Projection Boxes: On-the-fly Reconfigurable Visualization
for Live Programming

Sorin Lerner
University of California, San Diego
lerner@cs.ucsd.edu

ABSTRACT

Live programming is a regime in which the programming
environment provides continual feedback, most often in the
form of runtime values. In this paper, we present Projection
Boxes, a novel visualization technique for displaying runtime
values of programs. The key idea behind projection boxes is to
start with a full semantics of the program, and then use projec-
tions to pick a subset of the semantics to display. By varying
the projection used, projection boxes can encode both previ-
ously known visualization techniques, and also new ones. As
such, projection boxes provide an expressive and configurable
framework for displaying runtime information. Through a
user study we demonstrate that (1) users find projection boxes
and their configurability useful (2) users are not distracted by
the always-on visualization (3) a key driving force behind the
need for a configurable visualization for live programming lies
with the wide variation in programmer preferences.

Author Keywords
Live programming; Programming environment; Program
visualization; Debugging.

CCS Concepts
*Human-centered computing — Graphical user inter-
faces;

INTRODUCTION

Live programming is a coding regime in which immediate
feedback is provided to the programmer each time the program
is modified. One line of the research in this space focuses
on the performing arts, where artists use specially designed
live programming environments to create audio/visual pieces,
sometimes in live performances.

In this paper, however, our focus will be on live programming
environments for general purpose programming languages.
In this setting, live programming environments provide a way
to visualize the runtime values of the program each time the
program is modified. Examples of such systems include Bret
Victor’s visualizations [19, 20], Omnicode [8], Alfie [1], Sey-
mour [10, 9], Hazel [15] and the Babylonian editor [16].
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHI’20, April 25-30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. .. $15.00

DOI: https://doi.org/10.1145/3313831.3376494

One challenge in live programming environments for general
purpose languages is information overload. Indeed, displaying
updated runtime values at virtually each and every change can
be intrusive, overwhelming and/or distracting, which could
ultimately offset some of the benefits of the visualization.

In the context of this challenge, we present a new visualization
technique called projection boxes for displaying values of
programs. The key idea of projection boxes is to start with
the full semantics of the program, and then project this full
semantics into a subset of values that are displayed. While this
idea is simple, it has significant ramifications, which can be
summarized into two main points.

First, the expressiveness of projection boxes is quite surprising
given their simplicity. By using different kinds of projections,
we can achieve many different representations, including pre-
viously known ones, and also new ones. As such, projection
boxes not only provide a framework for understanding and
connecting several live visualization techniques, but it also
inspired us to discover new ones.

Second, projection boxes provide a significant amount of ver-
satility for the programmer, and as such provide a powerful
tool for dealing with information overload. Indeed, differ-
ent projections display varying amounts of information, from
no-values-ever to all-values-all-the-time, and every point in
between. This spectrum allows each programmer to pick dif-
ferent visualizations at different points in a programming task,
thus allowing personalized on-the-fly (i.e.: while coding) con-
trol in dealing with the information overload problem. Since
different programmers have different preferences (based on
a variety of factors, including their background, expertise, fa-
miliarity with the language, coding style, etc.), we found that
this kind of personalized on-the-fly configurability is essential
in preventing programmers from being overwhelmed or dis-
tracted by always-on visualizations. A key observation of this
paper is that differences in human preferences should be an
important driver for designing always-on visualizations.

In summary, our contributions are as follows:

e We present a novel always-on visualization technique called
projection boxes. We show how projection boxes are versa-
tile enough to encode many different visualizations, includ-
ing previously known ones, and also new ones.

e We present VERSABOX, an implementation of projection
boxes for the Python programming language. VERSABOX
provides an interface for programmers to quickly customize
projection boxes on-the-fly (i.e.: while coding), thus allow-

https://doi.org/10.1145/3313831.3376494

ing programmers to harness the versatility of projection
boxes for managing information overload.

e We present the results of a user study with VERSABOX
showing that: (1) programmers find projection boxes useful
(2) programmers find that projection boxes are not intru-
sive or distracting (3) different programmers pick different
visualizations at different points.

