Addressing Common Crosscutting Problems with Arcum

Macneil Shonle

*

William G. Griswold Sorin Lerner

Computer Science & Engineering, UC San Diego
La Jolla, CA 92093-0404

{mshonle, wgg,

ABSTRACT

Crosscutting is an inherent part of software development and can
typically be managed through modularization: A module’s stable
properties are defined in an interface while its likely-to-change
properties are encapsulated within the module [19]. The cross-
cutting of the stable properties, such as class and method names,
can be mitigated with automated refactoring tools that allow, for
example, the interface’s elements to be renamed [9, 18]. However,
often the crosscutting from design idioms (such as design patterns
and coding styles) are so specific to the program’s domain that
their crosscutting would not likely have been anticipated by the
developers of an automated refactoring system.

The Arcum plug-in for Eclipse enables programmers to describe
the implementation of a crosscutting design idiom as a set of syn-
tactic patterns and semantic constraints. Arcum can process dec-
larations of related implementations and infer the refactoring steps
necessary to transform a program from using one implementation
to its alternatives. As a result, automating refactoring for domain-
specific crosscutting design idioms can be easy and practical. This
paper presents a case study of how Arcum was used to mitigate
four classic software engineering problems that are exacerbated
by crosscutting: library migration, debugging, programmer-defined
semantic checking, and architectural enforcement.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures, languages, patterns

General Terms

Languages, Design.

Keywords

Refactoring, design patterns, aspect-oriented programming.

*This work was supported in part by an Eclipse Innovation Award
from IBM and NSF Science of Design grant CCF-0613845.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PASTE 08 Atlanta, Georgia USA

Copyright 2008 ACM 978-1-60558-382-2/08/11 ...$5.00.

lerner}@cs.ucsd.edu

1. INTRODUCTION

Arcum is a framework for declaring and performing user-defined
program checks and transformations, with the goal of increasing
automated refactoring opportunities for the user [21]. By using Ar-
cum, a programmer can view the implementation of a crosscutting
design idiom as a form of module. Arcum uses a declarative lan-
guage to describe the idiom’s implementation, where descriptions
are composed of Arcum interface and Arcum option constructs. An
option describes one possible implementation of a crosscutting de-
sign idiom, and a set of options are related to each other when they
all implement the same Arcum interface.

Arcum’s declarative language uses a Java-like syntax for first-
order logic predicate statements, including a special pattern nota-
tion for expressing Java code. Like most declarative languages,
Arcum operates from a database of relations. Arcum’s database
contains relations associated with the program being analyzed, in-
cluding relations like isA, hasMethod, and copiedTo, and with spe-
cial relations to cover Java syntax, such as method invocations, field
references, and type declarations.

This paper presents a case study of Arcum’s use on its own code-
base, where we encountered a variety of classical software engi-
neering problems that are induced by crosscutting design idioms.
This paper extends our previous work [21] by demonstrating sev-
eral plausible ways crosscutting manifests itself in real-life pro-
grams, and how such crosscutting can be mitigated.

The Arcum project is an Eclipse plug-in written in Java, which
comprises of over 150 public classes and 19,000 lines of code. We
chose the Arcum codebase in part because we are familiar with it
and we believe it uses idioms that can be assisted with Arcum.

We found that many of the software engineering problems en-
countered were not specific to the particulars of the project, yet
also not general enough to be anticipated by tool developers or even
the Java language designers. We believe there is a middle ground
between problems so readily encountered they are addressed di-
rectly by the language, and problems so rarely encountered that
you would only need to cope with them once. For our purposes, we
refer to this middle ground as involving domain specific needs. The
purpose of the case study is to demonstrate the frontier of possibil-
ity for an expert in the Arcum framework, leaving open for future
user-studies to show how well a non-expert can employ Arcum for
intermediate-level tasks.

