Furthermore, once a proof
is completed, foundational proof assistants can generate a
representation of the proof in a foundational logic; these
proofs can be checked with a small kernel. In this setting
only the kernel needs to be trusted (as opposed to the entire
proof assistant), leading to a small trusted computing base.
As an example of this high-level of assurance, a study of
compilers [41] has shown that CompCert [28], a compiler
proved correct in the Coq proof assistant, is significantly
more robust than its non-verified counterparts.
Unfortunately, the benefits of foundational verification

come at a great cost. The process of performing proofs in a
proof assistant is extremely laborious. CompCert [28] took
6 person-years and 100,000 lines of Coq to write and verify,
and seL4 [23], which is a verified version of a 10,000 line
operating system, took 22 person-years to verify. The sort of
manual effort is one of the main impediments to the broader
adoption of proof assistants.
In this paper, we present Proverbot9001, a novel system

that uses machine learning to help alleviate the manual ef-
fort required to complete proofs in an interactive theorem
prover. Proverbot9001 trains on existing proofs to learn mod-
els. Proverbot9001 then incorporates these learned models
in a tree search process to complete proofs. The source of
Proverbot9001 is publicly available on GitHub 1.

1https://github.com/UCSD-PL/proverbot9001
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The main contribution of this paper is bringing domain
knowledge to the feature engineering, model architecture,
and search procedures of machine-learning based systems
for interactive theorem proving. In particular, our work dis-
tinguishes itself from prior work on machine learning for
proofs in three ways:

1. A two part tactic-predictionmodel, inwhich prediction
of tactic arguments is primary and informs prediction
of tactics themselves.

2. An argument prediction architecture which makes use
of recurrent neural networks over sequential represen-
tations of terms.

3. Several effective tree pruning techniques inside of a
prediction-guided proof search.

We tested Proverbot9001 end-to-end by training on the
proofs from 162 files from CompCert, and testing on the
proofs from 13 files2. When combined with solver-based
tooling (which alone can only solve 7% of proofs), Prover-
bot9001 can automatically produce proofs for 28% of the
theorem statements in our test dataset (138/501). In our de-
fault configuration without external solvers, Proverbot9001
solves (produces a checkable proof for) 19.36% (97/501) of
the proofs in our test set, which is a nearly 4X improvement
over the previous state of the art system that attempts the
same task [40]. Our model is able to reproduce the tactic
name from the solution 32% of the time; and when the tactic
name is correct, our model is able to predict the solution
argument 89% of the time. We also show that Proverbot9001
can be trained on one project and then effectively predict on
another project.

2 Background
2.1 Foundational Verification
Program verification is a well studied problem in the pro-
gramming languages community. Most work in this field
falls into one of two categories: solver-backed automated
(or semi-automated) techniques, where a simple proof is
checked by a complex procedure; and foundational logic
based techniques, where a complex proof is checked by a
simple procedure.
While research into solver-backed techniques has pro-

duced fully-automated tools in many domains, these ap-
proaches are generally incomplete, failing to prove some
desirable propositions. When these procedures fail, it is of-
ten difficult or impossible for a user to complete the proof,
requiring a deep knowledge of the automation. In contrast,
foundational verification techniques require a heavy initial
proof burden, but scale to any proposition without requir-
ing a change in proof technique. However, the proof burden
of foundational techniques can be prohibitive; CompCert,
a large and well-known foundationally verified compiler,
2This training/test split comes from splitting the dataset 90/10, and then
removing from the test set files that don’t contain proofs.
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Figure 1. (a) A feed-forward neural network, where each
individual gray circle is a perceptron (b) An individual per-
ceptron, which multiplies all the inputs by weights, sums up
the results, and then applies a non-linear function 𝑓 .
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Figure 2. A recurrent neural network. Inputs are in blue
boxes at the bottom, and each iteration produces an output
value, as well as a new state value for the next iteration.

took 6 person-years of work to verify [27], with other large
verification projects sporting similar proof burdens.

2.2 Interactive Theorem Provers
Most foundational (and some solver-backed) verification is
done in an interactive theorem prover. Interactive theorem
provers allow the user to define proof goals alongside data
and program definitions, and then prove those goals interac-
tively, by entering commands which manipulate the proof
context. The name and nature of these commands varies by
the proof assistant, but inmany foundational assistants, these
commands are called “tactics”, and coorespond to primitive
proof techniques like “induction”, as well as search proce-
dures like “omega” (which searches for proofs over ring-like
structures). Proof obligations in such proof assistants take
the form of a set of hypotheses (in a Curry-Howard compat-
ible proof theory, bound variables in a context), and a goal
(a target type); proof contexts may consist of multiple proof
obligations.

2.3 Machine Learning and Neural Networks
Machine learning is an area of computer science dating back
to the 1950s. In problems of supervised learning, the goal is
to learn a function from labeled examples of input-output
pairs. Models for supervised learning parameterize a function
from inputs to outputs and have a procedure to update the
parameters from a data set of labeled examples. Machine
learning has traditionally been applied to problems such as
handwriting recognition, natural language processing, and
recommendation systems.
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Neural Networks are a particular class of learned model
where layers of nodes are connected together by a linear
combination and a non-linear activation function, to form
general function approximators. Neural Networks have a va-
riety of structures, some forming a straightforward “stack” of
nodes with some connections removed (convolutional), and
others, such as those used for natural language processing,
using more complex structures like loops.
We will make use of two different kinds of neural net-

works: feed-forward networks and recurrent neural net-
works. Figure 1(a) shows the structure of a feed-forward
network, where each gray circle is a perceptron, and Fig-
ure 1(b) shows individual structure of a perceptron.