RELATED WORK

There is a long line of research on live programming environ-
ments for general purpose programming, including: the semi-
nal work of Hancock [5] that introduces many of the important
concepts in live programming; essays categorizing the differ-
ent kinds of liveness [18, 20]; live programming environments
for various languages, for example Python [4, 8], Java [3],
Javascript [16, 1], Lisp [2] and ML-like languages [15]; studies
demonstrating the benefits of live programming [21, 11]; work
on how to run/instrument programs for live programming [15,
17]; and work on live editing the output of a program through
direct manipulation [6, 13, 7].

Broadly speaking, our work distinguishes itself in two primary
ways: (1) our work presents a visualization framework that is
flexible enough to encode both previously known visualization
paradigms, and also new ones (2) our visualization frame-
work supports quick non-intrusive on-the-fly reconfigurability,
which we show to be an effective way to handle information
overload in always-on visualizations. We now discuss in more
detail the most closely related work.

Perhaps most closely related to our work is (what we will
call) the Victor Visualization [19], introduced by Bret Victor
in 2012, and later refined in various systems, like Alfie [1]
and Seymour [9, 10]. The Victor Visualization shows, next
to each assignment, a row of all the values produced by that
assignment over time. If there is more than one value to
display (for example because the statement is inside a loop),
then the values from the same loop iteration are vertically
aligned. We will show in this paper that our Projection Boxes
can be configured to re-create the Victor Visualization, but
with additional benefits (which will be described later in the
paper). Most importantly, our Projection Boxes are general
enough that they can implement several visualizations other
than the Victor Visualization, and allow the programmer to
quickly switch between them on-the-fly, while coding.

Another closely related system is Omnicode [8], a novice-
oriented environment that makes the entire history of program
execution available to the programmer. Omnicode supports
(1) scatterplot visualizations (2) a full heap-as-a-graph visu-
alization when focusing on a particular execution step and
(3) swiping over the code to filter data based on the selected
statements. Although our implementation does not support
scatterplots or heap graphs, at a conceptual level projection
boxes could be flexible enough to encode these. The strength
of the Omnicode work lies in pushing the idea of “display-
ing all values all the time” to the extreme. In the context of
Omnicode, the novelty of our work is in providing an expres-
sive on-the-fly reconfigurable framework, which essentially

gives a highly tunable slider from “no information at all” to
“displaying all values all the time”.

Our work is also related to the recently published Babylonian
editor [16, 17]. This editor supports probes on variables, and
sliders on loops to focus on particular loop iterations. Our
Projection Boxes can encode some of the Babylonian visual-
izations (like single variable probes and focusing on particular
loop iterations), but not others (like seeing a live view of the
canvas for drawing programs). There are also paradigms we
support that the Babylonian editor does not, like non-local
probes, and full program state probes (described later).

The YinYang system [14] is a live environment with (1) probes
displaying one value at a time and (2) a live trace pane on
the right. Our work supports several additional paradigms,
including probes that show the values of all iterations at once
and probes that show more than one variable at time.

Another closely related work is the Theseus editor [12], which
provides live information about method call-counts and an
interactive pane to visualize the calling structure. Theseus
does not however provide program state information at each
line, the way projection boxes do.

PROJECTION BOXES

The core contribution of this paper is a versatile always-on
visualization technique for runtime values called projection
boxes. The key idea of projection boxes is to start with a full
semantics of the program, and then project this full semantics
into a subset of values that are displayed. While this idea is
simple, its expressiveness is surprising. By using different
kinds of projections, we can achieve different representations,
including previously known ones, and also new ones. The
programmer has the flexibility to pick different visualizations
at different points in a programming task, and can even use
different visualizations for different parts of the program.

Full Semantics

The starting point of our visualization is the full semantics
of the program. This semantics is meant to capture the most
detailed view of the execution of the program. We use a well-
known complete semantics, the state collecting semantics of a
program: at each line in the program, we compute the set of
all program states that can occur at that line. For simplicity
we will consider each program state to be a mapping from
variable names to values. In reality, the program state also has
the notion of a heap, but we assume for now that variables
pointing into the heap will be mapped to a string representation
of the heap data structure (for example a variable pointing to a
list will be mapped to a string representation of that list).