Each category of software engineering problem covered has a
working example developed and tested against the codebase. The
first category covers problems related to code migration and the
trade offs between making a program’s implementation more stan-
dardized or more project specific (Section 2). The second category
covers the process of debugging (Section 3) and the third category
covers how needs specific to a domain differ from the general needs

01 interface IntegerBoxingOperation {

[‘boxedValue] }

== [new Integer (‘boxedValue)] }

02 abstract boxing (Expr expr, Expr boxedValue) {

03 exists (DeclarationElement d) {

04 == [Integer] && copiedTo (expr, d)

05 }

06 && 1isA (boxedValue, <int>)

07 }

08 }

09

10 option ImplicitBoxing implements IntegerBoxingOperation {
11 realize boxing (Expr expr, Expr boxedValue) { expr ==
12}

13

14 option ExplicitBoxing implements IntegerBoxingOperation {
15 realize boxing (Expr expr, Expr boxedValue) { expr

16 }

Figure 1: The ImplicitBoxing option matches all int expressions that get implicitly boxed into an instance of Integer. When this option
is transformed into the ExplicitBoxing operation the Integer constructor is explicitly called.

that a programming language covers (Section 4). The final category
covers software architectural enforcements needs (Section 5).

2. CLASS LIBRARY MIGRATION

Class library migration is a general software evolution need: Of-
ten it is desirable to remove the use of a legacy library and directly
use its replacement instead [1]. The solution for this problem de-
vised by Balaban et al. includes a type constraint solver that finds
the largest set of code locations that can be safely changed, even in
the presence of synchronized methods. For example, uses of the al-
ways synchronized Vector class can be changed to uses of the more
efficient ArrayList class, where the ArrayList instances are synchro-
nized only when necessary.

Arcum supports a complementary variation of class library mi-
gration. Instead of determining the largest set of code locations
that can be safely migrated, Arcum’s approach is to have the loca-
tion set explicitly described; for example, one description might be
“all uses of Vector in package p or by class C.” When the set can-
not be transformed safely, the starting option presents the user with
static error messages. All errors have to be resolved before trans-
formation is allowed. In some instances, the location set specified
might match more code than expected, requiring the user to narrow
the set’s definitions; in other instances, the set definition is correct
but modifications need to be made to the code itself first, to bring
it into conformance; in yet other cases, the user might realize, by
the nature of the errors, that he or she needs to take a completely
different approach. In this way, Arcum gives the programmer an
opportunity to interact with the tool, helping to ensure that his or
her conception of the system matches the actual implementation.

The key to Arcum’s support for matching uses of class libraries
is the DeclarationElement type, derived from the same term used by
Tip et al. to describe all local variables, fields, return types, and cast
expressions [24]. The pattern used to specify DeclarationElements
in the program is a type pattern. Line 4 of Figure 1 shows a pattern
to match all declarations of the Integer wrapper class.

In addition to matching all DeclarationElements in the program,
support for migration must allow for the description of operations
such as: class instantiations, method invocations, and conversion
operations. Instantiations and method invocations can be matched
using various Expr patterns. To match conversion operations, Ar-
cum defines a copiedTo relation in the database: copiedTo relates
expressions to declaration elements. The relation holds when the
value of the expression is copied to a location declared by the dec-

laration element.'

The code in Figure 1 demonstrates how implicit boxing can be
made explicit, which could be used as the first step to replacing
uses of the java.lang.Integer class with an alternative class.

2.1 Canonicalization

One use we found for class library migration was when we started
to employ the Google Collections library [8]. The library includes
extra support for programming with generics in Java, including in-
terfaces and operations to support functional programming styles.
For example, we had a need in Arcum to support operations that
are lazily executed. This division of definition and execution al-
lowed us to separate the knowledge of how to initialize an object
from the knowledge of when to initialize it. We initially defined a
parameterized Thunk<T> interface to achieve this, which declared
a single, no-argument method with a return type of T. Looking into
the Collections library we found that the Supplier interface fit our
needs exactly. By using an interface defined in another library, we
were able to make our own use of the interface less mysterious
compared to the original solution. By writing code that conforms
to a more standardized interface there is a better chance to integrate
independently developed code that followed the same standards.

2.2 Removing Puns: De-Canonicalization

Of course, there are always trade offs with using standard libraries.
One risk of transforming all similar-looking uses to use the same
canonical form is that two uses that only accidentally look simi-
lar could be mistaken to belong to the same concern. Such similar
uses could be called “puns.” For example, if there are two meth-
ods that accept an instance of Supplier<String>, are they related,
or would one be better typed as DelayedObject<String> while the
other is typed as DefaultValue<String>? The answer depends on
your circumstances.