Figure 2 shows the structure of a recurrent neural network
(RNN). Inputs are shown in blue, outputs in green and com-
putational nodes in gray. The computational nodes are Gated
Recurrent Network nodes, GRU for short, a commonly used
network component with two inputs and two outputs [10].
The network is recurrent because it feeds back into itself,
with the state output from the previous iteration feeding into
the state input of the next iteration. When we display an
RNN receiving data, we visually unfold the RNN, as shown
on the right side of Figure 2, even though in practice there
is still only one GRU node. The right side of Figure 2 shows
an example RNN that processes tokens of a Coq goal, and
produces some output values.

3 Overview
In this section, we’ll present Proverbot9001’s prediction and
search process with an example from CompCert. You can
see the top-level structure of Proverbot9001 in Figure 3.

Consider the following theorem from the CompCert com-
piler:

Definition binary_constructor_sound
(cstr: expr -> expr -> expr)
(sem: val -> val -> val) : Prop :=

forall le a x b y,
eval_expr ge sp e m le a x ->
eval_expr ge sp e m le b y ->
exists v, eval_expr ge sp e m le (cstr a b) v

/\ Val.lessdef (sem x y) v.

Theorem eval_mulhs:
binary_constructor_sound mulhs Val.mulhs.

Proof.
...

This theorem states that the mulhs expression constructor
is sound with respect to the specification Val.mulhs.
At the beginning of the proof of eval_mulhs, Prover-

bot9001 predicts three candidate tactics, econstructor,
eauto, and unfold binary_constructor_sound. Once
these predictions are made, Proverbot9001 tries running all
three, which results in three new states of the proof assistant.
In each of these three states, Proverbot9001 again makes

SearchCoq Interface
Neural Network 

Prediction Model

Theorem To 

Prove

Proof

Proof States

Predictions

Commands

Proof States

Figure 3. The overall architecture of Proverbot9001, built
using CoqSerapi, Python, and PyTroch.
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Figure 4. A graph of a Proverbot9001 search. In green are
the tactics that formed part of the discovered solution, as well
as the lemma name and the QED. In orange are nodes that
resulted in a context that is at least as hard as one previously
found (see Section 7).

predictions for what the most likely tactics are to apply
next. These repeated predictions create a search tree, which
Proverbot9001 explores in a depth first way. The proof com-
mand predictions that Proverbot9001 makes are ordered by
likelihood, and the search explores more likely branches first.
Figure 4 shows the resulting search tree for eval_mulhs.

The nodes in green are the nodes that produce the final proof.
Orange nodes are predictions that fail to make progress
on the proof (see Section 7); these nodes are not expanded
further. All the white nodes to the right of the green path are
not explored, because the proof in the green path is found
first.

4 Definitions
In the rest of the paper, we will describe the details of how
Proverbot9001 works. We start with a set of definitions that
will be used throughout. In particular, Figure 5 shows the
formalism we will use to represent the state of an in-progress
proof. A tactic 𝜏 ∈ T is a tactic name. An argument 𝑎 ∈ A
is a tactic argument. For simplicity of the formalism, we
assume that all tactics take zero or one arguments. We use
I for the set of Coq identifiers, and Q for the set of Coq
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T Tactics
A Tactic arguments
C = T × A Proof commands
I Identifiers
Q Propositions
G = Q Goals
H = I × Q Hypotheses
O = [H] × G Obligations
S = [O × [C]] Proof states

Figure 5. Formalism to model a Proof Assistant

propositions. A proof state 𝜎 ∈ S is a state of the proof
assistant, which consists of a list of obligations along with
their proof command history. We use [𝑋 ] to denote the set of
lists of elements from𝑋 . An obligation is a pair of: (1) a set of
hypotheses (2) a goal to prove. A hypothesis is a proposition
named by an identifier, and a goal is a proposition.

5 Predicting a Single Proof Step
We start by explaining how we predict individual steps in
the proof. Once we have done this, we will explain how we
use these proof command predictions to guide a proof search
procedure.
We define D[𝜏] to be a scoring function over 𝜏 , where

larger scores are preferred over smaller ones:

D[𝜏] = 𝜏 → R

We define a 𝜏-predictor R[𝜏] to be a function that takes a
proof state 𝜎 ∈ S (i.e. a state of the proof assistant under
which we want to make a prediction) and returns a scoring
function over 𝜏 . In particular, we have:

R[𝜏] = S → D[𝜏]

Our main predictor 𝑃 will be a predictor of the next step in
the proof, i.e. a predictor for proof commands:

𝑃 : R[T × A]

We divide our main predictor into two predictors, one for
tactics, and one for arguments:

𝑃tac : R[T ]

𝑃arg : T → R[A]

Our main predictor 𝑃 combines 𝑃tac and 𝑃arg as follows:

𝑃 (𝜎) = 𝜆(𝜏, 𝑎) . 𝑃tac (𝜎) (𝜏) ⊗ 𝑃arg (𝜏) (𝜎) (𝑎)

where ⊗ is an operator that combines the scores of the tactic
and the argument predictors. We now describe the three
parts of this prediction architecture in turn: 𝑃tac , 𝑃arg , and ⊗.