Basic Box

Figure 1 shows the basic projection box visualization. There
is one projection box for each line in the program. Each box
is a table of values, with each column being a variable name,
and each row being a runtime state. The “#” column shows
iteration counts for loops. The boxes “float” to the right of the
program, and are connected with a straight line to the place
in the code that they are displaying values for. This ability of
boxes to float to the side means that there is no need for an

2
3
4
5 def f():
6 a = [0,2,8,1] Y
7 s,n = 0,0 1 [7: 1] 2 2
8 for x in a: 2 [0, 2, 8 1] 10
3 [o, 2, 1] 1 1
9 S =S+ X
10 n|=n+1
°# a s n x
- ve=s/m 0 [0, 2,8, 1 0 1 0
12 return avg [e, 2, 8, 1]
13 1 [e, 2,8,1] 2 2 2
14 2 [0, 2,8, 1] 18 3 8
3 [0,2,8, 1] 11 4 1

N R E R R R
® © N O W

Figure 1: Basic Projection Boxes

extra pane to display values. This leaves program formatting
completely unchanged, leading to a less intrusive visualization.
Finally, the little green dot at the top left of each box indicates
that the box is up-to-date. If the program changes in a way
that it cannot be run (because of syntax or run-time errors),
this dot becomes orange, and eventually red, to indicate that
the information is out-of-date.

If a particular statement is not executed in a given loop iteration
(typically because of a branch), we insert empty rows for
those iterations. In preliminary experiments, we found that
without this feature it was hard to understand how values
flowed through branches.

Information Overload

The biggest drawback of projection boxes as described so far
is that they display a lot of data, which can lead to information
overload. To alleviate this problem, we start with three visual
techniques that focus attention at the current cursor position.
These techniques are shown in Figure 1, where line 10 is the
current cursor position. While these three techniques alleviate
the problem, we will shortly see that they will not be the
ultimate answer. First, we align the box at the current cursor
position with the cursor, and push all other boxes away, above
and below the cursor. Second, we use a fish-eye effect that
shrinks boxes that are farther away from the cursor: the farther
a box is from the cursor, the more it shrinks. Third, we use a
transparency effect: the farther a box is from the cursor, the
more transparent it is. The result of these three techniques is
that, as the programmer moves the cursor around, the size of
the boxes change fluidly so that the box at the cursor remains
fully visible as a focal point, and other boxes further away
attract less attention, while still remaining visible.

Projections

Even with the above three techniques, the amount of data can
still be overwhelming. To address this problem, we intro-
duce a much more potent mechanism to address visual clutter:
projections. A projection in our context can do two things:

1. A projection can pick a subset of the values to display. For
example, a projection could choose to only display boxes

for certain program locations and not others; or within a
given box, a projection could choose to only display some
variables and not others; or at an even finer granularity, a
projection might choose to display only some of the values
for a given variable (for example to focus on a particular
loop iteration).

2. A projection can switch the display order between column
order and row order. The boxes we’ve seen so far (Figure 1)
display each variable in a column (column order). Alterna-
tively, one can transpose the table and show one variable on
each row (row order, which we will see later). Switching
between the two orders can be beneficial for space man-
agement. For example, if there are many loop iterations,
but few variables, then column order will lead to very tall
skinny boxes, and it will be hard to display many of these
on top of each other, and so in this case row order might
lead to better space management.

Versatility of Projection Boxes
Although the idea of projections is simple, the expressiveness
and generality it entails is surprising.

Indeed, projection boxes are able to encode many traditional
visualization techniques from live programming, including:
(1) Single variable probe at the point where a variable is read
or written (2) Probe of the return value (3) Filtering to show
only certain loop iterations (4) Filtering based on a particular
input (5) Filtering to show the runtime values associated with
only a particular input and (6) The Victor visualization from
2012 [19].

In addition, projection boxes enable several forms of visual-
izations that have not been explicitly supported previously,
including: (1) Single variable probes at locations other than a
read or a write (2) Multi-variable probes that display multiple
variables at the same program location (3) Full table of all
values at each program point and (4) A probe that follows the
cursor and displays the runtime values at the cursor position.

To illustrate the power of projection boxes, we show how
to encode the Victor visualization, a visualization introduced
in a 2012 talk by Bret Victor [19], and also implemented
in Seymour [10, 9] and Alfie [1]. Figure 2(left) shows a
screenshot from the 2012 talk by Bret Victor.