Providing different class definitions to prevent puns can assist
modularization. For example, while the current needs of the
interface might result in the same structure, a programmer may
anticipate additional operations that will need to be added later;
and the additional operations will only make sense in one context
but not the other. Similarly, the semantics of the operations might
shift over time. For example, DelayedObject<String> might have
caching semantics, while DefaultValue<String> would be better
served re-computing the result for each request.

'Copy operations include: assignment, initialization, argument
passing, and value returning.

One middle ground that can also be employed with Arcum is
to extend the richness of types via annotations. For example, two
structurally similar, but conceptually different, uses of the same
interface could be separated by applying different Java meta-data
annotations to them, creating a form of qualified types.? Tt could
then be up to the option author to decide if assignments are allowed
between variables belonging to the same type but with different
annotations. Or, alternatively, to allow conversion, but only when
explicitly exposed through a static method.

Key to the Arcum style is that programming decisions like this
do not have to be made immediately: There is always the freedom
to change your mind later on when your needs are clearer. Using
Arcum, a best guess for a design decision can be made, with that
decision documented as an option, to be revisited as needed.

3. DEBUGGABILITY

The considerations made while debugging a program are differ-
ent than the considerations during the design and implementation
processes. For instance, while a well-designed program is modu-
larized based on the criteria of what is likely to change [19], there
are an infinite number of design futures—if you were to anticipate
them all, development would get no where. This lack of anticipa-
tion is pronounced when it comes to software bugs: The kind of
bugs that trouble programmers weren’t known to them when they
first designed the system. Thus, in the process of debugging, a pro-
grammer may need to make changes across the decomposition of
the system, including changes made to help find the cause of the
bug, and then to fix it.

At one stage in the development of Arcum, we encountered an
intermittent bug: Sometimes the program would halt with a Null-
PointerException and sometimes it would compute the expected re-
sult. Eventually, we discovered that the source of the problem was
the iteration order of HashMaps. The hashCode used was the de-
fault identity code. On the VM we were using, this identity code
was related to the bookkeeping records of the garbage collector.
The location in memory where objects were initially allocated was
important in determining this identity code and thus objects would
be hashed to different sections of the hash table (and, hence, be
iterated in a different order) on various executions of the program.

After the cause of the non-determinism was found, we wanted to
see how we could use Arcum to help. One solution is related to the
class library migration problem (see Section 2): The program can
be refactored from using the HashMap class to using the Linked-
HashMap class instead. LinkedHashMap is a sub-class of HashMap
that has a predictable iteration order; it maintains a parallel linked-
list to keep track of the order in which entries are added to the table.

By changing the program to use a deterministic order we were
able to reliably reproduce the bug, making it easier to locate the
root cause of the problem and then to fix it. Part of this was luck,
because the iteration order just happened to execute the operations
in the order necessary to reproduce the bug. If we weren’t quite so
lucky, we’d still have some options available: We could have added
more test cases, in the hopes of finding the right code sequence to
expose the bug again. Alternatively, we could have written a variant
of the LinkedHashMap class that placed the elements in an arbitrary,
but predictable, ordering based on a hard-coded seed.

The examples of making a program more deterministic are a spe-
cial case of a more general problem: Oftentimes what was assumed
to be stable during development time might need to be changed to

*However, as of Java 6, type arguments for parameterized types
cannot have annotations. Thus, the solution is not complete, al-
though some work-arounds exist.

assist debugging.

4. USER-DEFINED SEMANTICS

Types are sometimes used by a program in ways that need to be
more restrictive than the type system itself requires (see also Sec-
tion 2.2). This section covers additional examples where the user
can benefit from extra checking and constraints.

4.1 When Simple Solutions are too General

Solutions can be considered too general in the context of using only
special cases of standard methods. A balance must be made be-
tween using a library in an idiomatic style and making the inten-
tions of the code clear.

For example, when working on Strings in Arcum, we discovered
multiple uses of the pattern t.contains("."). Here, names of elements
in the Java program analyzed were represented as Strings, and the
contains test was used to determine if the name was a qualified
name. An alternative to this idiom is to direct all such tests to a
static method instead: isQualifiedName(t). Using Arcum, we were
able to find all references to the special use of contains and trans-
form them to use the static method. We then had a named entity
that Eclipse could use to build a list of entity references. We re-
viewed this list to determine if any of those uses of contains were
puns: That is, checks for the presence of dots that had nothing to
do with qualified names—one reasonable case would be when the
Strings represented numbers, and the check would be better written
as isFloatingPoint(t).