NN

“apply”

Encode
Previous tactic

“forall”

“eq”

Goal head

Hypothesis head

Vectors of reals

Enc Distribution 

over tactics

Enc

Enc

Figure 6. Proverbot9001’s model for predicting tactics. Takes
as input three features for each data point: the previous tactic
run, the head token of the goal, and of the most relevant
hypothesis (see Section 5.1). We restrict the previous tactic
feature to the 50 most common tactics, and head tokens on
goal and hypothesis to the 100 most common head tokens.

5.1 Predicting Tactics (𝑃tac)
To predict tactics, Proverbot9001 uses of a set of manually
engineered features to reflect important aspects of proof
prediction: (1) the head of the goal as an integer (2) the name
of the previously run tactic as an integer (3) a hypothesis that
is heuristically chosen (based on string similarity to goal) as
being the most relevant to the goal (4) the similarity score
of this most relevant hypothesis.

These features are embedded into a continuous vector of
128 floats using a standard word embedding, and then fed
into a fully connected feed-forward neural network (3 layers,
128 nodes-wide) with a softmax (normalizing) layer at the
end, to compute a probability distribution over possible tactic
names. This architecture is trained on 153402 samples with
a stochastic gradient descent optimizer.

The architecture of this model is shown in Figure 6. Blue
boxes represent input; purple boxes represent intermediate
encoded values; green boxes represent outputs; and gray
circles represent computations. The NN circle is the feed-
forward Neural Network mentioned above. The Enc circle is
a word embedding module.

5.2 Predicting Tactic Arguments (𝑃arg)
Once a tactic is predicted, Proverbot9001 next predicts ar-
guments. Recall that the argument predictor is a function
𝑃arg : R[A]. In contrast to previous work, our argument
model is a prediction architecture in its own right.
Proverbot9001 currently predicts zero or one tactic

arguments; However, since the most often-used multi-
argument Coq tactics can be desugared to sequences of
single argument tactics (for example “unfold a, b” to
“unfold a. unfold b.”), this limitation does not signifi-
cantly restrict our expressivity in practice.

Proverbot9001 makes three kinds of predictions for argu-
ments: goal-token arguments, hypothesis arguments, lemma
arguments:
Goal-token arguments are arguments that are a single

token in the goal; for instance, if the goal is not (eq x y),
we might predict unfold not, where not refers to the first
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Figure 7. The model for scoring possible arguments.

token in the goal. In the case of tactics like unfold and
destruct, the argument is often (though not always) a token
in the goal.
Hypothesis arguments are identifiers referring to a hy-

pothesis in context. For instance, if we have a hypothesis H
in context, with type is_path (cons (pair s d) m), we
might predict inversion H, where H refers to the hypothe-
sis, and inversion breaks it down. In the case of tactics like
inversion and destruct, the argument is often a hypothe-
sis identifier.
Finally, lemma arguments are identifiers referring to a

previously defined proof. These can be basic facts in the
standard library, like

plus_n_0 : forall n : nat, n = n + 0

or a lemma from the current project, such as the eval_mulhs
described in the overview. In Proverbot9001, lemmas are
considered from a subset of the possible lemma arguments
available in the global context, in order to make training
tractable. Proverbot9001 supports several different modes
for determining this subset; by default we consider lemmas
defined previously in the current file.
The architecture of the scoring functions for these ar-

gument types is shown in Figure 7. One recurrent neural
network (RNN) is used to give scores to each hypothesis and
lemma by processing the type of the term, and outputting a
final score. A different RNN is then used to process the goal,
assigning a score to each token in processes.
As before, blue boxes are inputs; purple boxes are en-

coded values; green diamonds are outputs, in this case scores
for each individual possible argument; and gray circles are
computational nodes. The GRU nodes are Gated Recurrent
Units [10]. The NN node is a feed-forward neural network.
For illustration purposes, Figure 7 uses an example to

provide sample values. Each token in the goal is an input – in
Figure 7 the goal is “not (eq x y)”. The tactic predicted by
𝑃tac is also an input – in Figure 7 this tactic is “unfold”. The
hypothesis that is heuristically closest to the goal (according
to our heuristic from Section 5.1) is also an input, one token

at a time being fed to a GRU. In our example, let’s assume
this closest hypothesis is “y > (x+1)”. The similarity score
of this most relevant hypothesis is an additional input – in
Figure 7 this score is 5.2.
There is an additional RNN (the middle row of GRUs in

Figure 7) which encodes the goal as a vector of reals. The
initial state of this RNN is set to some arbitrary constant, in
this case 0.
The initial state of the hypothesis RNN (the third row of

GRUs in Figure 7) is computed using a feed-forward Neural
Network (NN). This feed-forward Neural Network takes as
input the tactic predicted by 𝑃tac , the goal encoded as a vector
of reals, and the similarity score of the hypothesis.
The architecture in Figure 7 produces one output score

for each token in the goal and one output score for the hy-
pothesis. The highest scoring element will be chosen as the
argument to the tactic. In Figure 7, the highest scoring el-
ement is the “not” token, resulting in the proof command
“unfold not”. If the hypothesis score (in our example this
score is 8) would have been the highest score, then the cho-
sen argument would be the identifier of that hypothesis in
the Coq context. For example, if the identifier was IHn (as
is sometimes the case for inductive hypotheses), then the
resulting proof command would be “unfold IHn”.