At first sight, it might seem that the Victor visualization is
quite different from our projection boxes. However, quite
surprisingly, projection boxes are general enough to implement
the Victor visualization. More specifically, to implement the
Victor visualization we use the following projection:

e Row vs Column: Display each variable as a row

e Values to Display: Variable(s) modified at each line

Figure 2(right) shows the resulting visualization using projec-
tion boxes. To see the boxes, keep in mind that each projection
box has a little green dot at the top left. Note that compared to
Figure 1 the projection boxes in Figure 2(right) do not have
a border, don’t have space between them, and have bars to
separate columns. These are simple minor visual adjustments.

function binarySearch (key, array) { key = 'd’

=
var low = 0; low = 0
var high = array.length - 1; high = 5

while (1) { low

var mid = floor((low + high)/2); mid
var value = array[mid]; value

[
o auw

cwww

if (value < key) {
low = mid + 1; low

n
w

else if (value > key) {
high = mid - 1; high = | 3]

else {
return mid; return | | 3

def binary_search(k, a):

low = @ ¢ low
high = len(a)-1 | high

while 1 == 1: *| low

high
mid = int((low+high)/2) —°| mid
value = a[mid] EEE—

anvun o

o ww w

oA uvow

value

if value < k:

low = mid + 1
elif value > k:

high = mid - 1 —————=|high | | 3|
else:

return mid 7" v ‘ | ‘ 3

frow | 3]

Figure 2: Victor Visualization. Left: original from 2012 talk. Right: using our projection boxes

Not only can projection boxes encode the Victor visualization,
but the version based on projection boxes has two advantages
over the traditional Victor visualization: (1) whereas the Victor
visualization adds empty code lines to make sure values are
aligned with the statement that produced them, projection
boxes, by virtue of “floating”, leave code spacing unchanged
(2) whereas seeing the relation between two variables in the
Victor visualization would require looking at lines in the code
that can be arbitrarily far away from each other, projection
boxes can be configured to show multiple variables at the same
code line, one above the other, thus making it easier to see
relationships between variables at a given program location.

FORMATIVE STUDY

We have seen that projections offer a powerful mechanism for
customizing the visualization of runtime values. However, we
have not yet addressed the issue of how users select/define
projections. To understand the design space, we conducted a
formative study in which 4 subjects used and provided feed-
back on a preliminary version of VERSABOX, our implemen-
tation of projection boxes. This preliminary version displayed
a full table of values at each line, and had menu controls to
add/remove projection boxes and variables in each box.

Formative Study and the Need to Customize Projections
In our formative study, we found that differences in human
preferences led to a particularly strong need for different pro-
jections. Indeed, some programmers like to check their code
after each line is written, whereas others like to write many
lines before pausing to check their code; some programmers
like to write code linearly, whereas others jump around when
writing code. All of these differences affect the kind and
amount of feedback that programmers want.

Furthermore, although live programming tries to blur the line
between coding and debugging, we still observed a fluctuation
between a more coding-centric mode, and a more debugging-
centric mode. This fluctuation further accentuated the need
for different levels of visualization. Programmers generally
wanted less information when in a code-centric mode, and
more information when in a debugging-centric mode.

Finally, we found that a programmer’s experience with the
programming language had a strong influence on the amount
of immediate feedback they want. Programmers who were

familiar with a language generally wanted less information,
since they did not need to check every single step.

Formative Study and the Ul for Customizing Projections
Our formative study also provided several insights on what
UI to use for customizing projections. First, programmers
unanimously stated that using the mouse to adjust projections
was a major hurdle, and that keyboard shortcuts would have
led them to adjust projections more often while writing code.
Second, a recurrent feedback was that a simple set of presets
for view modes would be really useful, so that programmers
new to projection boxes do not get overwhelmed with the cus-
tomizability options. Finally, we found that one programmer,
while finding the visualization useful, wanted to turn it off
some of the time. This pointed us what we will call a “stealth
mode” where all boxes are hidden (projected out).