One limitation of the transformation technique is that it could
not detect typos. For example, a use might inadvertently have the
String literal "..". One way to help find these cases would be to
employ a type qualifier strategy, where Strings that represent Java
element names are marked with an annotation. Such a strategy
could be useful as an intermediate step toward modularizing that
use of String so that it’s encapsulated in a wrapper class.

4.2 Checking Uses of Reflection

Reflection in Java is powerful but needs to be employed carefully.
Once reflection is used, opportunities for static checking by the
Java compiler are missed, even when only a subset of Java’s re-
flection capabilities are necessary.

One area where reflection was employed in Arcum was in ac-
cessing a static method that was defined for each concrete imple-
mentation of Eclipse’s ASTNode class. Had this method been de-
clared as non-static we could have just made a simple call to it. In-
stead, we needed a mechanism to invoke a different static method
depending on the type of the instance. By invoking getClass on
the instance, we reflectively dispatched to the right method. This
particular use of reflection had to make assumptions about the pres-
ence of the method. But such assumptions can be error prone and
leave essential parts about the program’s structure obscured.

However, by using annotations together with predicate checks in
Arcum, we were able to use reflection in a more disciplined man-
ner. Figure 2 demonstrates the use of a technique for making the
requirements explicit in the code and allowing Arcum to check it.
The ClassDefines annotation takes in a single value, a type token
that references an interface that declares exactly one method; in this
case, it declares the propertyDescriptors method.

Several properties are checked when the ClassDefines annotation
is used. If any of the properties don’t hold, then Arcum generates
an error at compile time. Here are some example properties: (1)
The annotation’s argument must be an interface token that describes
exactly one method; (2) All concrete sub-classes of the annotated
type must implement a static method with the same signature; (3)

public @ClassInterface interface PropertyDescriptorsMethod
List propertyDescriptors (int apilevel);

}

public static StructuralPropertyDescriptor[] getProperties (@ClassDefines (PropertyDescriptorsMethod.class) ASTNode n) {

proxy = ClassProxy.make (n.getClass (), PropertyDescriptorsMethod.class);

list = proxy.propertyDescriptors (AST.JLS3);

Figure 2: Restricted use of reflection: Instances of ASTNode are passed to getProperties, but each concrete implementation of the
ASTNode class must have a static propertyDescriptors method defined with the same signature. Such a restriction can be checked by
Arcum with a description of the @ClassDefines annotation’s intended use. A proxy is employed together with the interface to make

invocation more convenient.

Function<FormalParameter, String> getIdentifier =
Accessor.makeFunction (FormalParameter.class,
String.class, "getIdentifier");

Figure 3: An accessor method, getldentifier, exported as a
Function object. This accessor can be used for functional style
programming, such as transforming a list of FormalParameter
instances into a list of Strings.

public static final
Function<FormalParameter, String> getIdentifier =
new Function<FormalParameter, String>() {
public String apply (FormalParameter formal) {
return formal.getIdentifier();
}
bi

Figure 4: A static solution for Figure 3 that doesn’t require
reflection.

All arguments passed to the invokeStatic method must match the
number and type of the parameters specified in the method. Check-
ing all of these properties together brings back static type checking
to this use of reflection. Errors that otherwise would only have been
available during testing are made clear during development.

One assumption of reflection checking is that the program under
analysis fits the closed world model. That is, during development
time, the tool has access to all of the source code that is relevant to
the use of reflection. Exceptional cases where the reflective calls
must be unguarded can be marked, so that Arcum does not identify
them as errors.

4.2.1 Reflection as a Shortcut

Sometimes reflection is useful to employ in situations where it’s
a short cut for equivalent, but more verbose, static techniques. For
example, Java lacks support for function pointers, but a workaround
can be achieved using interfaces and anonymous inner classes. Fig-
ure 3 shows a method makeFunction that takes in a type and a
method name and returns a Function object. When this idiom is
encoded as an option the run-time typing checks can also be made
at compile time. For example, if the method name was misspelled,
was not visible, or if the return type was improperly specified, the
user would see a static error message from Arcum.