5.3 Combining Tactic and Argument Scores (⊗)
The ⊗ operator attempts to provide a balanced combination
of tactic and argument prediction, taking both into account
even across different tactics. The operator works as follows.
We pick the 𝑛 highest-scoring tactics and for each tactic
the𝑚 highest-scoring arguments. We then score each proof
command by multiplying the tactic score and the argument
score, without any normalization. Formally, we can imple-
ment this approach by defining ⊗ to be multiplication, and
by not normalizing the probabilities produced by 𝑃arg until
all possibilities are considered together.
Because we don’t normalize the probabilities of tactics,

the potential arguments for a tactic are used in determining
the eligibility of the tactic itself (as long as that tactic is in the
top 𝑛). This forms one of the most important contributions of
our work: the argument selection is primary, with the tactic
prediction mostly serving to help prune its search space.

5.4 Putting It All Together
The overall architecture that we have described is shown
in Figure 8. The 𝑃tac predictor (whose detailed structure is
shown in Figure 6) computes a distribution over tactic using
three features as input: the previous tactic, head constructor
of goal, and head constructor of the hypothesis deemed most
relevant. Then, for each of the top tactic predicted by 𝑃tac , the
𝑃arg predictor (whose detailed structure is shown in Figure 7)
is invoked. In addition to the tactic name, the 𝑃arg predictor
takes several additional inputs: the goal, the hypotheses in
context, and the similarity between each of those hypotheses
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and the goal. The 𝑃arg predictor produces scores for each
possible argument (in our case one score for each token in
the goal, and one score the single hypothesis). These scores
are combined with ⊗ to produce an overall scoring of proof
commands.

6 Training
6.1 Training Architecture
Figure 9 shows the training architecture for the tactic pre-
dictor, 𝑃tac (recall that the detailed architecture of 𝑃tac is
shown in Figure 6). The goal of training is to find weights
for the neural network that is found inside the gray 𝑃tac
circle. Proverbot9001 processes all the Coq theorems in the
training set, and steps through the proof of each of these
theorems. Figure 9 shows what happens at each step in the
proof. In particular, at each step in the proof, Proverbot9001
computes the three features we are training with, and passes
these features to the current tactic model to get a distribution
over tactics. This distribution over tactics, along with the
correct tactic name (from the actual proof), are passed to a
module that computes changes to the weights based on the
NLLLoss criterion. These changes are batched together over
several steps of the proof, and then applied to update the
tactic model. Running over all the training data to update
the weights is called an epoch, and we run our training over
20 epochs.

Figure 10 shows the training architecture for the argument
predictor, 𝑃arg (recall that the detailed architecture of 𝑃arg is
shown in Figure 7). The goal of training is to find weights
for the GRU components in 𝑃arg . Here again, Proverbot9001
processes all the Coq theorems in the training set, and steps
through the proof of each of these theorems. Figure 10 shows
what happens at each step in the proof. In particular, at each
step in the proof, the current 𝑃tac predictor is run to produce
the top predictions for tactic. These predicted tactic, along
with the correct tactic, are passed to the argument model
𝑃arg . To make Figure 10 more readable, we do not show the
additional parameters to 𝑃arg that where displayed in Fig-
ure 8, but these parameters are in fact also passed to 𝑃arg
during training. Note that it is very important for us to inject
the tactics predicted by 𝑃tac into the input of the argument
model 𝑃arg , instead of using just the correct tactic name. This
allows the scores produced by the argument model to be com-
parable across different predicted tactics. Once the argument
model 𝑃arg computes a score for each possible argument, we
combine these predictions using ⊗ to get a distribution of
scores over tactic/argument pairs. Finally, this distribution,
along with the correct tactic/argument pair is passed to a
module that computes changes to the weights based on the
NLLLoss criterion. In our main CompCert benchmark the
153402 tactic samples from the training set are processed for
20 epochs.

6.2 Learning From Higher-Order Proof Commands
Proof assistants generally have higher-order proof com-
mands, which are tactics that take other proof commands as
arguments; in Coq, these are called tacticals. One of the most
common examples is the (;) infix operator which runs the
proof command on the right on every sub-goal produced by
the tactic on the left. Another example is the repeat tactical,
which repeats a provided tactic until it fails.

While higher-order proof commands are extremely impor-
tant for human proof engineers, they are harder to predict
automatically because of their generality. While some pre-
vious work [40] attempts to learn directly on data which
uses these higher-order proof commands, we instead take
the approach of desugaring higher-order proof commands
into first-order ones as much as possible; this makes the data
more learnable, without restricting the set of expressible
proofs.
For example, instead of trying to learn and predict (;) di-

rectly, Proverbot9001 has a systemwhich attempts to desugar
(;) into linear sequences of proof commands. This is not al-
ways possible (without using explicit subgoal switching com-
mands), due to propagation of existential variables across
proof branches. Proverbot9001 desugars the cases that can
be sequenced, and the remaining commands containing (;)
are filtered out of the training set.
In addition to the (;) tactical, there are other tacticals in

common use in Coq. Some can be desugared into simpler
forms. For example:

• “now <tac>” becomes “<tac>;easy”.
• “rewrite <term> by <tac>” becomes
“rewrite <term> ; [ | <tac>]”

• “assert <term> by <tac>” becomes
“assert <term> ; [ | <tac>]”

In other cases, like try <tac> or solve <tac>, the tacti-
cal changes the behavior of the proof command in a way that
cannot be desugared; for these we simply treat the prefixed
tactic as a separate, learned tactic. For example, we would
treat try eauto as a new tactic.