IMPLEMENTATION OF PROJECTION BOXES

Following the feedback from our formative study, we im-
plemented projection boxes in a tool called VERSABOX.
VERSABOX is built on top of Visual Studio Code editor, and
works for the Python language. Each time the programmer
makes a change to the code, VERSABOX runs the each func-
tion on unit tests to collect all the required data to display in
the projection boxes.

There are many systems challenges in making this kind of
“run-always” approach practical, including efficiently running
code, supporting I/O, and supporting infinite-running pro-
grams. While these systems challenges are not fully solved yet,
in this paper we explicitly do not address these. Instead our
contribution is on the human-computer interaction research
question of how projection boxes work and what they enable.

Using the insights of our formative study, VERSABOX offers
4 preset view modes, which the user can switch between with
keyboard shortcuts (the first two views below use column
order):

e Full View: Shows all boxes and all variables, as in Figure 1.
e Summary View: Shows box at cursor and return statement.
e Row View: Victor visualization, as shown in Figure 2(right).

e Stealth View: Shows no boxes.

Questions avg

Q1: VersaBox helped me write correct code 4.7
Q2: VersaBox was easy to use 4.8
Q3: Visualization boxes in VersaBox distracted me 1.2
Q4: Configuring displayed variables was useful 4.4

Q5: My favorite view: [Full | Summary | Row | Stealth] -
Q6: Different views are best suited for different tasks 3.8
Q7: I would use VersaBox again 4.6

Figure 3: Questions in survey along with average scores. All
questions except Q5 are on a 5 point Likert scale with 1 being
“Disagree” and 5 being “Agree”. Q5 is a multiple choice
question, whose answer distribution was (out of 10 subjects):
Full (3), Summary (1), Row (6), Stealth (0).

Programmers can also configure which variables are displayed
in projection boxes. A keyboard shortcut brings up a one-line
textbox that hovers over the current line. This textbox accepts
commands in the following syntax: add|del |keep [@all]
VarRegExp. For example, “del a” would remove variable
“a” from the box at the current line, and “del@all a” would
remove “a” from all boxes. Wildcards and regular expressions
can be used in variable names. The “keep” command keeps
only the variables that match the given expression, so that
“keep E” is equivalent to “del *” followed by “add E”.

EXPERIMENTAL SETUP

One of the goals of projection boxes is to manage information
overload, which is one of the biggest challenges with always-
on visualizations, especially ones that are meant to be used
while coding (not just debugging). As such, we want to un-
derstand if projection boxes provide a good balance between
providing useful information, but without being distracting.
This leads us to three main questions:

e R1: Utility. Do users find projection boxes helpful?
e R2: Distraction. How distracting are projection boxes?

e R3: Customizability. Do users find the customizability
afforded by projection boxes useful? Why or why not? And
if so, how?

To answer these questions, we ran a lab study with 10 pro-
grammers (2 women, 8 men), whose experience ranged from
medium to expert. Programming experience ranged from 3
to 9 years. Python experience ranged from 1 to 5 years. We
recorded the sessions (1.5 to 2.25 hours) to analyze them later.

We first taught subjects how to use the tool (15 minutes). We
then asked subjects to program 6 tasks: (1) compute difference
between max and min of a list (2) compute difference between
mean and median of a list (3) compute mean of the first quar-
tile of a list (4) functionally insert in a sorted list perserving
sortedness (5) destructively insert in a sorted list perserving
sortedness (6) parse a string containing a set of records.

We gave the subjects a handful of test cases and asked them
to continue until their code worked on all test cases. After the
study, we asked users to fill out a survey, whose questions are
show in Figure 3. Finally we conducted post-study interviews.

EXPERIMENTAL RESULTS

R1: Utility

Users overwhelmingly found VERSABOX helpful (Q1 avg of
4.7/5) and easy to use (Q2 avg of 4.8/5). We observed that
subjects found VERSABOX useful in four ways: (1) Finding
and fixing mistakes right when they are introduced (2) Guiding
code writing, where a common workflow would be to look at
the current variables to guide how the next statement should be
written (3) Testing the entire code after it is written, to check
not only that it produces the correct result, but also that the
control flow works as expected (4) Discovering and clarifying
how certain operations work in Python, such as sort, sorted,
insert split, strip, stripl and stripr.