Checking uses of reflection makes reflective techniques more
practical. Arcum also encourages use of these reflective techniques
by not forcing the developer to commit to them. At any time in the
process, the user can automatically refactor to the static form; for
example, having a static field declared in the class that performs the
access instead (Figure 4).

4.3 Detecting Library-Specific Errors

Some constraints that apply to Java language constructs cannot be
applied to abstractions meant to replace them. For example, the
result of the ‘+’ operator must be used in an assignment or argu-
ment (e.g. ‘a+b’ is not a valid statement, but ‘x=a+b’ is). The
gap between the Java language constructs and library abstractions
is that methods have no way to specify that their return value must
be used. Such a requirement is common particularly for methods
belonging to immutable classes like Biglnteger. In the implemen-
tation of Arcum, we use an immutable set-like construct; several
times, we encountered a bug where results were inadvertently get-
ting discarded, such as when we wrote:

result.union (sat)

instead of:

result = result.union(sat);

By checking calls to the union method we were able to prevent
future bugs.

Another group of methods that benefit from extra checking are
methods that do not return. (For example, methods that raise an ex-
ception or call exit.) When a method is marked with a @DoesNot-
Return annotation, an Arcum option can find all calls to the method
and ensure that the next statement after the call is either a return or
a throw statement. This way, the Java compiler will prevent code
from following it, because such code would be considered unreach-
able. For example, the fatalError method called below could be
marked as not returning:

fatalError ("A fatal error has occurred");
throw new Unreachable();

We detected such a problem while debugging the Arcum project:
We wondered why we couldn’t see some debugging output, and
then we realized that our debugging code came after a method that
didn’t return. The compiler accepted the code, even though for all
purposes that code was unreachable.

5. ENFORCEMENT OF ARCHITECTURE
AND STYLE

Section 4.3 covers domain-specific checking of concepts at the mi-
cro scale. This section covers domain-specific checks for larger
scales, in particular, for access control (Section 5.1) and program-
ming style (Section 5.2).

5.1 Finer-Grained Access Control

Encapsulation allows for the detection of violations of the knows-
about relation. For example, methods encapsulate their local vari-
ables, because external methods cannot access them; classes en-

capsulate their private fields, because external classes cannot ac-
cess them. The knows-about relation is important, because know-
ing even about the presence of a separate entity creates a liability:
When that entity is subject to change, so too are all elements that
know about it.

One example of controlling what software components need to
be aware of is the facade pattern [7]: The facade pattern can reduce
the level of coupling between components and assist layering. We
used the facade pattern in Arcum when interfacing with Eclipse’s
Java compiler. We utilized Eclipse’s type checker to resolve vari-
able bindings, but our syntax desugaring mechanism complicated
where the bindings would be available. The solution was to write a
facade that was a single point of interaction with Eclipse’s resolver.
Using Arcum for this solution helped in two ways: First, we were
able to refactor each call to Eclipse’s resolver to be a call to the
facade instead. Second, we wrote new checks that prevented direct
calls from being inadvertently made. This extra checking ensured
that the facade pattern held and that layering was preserved.

On the smaller scale, we also utilized intra-class layering in our
implementations. For example, we found that even the private ac-
cess specifier was not strict enough for our needs when it came to
reasoning about classes. In one case, we had two related fields in
a class to which we only wanted the constructors and two tightly-
coupled accessor methods to have direct access. We labeled these
fields with an annotation that specified the group of methods that
were allowed both read and write access to these fields. Using this
annotation as a guide, extra checks were able to ensure that only
the methods defined in the group had access.

The nature of the method group solution can apply to inter-class
layering as well: A family of methods cutting across several classes
might be accessible to each other, but inaccessible to other meth-
ods, even those methods that are defined in the same scope. Such a
solution is similar to the concept of friends in C++, with the ability
to enable or disable read or read/write access.

5.2 Detecting Common Errors

There is a class of general programming errors that lend them-
selves well to automatic detection [12, 20], several of which can
be checked with Arcum. One real-life bug we encountered was
when we executed code that raised a particular RuntimeException,
yet our exception handlers were not catching the exception.