7 Prediction-Guided Search
Now that we have explained how we predict a single step in
the proof, we describe how Proverbot9001 uses these predic-
tions in a proof search.

In general, proof search works by transitioning the proof
assistant into different states by applying proof commands,
and backtracking when a given part of the search space has
either been exhausted, or deemed unviable. Exhaustive proof
search in proof assistants is untenable because the number
of possible proof commands to apply is large. Instead, we use
the predictor described above to guide the search. Aside from
using these predictions, the algorithm is a straightforward
depth-limited search, with three subtleties.
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Figure 10. The architecture for training the argument mod-
els. Note that we inject predicted tactics into the input of the
argument model, instead of just using the correct tactic, so
that argument scores will be comparable.

First. we stop the search when we find a proof goal that
is at least as hard (by a syntactic definition) as a goal earlier
in the history. While in general it is hard to formally define
what makes one proof state harder than another, there are
some obvious cases which we can detect. A proof state with
a superset of the original obligations will be harder to prove,
and a proof state with the same goal, but fewer assumptions,
will be harder to prove.

To formalize this intuition, we define a relation ≥ between
states such that 𝜎1 ≥ 𝜎2 is meant to capture “Proof state 𝜎1 is
at least as hard as proof state 𝜎2”. We say that 𝜎1 ≥ 𝜎2 if and
only if for all obligations 𝑂2 in 𝜎2 there exists an obligation

𝑂1 in 𝜎1 such that 𝑂1≥𝑜𝑂2. For obligations 𝑂1 and 𝑂2, we
say that 𝑂1≥𝑜𝑂2 if and only if each hypothesis in 𝑂1 is also
a hypothesis in 𝑂2, and the goals of 𝑂1 and 𝑂2 are the same.

Since ≥ is reflexive, this notion allows us to generalize all
the cases above to a single pruning criteria: “proof command
prediction produces a proof state which is ≥ than a proof
state in the history”.

Second. when backtracking, we do not attempt to find a
different proof for an already proven sub-obligation.While in
general this can lead to missed proofs because of existential
variables (typed holes filled based on context), this has not
been an issue for the kinds of proofs we have worked with
so far.

Third. we had to adapt our notion of search “depth” to
the structure of Coq proofs (in which a tactic can produce
multiple sub-obligations). A naïve tree search through the
Coq proof space will fail to exploit some of the structure of
sub-proofs in Coq.

Consider for example the following two proofs:
1. intros. simpl. eauto.
2. induction n. eauto. simpl.

At first glance, it seems that both of these proofs have a
depth of three. This means that a straightforward tree search
(which is blind to the structure of subproofs) would not find
either of these proofs if the depth limit were set to two.
However, there is a subtlety in the second proof above

which is important (and yet not visible syntactically). In-
deed, the induction n proof command actually produces
two obligations (“sub-goals” in the Coq terminology). These
correspond to the base case and the inductive case for the
induction on n. Then eauto discharges the first obligation
(the base case), and simpl discharges the second obligation
(the inductive case). So in reality, the second proof above
really only has a depth of two, not three.

Taking this sub-proof structure into account is important
because it allows Proverbot9001 to discover more proofs for
a fixed depth. In the example above, if the depth were set to



MAPL ’20, June 15, 2020, London, UK Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner

two, and we used a naïve search, we would not find either
of the proofs. However, at the same depth of two, a search
which takes the sub-proof structure into account would be
able to find the second proof (since this second proof would
essentially be considered to have a depth of two, not three).

8 Evaluation
This section shows that Proverbot9001 is able to success-
fully solve many proofs. We also experimentally show that
Proverbot9001 improves significantly on the state-of-the-art
presented in previous work.
First, in Section 8.2, we compare experimentally to pre-

vious work, by running both Proverbot9001 and the Coq-
Gym [40] project on CompCert, in several configurations
outlined in the CoqGym paper. Next, in Section 8.3, we ex-
periment with using the weights learned from one project to
produce proofs in another. Then, in Section 8.4, we show the
“hardness” of proofs that Proverbot9001 is generally able to
complete, using the length of the original solution as proxy
for proof difficulty. Finally, in Appendix A.1, we measure
the predictor subsystem, without proof search. Additional
evaluation can be found in the appendix.
Experiments were run on two machines. Machine A is

an Intel i7 machine with 4 cores, a NVIDIA Quadro P4000
8BG 256-bit, and 20 gigabytes of memory. Machine B is Intel
Xeon E5-2686 v4 machine with 8 cores, a Nvidia Tesla v100
16GB 4096-bit, and 61 gigabytes of memory. Experiments
were run using GNU Parallel [38].

During the development of Proverbot9001, we explored
many alternatives, including n-gram/bag-of-words represen-
tations of terms, a variety of features, and several coremodels
including k-nearest neighbors, support vector machines, and
several neural architectures. While we include here some
experiments that explore high-level design decisions (such
as training and testing on the same projects vs cross project,
working with and without solver-based tooling, modifying
the search depth and width, and running with and with-
out pre-processing), we also note that in the development
of a large system tackling a hard problem, it becomes in-
tractable to evaluate against every possible permutation of
every design decision. In this setting, we are still confident
in having demonstrated a system that works for the specific
problem of generating correctness proof with performance
that outperforms the state-of-the-art techniques by many
folds.