The fourth usage mode above is especially interesting. Indeed,
by trying out statements and looking at the result in projection
boxes, programmers can use VERSABOX as an nonintrusive
interpreter right in the editor, without having to switch to
another tool. This interpreter is particularly useful because
it runs commands in the context of the code surrounding the
statement being written. This interpreter is also not a special
case: it just falls out naturally from the visualization.

The above four uses all come together for various users at
different frequencies. We often observed this during the study,
and S8 mentioned it in particular during the interview: he
mentioned that the granularity at which he would look at the
boxes would depend on how confident he was about the code
he is writing. We believe that the ability of VERSABOX to
support this mode of operation is one of the key factors that
make it useful:

Takeaway 1: If the level of distraction is minimized,
programmers can benefit from always-on visualizations
at different granularities, taking in the information on-
demand, only when they find it useful.

R2: Level of distraction

Subjects found that projection boxes did not distract from
programming (avg of 1.2/5 to Q3 “The visualization boxes
in VersaBox distracted me”, where 1 is “Disagree”). By ob-
serving subjects, we noticed that one of the keys to achieving
this level of non-intrusiveness is that subjects were able to
configure the visualization on-the-fly, as needed, to match the
level of detail they wanted:

Takeaway 2: On-the-fly configurability helps reduce dis-
traction by enabling the programmer to configure the
amount of information, and as such also mitigates infor-
mation overload in always-on code visualizations

R3: Customizability

Customizing Variables

Subjects generally found that customizing the set of displayed
variables was useful (Q4 avg 4.4/5). By observing subjects, we
found that subjects either removed variables when there was
too much information in the Full View (for which the default
is that each box shows all variables), or added variables when
there was not enough information in the Row View (for which
the default is that each box displays just the modified variable).

5 —cla|1|4]|7
6 for a,b in [(1,1),(4,2),(7,9)]: — bl1]2]o
7 X =a *Ix|1(4|7
8 if x < 3 or x > 6:

9 X=x+1 *lx|2 8
10 y=b ely|1]2]9
11 ify > 8:

12 y=4 — Iyl | |e
13 # how do x and y relate?

14
15
16
17

5

[3 for a,b in [(1,1),(4,2),(7,9)]:
7 X = a

8 if x < 3 or x > 6:

9 x=x+1 -

10 y=b //// #abxy

11 ify > 8: e

12 y=4 -

13 # how do x and y relate?

14 *# abxy

15 e 11 21

16 14 2 4 2
2 7 9 8 4

Figure 4: The relation between x and y on line 13 is very hard to see in Row View (left), but easy to see in Full View (right).
Conversely, seeing which values are generated at each line is easy to see in Row View (left), but hard to see in Full View (right).

Customizing View Modes
The answers to Q5, “Preferred view mode”, show that no one
view was preferred: Row View was picked by 6 subjects, Full

View by 3, Summary View by 1, and Stealth View by none.

This already shows how view customization is useful.

The answers to Q6 further reinforce this point. Recall that
Q6 is “Different views are best suited for different tasks”, and
that the scale is 1 to 5, where 1 means “Disagree”, and 5
means “Agree”. 6 out of the 10 subjects rated this statement
4 or 5, which we will categorize as generally agreeing. The
remaining 4 subjects rated this statement 2 or 3, which we
will categorize as generally disagreeing. Interestingly, the 4
disagreeing subjects (who essentially thought just one view is
good enough for all tasks) did not all have the same preferred
view: two preferred the Full View, one preferred the Summary
View, and one preferred the Row View. This highlights even
more the need for customizability: even among those who

prefer to use just one view, they don’t all prefer the same view.

All of the above differences in view preferences ultimately
stem from an inevitable tradeoff between Row View (i.e.: the
Victor visualization) and Full View. Row View makes it easier
to focus on the changes happening at a given line, whereas
the Full View makes it easier to understand the full program
state and relationships between variables at a given line. For
example, consider the code in Figure 4, shown in Row View
(left) and Full View (right). In Row View, it is extremely
difficult to see the relation between x and y on line 13 inside
the loop (in fact, x is two times y). In contrast, in the Full View,
this is immediately visible. We observed that subjects coped
with this tradeoff in three ways: (1) primarily using Row View,
and adding variables to see relations between variables (2)
primarily using Full View, and removing variables to more
clearly see changes at a particular statement (3) switching
on-the-fly between Row View and Full View.