The problem was related to how we softened checked exceptions.
Checked exceptions can sometimes violate layering principles in
code because they force throws declarations on methods that neither
know how to detect the exception nor know how to handle it. Thus,
at times we would soften a checked exception type by wrapping
it in a RuntimeException and throwing it. That RuntimeException
could then be unwrapped later, at the level that is able to address
the error. The bug was that we softened all exceptions, not just
the checked ones, so the specific RuntimeException subtypes were
replaced by the generic RuntimeException type.

Given such dangers of using exception softening, we added a
check to find all cases of exception softening and made sure that
RuntimeExceptions were not included:

catch (RuntimeException e) {
throw e;

}

catch (Exception e) {
// soften only non-runtime exceptions
throw new RuntimeException (e);

}

Such a check can be made syntactically by making sure that excep-
tion softening always fits the format shown above.

6. RELATED WORK

Arcum’s most general philosophy is common to many other works:
“Improve programming by letting programmers better express their
intentions to the environment.” Examples include Explicit Pro-
gramming [5], Presentation Extension [6], Metaprogramming [26],
and Intentional Programming [22]. Arcum takes a departure from
these works because it does not extend the programming language
itself. Instead, Arcum only applies checks to existing code, keep-
ing exactly the same Java semantics, while in one form extend-
ing Java’s type system through additional error messages the user
can enable. The flexibility of the Arcum approach relies upon the
expressiveness of refactoring transformations rather than upon the
expressiveness of a new programming language.

On the implementation side, because Arcum has a declarative
language, it is related to a large family of program query tools,
such as JunGL [25], QL [17] and PQL [16]. Some of these systems
support additional checks to apply to code, but do not use these
checks to infer program transformations.

The iXj program transformation system for Java allows for pat-
tern matching similar to Arcum’s concept construct [4, 3]. The iX]j
system could assist the writing of Arcum concepts through its inter-
active features, while Arcum could complement iXj by providing
a mean of expressing infrastructure related to concepts and by pro-
viding continuous checking of implementations.

DRIVEL is a program enhancement system using generative
techniques on top of an aspect-oriented language [23]. DRIVEL
offers a way to change the programming language such that code
written using it is closer to what is intended. This technique is
particularly well suited for design patterns, because the code that
needs to be generated can be inferred from the context. For exam-
ple, calls to methods related to the visitor pattern can be detected,
with their definitions supplied at the byte-code level, eliminating
the need to implement the methods manually.

Arcum is a departure from the role-based refactoring work of
Hannemann et al. [11], which permits programmers to build macro-
refactorings from micro-refactorings. AOP languages like Aspect]
can manifest many crosscutting design idioms, including many de-
sign patterns, as modular abstractions [10].

Feature Oriented Refactoring (FOR) recognizes the crosscutting
and non-modular nature of the implementation of software features,
which are often crosscutting [15]. The REFINE system uses pro-
gram templates, which can be used for both pattern matching and
code transformation [13].

As a departure from REFINE, Kozaczynski et al. [14] employ
semantic pattern matching to recognize concepts as part of a code
transformation system for software maintenance. A more recent
work in this area is the DMS system, which is similar to Kozaczyn-
ski et al. but has a much wider scope [2].

7. CONCLUSION

Our case study covered examples of crosscutting encountered
“in the wild” and showed that such crosscutting can be managed
through declarations written with Arcum. As more design patterns
and idioms reach widespread use, the refactoring needs related
to those idioms can be anticipated by tool developers. However,
we conjecture that real software has quirks and even very familiar
idioms will not all be implemented in the same way. What is
necessary is that these variants of a common idiom theme be
implemented consistently. Once that step is taken, the implementa-
tion’s crosscutting nature can be managed through the use of tools
like Arcum. Additionally, Arcum can help even when codebases
have inconsistent implementations of idioms, because Arcum can

express extra checks to catch non-conforming code, simplifying
what sometimes must be a manual process.

Arcum lessens the liability of having certain kinds of crosscut-
ting implementations present, and thus can change the development
process itself. When properly employed, such extra freedom im-
proves the quality of software or enhances other related economic
utilities.