8.1 Summary of Results
Proverbot9001, run using CoqHammer [11] and the default
configuration, is able to produce proofs for 28% of the theo-
rem statements in CompCert. This represents a 2.4X improve-
ment over the previous state-of-the-art. Without any exter-
nal tooling, Proverbot9001 can produce proofs for 19.36%,
an almost 4X improvement over previous state-of-the-art
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Figure 11. A comparison of Proverbot9001 and CoqGym’s
abilities to complete proofs. H stands for CoqHammer by
itself, as a single invocation; G stands for CoqGym by itself; P
stands for Proverbot9001 by itself; G+P stands for the union
of proofs done by G or P; GH stands for CoqGym with Co-
qHammer; PH stands for Proverbot9001 with CoqHammer;
GH+PH stands for the union of proofs done by GH or PH.

prediction-based proofs. Our core prediction model is able
to reproduce the tactic name from the solution 32% of the
time; and when the tactic name is correct, our model is able
to predict the solution argument 89% of the time. We also
show that Proverbot9001 can be trained on one project and
then effectively predict on another project.

8.2 Experimental Comparison to Previous Work
We tested Proverbot9001 end-to-end by training on the
proofs from 162 files from CompCert, and testing on the
proofs from 13 different files. On our default configuration,
Proverbot9001 solves 19.36% (97/501) of the proofs in our
test set.
In addition to running Proverbot9001 on CompCert, we

ran the CoqGym [40] tool, which represents the state of the
art in this area, on the same dataset in several configurations.
To account for differences in training dataset, we ran

CoqGym with their original training schema, and also our
training schema, and reported the best of the two numbers.
CoqGym is intended to be combined with a solver based
proof-procedure, CoqHammer [11], which is run after every
proof command invocation. While our system was not orig-
inally designed this way, we compare both systems using
CoqHammer, as well as both systems without. We also com-
pared our system to using CoqHammer on the initial goal
directly, which simultaneously invokes Z3 [13], CVC4 [6],
Vampire [26], and E Prover [36], in addition to attempting
to solve the goal using a crush-like tactic [9].
Figure 11 shows the proofs solved by various configura-

tions. The configurations are described in the caption. For all
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configurations, we ran Proverbot9001 with a search depth
of 6 and a search width of 3 (see Appendix A.5). Note that in
Figure 11 the bars for H, G, and GH are prior work. The bars
P, G+P and GH+PH are the ones made possible by our work.
When CoqHammer is not used, Proverbot9001 can com-

plete nearly 4 times the number of proofs that are completed
by CoqGym. In fact, even when CoqGym is augmented with
CoqHammer Proverbot9001 by itself (without CoqHammer)
still completes 39 more proofs, which is a 67% improvement
(and corresponds to about 8% of the test set). When enabling
CoqHammer in both CoqGym and Proverbot9001, we see
that CoqGym solves 48 proofs whereas Proverbot9001 solves
138 proofs, which is a 2.88X improvement over the state of
art.

Finally, CoqGym and Proverbot9001 approaches are com-
plementary; both can complete proofs which the other can-
not. Therefore, one can combine both tools to produce more
solutions than either alone. Combining CoqGym and Prover-
bot9001, without CoqHammer, allows us to complete 100/501
proofs, a proof success rate of 20%. Combining Proverbot9001
and CoqGym, each with CoqHammer, allows us to solve
142/501 proofs, a success rate of 28%. It’s important to realize
that, whereas the prior state of the art was CoqGym with Co-
qHammer, at 48 proofs, by combining CoqGym and Prover-
bot9001 (both with CoqHammer), we can reach a grand total
of 142 proofs, which is a 2.96X improvement over the prior
state of art.

8.3 Cross-Project Predictions
To test Proverbot9001’s ability to make use of training across
projects, we used the weights learned from CompCert, and
ran Proverbot9001 in its default configuration on three other
Coq projects from the Coq Contrib collection, concat, float,
and zfc.

concat is a library of constructive category theory proofs,
which showcases Coq proofs of mathematical concepts in-
stead of program correctness. The concat library is made
of 514 proofs across 105 files; Proverbot9001 was able to
successfully produce a proof for 91 (17.7%) of the extracted
theorem statements, without the use of CoqHammer.

float is a formalization of floating point numbers, made
of 742 proofs across 38 files; Proverbot9001 was able to suc-
cessfully produce a proof for 100 (13.48%) proofs.

zfc is a formalization of set theory made of 241 proofs
across 78 files; 41 (17.01%) were successfully completed.

The comparable number for CompCert was 19.36%.
These results demonstrate not only that Proverbot9001

can operate on proof projects in a variety of domains, but
more importantly that it can effectively transfer training
from one project to another. This would allow programmers
to use Proverbot9001 even in the initial development of a
project, if it had been previously trained on other projects.

Figure 12. A histogram plotting the original proof lengths
in proof commands vs number of proofs of that length, in
three classes, for proofs with length 10 or less. From bottom
to top: proofs solved, proofs unsolved because of depth limit,
and proofs where our search space was exhausted without
finding a solution.

Figure 13.A histogram plotting the original proof lengths in
proof commands vs number of proofs of that length, in three
classes. From bottom to top: proofs solved, proofs unsolved
because of depth limit, and proofs where our search space
was exhausted without finding a solution. Note that most
proofs are between 0 and 10 proof commands long, with a
long tail of much longer proofs.