Takeaways about Customizability
All of the above results leads us to the following takeaway:

Takeaway 3: Different programmers have significantly
different preferences for always-on code visualizations.
Consequently, customizability based on programmer pref-
erences should be a key driving force behind the design
of always-on code visualizations.

Another phenomenon we observed concerns mouse usage:

Takeaway 4: When configuring always-on visualizations
on-the-fly (in the middle of coding), programmers shy
away from using the mouse, even for those programmers
who use the mouse otherwise in their coding style

We believe this is partly because, while in the middle of writing
code (i.e.: typing characters), using a mouse is cognitively
disruptive. If we want a visualization to be customizable on-
the-fly, at a fine-level of granularity, our experience shows that
keyboard shortcuts are important.

LIMITATIONS AND FUTURE WORK

There are several directions for future work that would improve
projection boxes and VERSABOX. One limitation is that our
lab study was a small-scale experiment. Doing larger studies in
the wild would give us a broader understanding of the tradeoffs
and help make our conclusions stronger.

VERSABOX has currently been used on unit test inputs, which
are relatively small. Visualizing larger data sets will require
incorporating various additional mechanisms, such as pre-
viewing only part of the data, or using plots to see aggregate
information. These ideas fit nicely in the framework of projec-
tion boxes, but care will need to be taken to build an interface
for configuring all of these new forms of visualizations.

Code execution in VERSABOX can also be improved. I/O and
reproducibility are interesting challenges that will come up,
for example, if the code being written is a server. Still, it’s
important to realize that even in a server, there are many self-
contained functions that do not perform I/O and just process
data, functions which VERSABOX can already handle.

Another future work direction is adapting these ideas to other
programming paradigms, for example functional or constraint-
based. The idea of projection boxes could still apply, but
additional challenges might arise, for example where to place
boxes, or how to visualize the state of a constraint solver.

CONCLUSION

We presented an always-on reconfigurable visualization frame-
work called projection boxes. Projection boxes allow pro-
grammers to quickly reconfigure the visualization on-the-fly,
in the middle of coding. Through a user study, we showed
that there is no single configuration that works best for all
programmers or for all tasks, which motivates the need for
highly customizable visualizations like projection boxes.

ACKNOWLEDGEMENTS

We would like to thank Nada Amin for suggesting that we
think of our work through the lens of projections, Nishil
Macwan for helping with some of the early exploratory work
with Visual Studio Code, and the anonymous reviewers for
their helpful comments and suggestions.

REFERENCES
[1] 2019. Alfie. https://alfie.prodo.ai/. (2019). Accessed:

2019-09-01.

[2] 2019. LightTable. http://lighttable.com/. (2019).

Accessed: 2019-09-01.

[3] Benjamin Biegel, Benedikt Lesch, and Stephan Diehl.

[4

[5

[6

[7

[8

[9

]

]

—_

—

]

—

2015. Live object exploration: Observing and
manipulating behavior and state of Java objects. In 2015
IEEE International Conference on Software
Maintenance and Evolution (ICSME). 581-585. D01 :
http://dx.doi.org/10.1109/ICSM.2015.7332518

Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for Cs Education. In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 579-584. DOI:
http://dx.doi.org/10.1145/2445196.2445368

Christopher Michael Hancock. 2003. Real-time
Programming and the Big Ideas of Computational
Literacy. Ph.D. Dissertation. Cambridge, MA, USA.
AAI0805688.

Brian Hempel and Ravi Chugh. 2016. Semi-Automated
SVG Programming via Direct Manipulation. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST "16). ACM,
New York, NY, USA, 379-390. DOI:
http://dx.doi.org/10.1145/2984511.2984575

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019.
Sketch-n-Sketch: Output-Directed Programming for
SVG. In Proceedings of the 32nd Annual Symposium on
User Interface Software and Technology (UIST ’19).
ACM, New York, NY, USA.

Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A
Novice-Oriented Live Programming Environment with
Always-On Run-Time Value Visualizations. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 737-745. DOI:
http://dx.doi.org/10.1145/3126594.3126632

Saketh Kasibatla and Alessandro Warth. 2017. Seymour:
Live Programming for the Classroom. In International

Workshop on Live Programming Worskhop (LIVE 2017).

[10] Saketh Ram Kasibatla. 2018. Seymour: A Live

Programming Environment for the Classroom. Master’s
thesis. University of California, Los Angeles.

[11] Jan-Peter Krdmer, Joachim Kurz, Thorsten Karrer, and

Jan O. Borchers. 2014. How live coding affects
developers’ coding behavior. 2014 IEEE Symposium on

Visual Languages and Human-Centric Computing

(VL/HCC) (2014), 5-8.

[12] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014.
Addressing Misconceptions About Code with
Always-on Programming Visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI "14). ACM, New York, NY,
USA, 2481-2490. DOI:
http://dx.doi.org/10.1145/2556288.2557409

Mikaél Mayer, Viktor Kuncak, and Ravi Chugh. 2018.
Bidirectional Evaluation with Direct Manipulation. Proc.
ACM Program. Lang. 2, OOPSLA, Article 127 (Oct.
2018), 28 pages. DOI:
http://dx.doi.org/10.1145/3276497

[13

—_

[14

[}

Sean McDirmid. 2013. Usable Live Programming. In
Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward! 2013). ACM, New
York, NY, USA, 53-62. DOI:
http://dx.doi.org/10.1145/2509578.2509585

[15] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A.
Hammer. 2019. Live Functional Programming with
Typed Holes. Proc. ACM Program. Lang. 3, POPL,
Article 14 (Jan. 2019), 32 pages. DOI:
http://dx.doi.org/10.1145/3290327

[16

—_

David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke,
and Robert Hirschfeld. 2019. Babylonian-style
Programming: Design and Implementation of an
Integration of Live Examples Into General-purpose
Source Code. The Art, Science, and Engineering of
Programming 3, 3 (2019).

[17

—

Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis,
Fabio Niephaus, and Robert Hirschfeld. 2019.
Implementing Babylonian/S by Putting Examples Into
Contexts: Tracing Instrumentation for Example-based
Live Programming As a Use Case for Context-oriented
Programming. In Proceedings of the Workshop on
Context-oriented Programming (COP '19). ACM, New
York, NY, USA, 17-23. DOI:
http://dx.doi.org/10.1145/3340671.3343358

[18] S. L. Tanimoto. 2013. A perspective on the evolution of
live programming. In 2013 Ist International Workshop
on Live Programming (LIVE). 31-34. DOI:
http://dx.doi.org/10.1109/LIVE.2013.6617346

[19

—

Bret Victor. 2012a. Inventing on Principle. (2012).
https://vimeo.com/36579366#t=18m05s

[20] Bret Victor. 2012b. Learnable Programming. (2012).

http://worrydream.com/LearnableProgramming/

[21] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz,
and C. R. Cook. 1997. Does Continuous Visual
Feedback Aid Debugging in Direct-manipulation
Programming Systems?. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’97). ACM, New York, NY, USA,
258-265.D0O1:
http://dx.doi.org/10.1145/258549.258721

https://alfie.prodo.ai/
http://lighttable.com/
http://dx.doi.org/10.1109/ICSM.2015.7332518
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2984511.2984575
http://dx.doi.org/10.1145/3126594.3126632
http://dx.doi.org/10.1145/2556288.2557409
http://dx.doi.org/10.1145/3276497
http://dx.doi.org/10.1145/2509578.2509585
http://dx.doi.org/10.1145/3290327
http://dx.doi.org/10.1145/3340671.3343358
http://dx.doi.org/10.1109/LIVE.2013.6617346
https://vimeo.com/36579366#t=18m05s
http://worrydream.com/LearnableProgramming/
http://dx.doi.org/10.1145/258549.258721

	Introduction
	Related Work
	Projection Boxes
	Formative Study
	Formative Study and the Need to Customize Projections
	Formative Study and the UI for Customizing Projections

	Implementation of Projection Boxes
	Experimental Setup
	Experimental Results
	R1: Utility
	R2: Level of distraction
	R3: Customizability

	Limitations and Future Work
	Conclusion
	Acknowledgements
	References