8.
(1]

(2]

(3]

(4]

[5

—

(6]

(7]

(8]
(9]

[10]

(11]

[12]

REFERENCES

I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for
class library migration. In OOPSLA ’05: Proceedings of the
20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages
265-279, New York, NY, USA, 2005. ACM Press.

I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms: Program
transformations for practical scalable software evolution. In
ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 625-634, Washington, DC,
USA, 2004. IEEE Computer Society.

M. Boshernitsan. Program manipulation via interactive
transformations. PhD thesis, University of California at
Berkeley, Berkeley, CA, USA, 2006. Adviser-Susan L.
Graham.

M. Boshernitsan and S. L. Graham. ixj: interactive
source-to-source transformations for java. In OOPSLA "04:
Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and
applications, pages 212-213, New York, NY, USA, 2004.
ACM.

A. Bryant, A. Catton, K. D. Volder, and G. C. Murphy.
Explicit programming. In AOSD ’02: Proceedings of the 1st
international conference on Aspect-oriented software
development, pages 10-18, New York, NY, USA, 2002.
ACM.

A. D. Eisenberg and G. Kiczales. Expressive programs
through presentation extension. In AOSD ’07: Proceedings
of the 6th international conference on Aspect-oriented
software development, pages 73-84, New York, NY, USA,
2007. ACM Press.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

Google. Google collections library 0.5 (alpha).
http://code.google.com/p/google-collections/, October 2007.
W. G. Griswold. Program Restructuring as an Aid to
Software Maintenance. PhD thesis, Department of Computer
Science and Engineering, University of Washington, July
1991.

J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 161-173, New York, NY, USA, 2002.
ACM Press.

J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns. In AOSD "05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 135-146, New
York, NY, USA, 2005. ACM Press.

D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92-106, 2004.

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

G. Kotik and L. Markosian. Automating software analysis
and testing using a program transformation system. In TAV3:
Proceedings of the ACM SIGSOFT ’89 third symposium on
Software testing, analysis, and verification, pages 75-84,
New York, NY, USA, 1989. ACM Press.

W. Kozaczynski, J. Ning, and A. Engberts. Program concept
recognition and transformation. [EEE Trans. Softw. Eng.,
18(12):1065-1075, 1992.

J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In /CSE '06: Proceeding
of the 28th international conference on Software engineering,
pages 112-121, New York, NY, USA, 2006. ACM Press.
M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using pql: a program query
language. SIGPLAN Not., 40(10):365-383, 2005.

0. d. Moor, M. Verbaere, E. Hajiyev, P. Avgustinov,

T. Ekman, N. Ongkingco, D. Sereni, and J. Tibble. Keynote
address: .ql for source code analysis. Source Code Analysis
and Manipulation, 2007. SCAM 2007. Seventh IEEE
International Working Conference on, pages 3—16, 2007.
W. E. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1992.

D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053-1058,
1972.

N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of
bug finding tools for java. In ISSRE '04: Proceedings of the
15th International Symposium on Software Reliability
Engineering (ISSRE’04), pages 245-256, Washington, DC,
USA, 2004. IEEE Computer Society.

M. Shonle, W. G. Griswold, and S. Lerner. Beyond
refactoring: a framework for modular maintenance of
crosscutting design idioms. In ESEC-FSE ’07: Proceedings
of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pages 175-184,
New York, NY, USA, 2007. ACM.

C. Simonyi. The death of computer languages, the birth of
intentional programming, 1995.

E. Tilevich and G. Back. “Program, enhance thyself!” —
demand-driven pattern-oriented program enhancement,". In
AOSD °08: Proceedings of the 7th international conference
on Aspect-oriented software development, April 2008.

F. Tip, A. Kiezun, and D. Bdumer. Refactoring for
generalization using type constraints. In OOPSLA ’03:
Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and
applications, pages 13-26, New York, NY, USA, 2003.
ACM.

M. Verbaere, R. Ettinger, and O. de Moor. Jungl: a scripting
language for refactoring. In ICSE ’06: Proceedings of the
28th international conference on Software engineering,
pages 172-181, New York, NY, USA, 2006. ACM.

D. von Dincklage. Making patterns explicit with
metaprogramming. In GPCE '03: Proceedings of the 2nd
international conference on Generative programming and
component engineering, pages 287-306, New York, NY,
USA, 2003. Springer-Verlag New York, Inc.