8.4 Original Proof Length vs Completion Rate
In Figure 12 and Figure 13, we plot a histogram of the original
proof lengths (in proof commands) vs the number of proofs
of that length. We break down the proofs by (from bottom
to top) number we solve, number we cannot solve but still
have unexplored nodes, and number run out of unexplored
nodes before finding a solution. Note that for the second
class (middle bar), it’s possible that increasing the search
depth would allow us to complete the proof. Figure 12 shows
proofs of length 10 or below, and Figure 13 shows all proofs,
binned in sets of 10.
There are several observations that can be made. First,

most original proofs in our test set are less than 20 steps long,
with a heavy tail of longer proofs. Second, we do better on
shorter proofs. Indeed, 51% (256/501) of the original proofs in
our test set are ten proof commands or shorter, and of those
proofs, we can solve 35% (89/256), compared to our overall
solve rate of 19.36% (97/501). Third, we are in some cases
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able to handle proofs whose original length is longer than
10. Indeed, 7 of the proofs we solve (out of 79 solved) had an
original length longer than 10. In fact, the longest proof we
solve is originally 25 proof commands long; linearized it’s
256 proof commands long. Our solution proof is 267 (linear)
proof commands long, comparable to the original proof, with
frequent case splits. The depth limit for individual obligations
in our search was 6 in all of these runs.

9 Related Work
9.1 Program Synthesis
Program Synthesis is the automatic generation of programs
from a high-level specification [18]. This specification can
come in many forms, the most common being a logical for-
mula over inputs and outputs, or a set of input-output exam-
ples. Programs generated can be in a variety of paradigms
and languages, often domain-specific. Our tool, Prover-
bot9001, is a program synthesis tool that focuses on synthesis
of proof command programs.
Several program synthesis works have used types exten-

sively to guide search. Some work synthesizes programs
purely from their types [19], while other work uses both a
type and a set of examples to synthesize programs [15, 33].
In Proverbot9001, the programs being synthesized use a term
type as their specification, however, the proof command pro-
gram itself isn’t typed using that type, rather it must generate
a term of that type (through search).

Further work in [29] attempts to learn from a set of patches
on GitHub, general rules for inferring patches to software.
This work does not use traditional machine learning tech-
niques, but nevertheless learns from data, albeit in a re-
stricted way.

9.2 Machine Learning for Code
Machine learning for modeling code is a well explored
area [2], as an alternative to more structured methods of
modeling code. Several models have been proposed for learn-
ing code, such as AST-like trees [32], long-term language
models [12], and probabilistic grammars [7]. Proverbot9001
does not attempt to be so general, using a model of programs
that is specific to its domain, allowing us to capture the
unique dependencies of proof command languages. While
the model is simple, it is able to model real proofs better than
more general models in similar domains (see Section 8.2). Ma-
chine learning has been used for various tasks such as code
and patch generation [2, 7, 12], program classification [32],
and learning loop invariants [16].

9.3 Machine Learning for Proofs
While machine learning has previously been explored for
various aspects of proof writing, we believe there are still sig-
nificant opportunities for improving on the state-of-the-art,

getting closer and closer to making foundational verification
broadly applicable.
More concretely, work on machine learning for proofs

includes: using machine learning to speed up automated
solvers [4], developing data sets [5, 22, 40], doing premise
selection [1, 30], pattern recognition [25], clustering proof
data [24], learning from synthetic data [21], interactively
suggesting tactics [20, 24].
Finally, CoqGym attempts to model proofs with a fully

general proof command and term model expressing arbi-
trary AST’s. We experimentally compare Proverbot9001’s
ability to complete proofs to that of CoqGym in detail in
Section 8.2 There are also several important conceptual dif-
ferences. First, the argument model in CoqGym is not as
expressive as the one in Proverbot9001. CoqGym’s argument
model can predict a hypothesis name, a number between
1 and 4 (which many tactics in Coq interpret as referring
to binders, for example induction 2 performs induction
on the second quantified variable), or a random (not pre-
dicted using machine learning) quantified variable in the
goal. In contrast, the argument model in Proverbot9001 can
predict any token in the goal, which subsumes the num-
bers and the quantified variables that CoqGym can predict.
Most importantly because Proverbot9001’s model can pre-
dict symbols in the goal, which allows effective unfolding,
for example “unfold eq”. Second, in contrast to CoqGym,
Proverbot9001 uses several hand-tuned features for predict-
ing proof commands. One key example is the previous tactic,
which CoqGym does not even encode as part of the context.
Third, CoqGym’s treatment of higher-order proof commands
like “;” is not as effective as Proverbot9001’s. While neither
system can predict “;”, Proverbot9001 learns from “;” by
linearizing them, whereas CoqGym does not.
There is also a recent line of work on doing end-to-end

proofs in Isabelle/HOL and HOL4 [5, 17, 34]. This work is
hard to experimentally compare to ours, since they use dif-
ferent benchmark sets, proof styles, and proof languages.
Their most recent work [34] uses graph representations of
terms, which is a technique that we have not yet used, and
could adapt if proven successful.
Finally, there is also another approach to proof genera-

tion, which is to generate the term directly using language
translation models [37], instead of using tactics; however
this technique has only been applied to small proofs due to
its direct generation of low-level proof term syntax.
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A Appendix: Additional Evaluation
We now explore more detailed measurements about proof
production.

A.1 Individual Prediction Accuracy
We want to measure the effectiveness of the predictor sub-
system that predicts proof command pairs (the 𝑃 function
defined in Section 5). To do this, we broke the test dataset
down into individual (linearized) proof commands, and ran to
just before each proof command to get its prediction context.
Then we fed that context into our predictor, and compared
the result to the proof command in the original solution. Of
all the proof commands in our test dataset, we are able to
predict 28.66% (3784/13203) accurately. This includes the cor-
rect tactic and the correct argument. If we only test on the
proof commands which are in Proverbot9001’s prediction
domain, we are able to predict 39.25% (3210/8178) accurately.

During search, our proof command predictor returns the
top N tactics for various values of N, and all of these proof
commands are tried. Therefore, we also measured how often
the proof command in the original proof is in the top 3 pre-
dictions, and the top 5 predictions. For all proof commands
in the data set, the tactic in the original proof is in our top
3 predictions 38.93% of the time, and in our top 5 predic-
tions 42.66% of the time. If we restrict to proof commands
in Proverbot9001’s prediction domain, those numbers are
52.17% and 60.39%.

A.2 Argument Accuracy
Our argument prediction model is crucial to the success of
our system, and forms one of the main contributions of our
work. To measure its efficacy at improving search is hard,
because it’s impossible to separate its success in progressing
a proof from the success of the tactic predictor. However,
we can measure how it contributes to individual prediction
accuracy.
On our test dataset, where we can predict the full proof

command in the original proof correctly 28.66% of the time,
we predict the tactic correctly but the argument wrong
32.24% of the time. Put another way, when we successfully
predict the tactic, we can predict the argument successfully
with 89% accuracy. If we only test on proof commands within
Proverbot9001’s prediction domain, where we correctly pre-
dict the entire proof command 39.25% of the time, we predict
the name correctly 41.01% of the time; that is, our argument
accuracy is 96% when we get the tactic right. It’s important
to note, however, that many common tactics don’t take any
arguments, and thus predicting their arguments is trivial.

A.3 Completion Rate in Proverbot9001’s Prediction
Domain

Proverbot9001 has a restricted model of proof commands: it
only captures proof commands with a single argument that

is a hypothesis identifier or a token in the goal. As result, it
makes sense to consider Proverbot9001 within the context
of proofs that were originally solved with these types of
proof commands. We will call proofs that were originally
solved using these types of proof commands proofs that are in
Proverbot9001’s prediction domain. There are 79 such proofs
in our test dataset (15.77% of the proofs in the test dataset),
and Proverbot9001 was able to solve 48 of them.
What is interesting is that Proverbot9001 is able to solve

proofs that are not in its prediction domain: these are
proofs that were originally performed with proof commands
that are not in Proverbot9001’s domain, but Proverbot9001
found another proof of the theorem that is in its domain.
This happened for 49 proofs (out of a total of 97 solved
proofs). Sometimes this is because Proverbot9001 is able
to find a simpler proof command which fills the exact role
of a more complex one in the original proof; for instance,
destruct (find_symbol ge id) in an original proof is re-
placed by destruct find_symbol in Proverbot9001’s solu-
tion. Other times it is because Proverbot9001 finds a proof
which takes an entirely different path than the original. In
fact, 31 of Proverbot9001’s 97 found solutions are shorter
than the original. It’s useful to note that while previous work
had a more expressive proof command model, in practice it
was unable to solve as many proofs as Proverbot9001 could
in our more restricted model.

Together, these numbers indicate that the restricted tactic
model used by Proverbot9001 does not inhibit its ability
to solve proofs in practice, even when the original proof
solution used tactics outside of that model.

A.4 Data Transformation
Crucial to Proverbot9001’s performance is its ability to learn
from data which is not initially in its proof command model,
but can be transformed into data which is. This includes
desugaring tacticals like now, splitting up multi-argument
tactics like unfold a, b into single argument ones, and
rearranging proofs with semicolons into linear series of proof
commands. To evaluate how much this data transformation
contributes to the overall performance of Proverbot9001, we
disabled it, and instead filtered the proof commands in the
dataset which did not fit into our proof command model.

With data transformation disabled, and the default search
width (5) and depth (6), the proof completion accuracy of
Proverbot9001 is 15.57% (78/501 proofs). Recall that with data
transformation enabled as usual, this accuracy is 19.36%. This
shows that the end-to-end performance of Proverbot9001
benefits greatly from the transformation of input data, al-
though it still outperforms prior work (CoqGym) without
it.
When we measure the individual prediction accuracy of

our model, trained without data transformation, we see that
its performance significantly decreases (16.32% instead of
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26.77%), demonstrating that the extra data produced by pre-
processing is crucial to training a good tactic predictor.

A.5 Search Widths and Depths
Our search procedure has two main parameters, a search
width, and a search depth. The search width is how many
predictions are explored at each context. The search depth is
the longest path from the root a single proof obligation state
can have.
To explore the space of possible depths and widths, we

varied the depth and width, on our default configuration
without external tooling. With a search width of 1 (no search,

just running the first prediction), and a depth of 6, we can
solve 5.59% (28/501) of proofs in our test dataset. With a
search width of 2, and a depth of 6, we’re able to solve 16.17%
(81/501) of proofs, as opposed to a width of 3 and depth of 6,
where we can solve 19.36% of proofs.

To explore variations in depth, we set the width at 3, and
varied depth. With a depth of 2, we were able to solve 5.19%
(26/501) of the proofs in our test set. By increasing the depth
to 4, we were able to solve 13.97% (70/501) of the proofs in
our test set. At a depth of 6 (our default), that amount goes
up to 19.36% (97/501).
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