Interactive Parser Synthesis by Example

Alan Leung

John Sarracino

Sorin Lerner

University of California, San Diego
{aleung,jsarraci,lerner}@cs.ucsd.edu

Abstract

Despite decades of research on parsing, the construction of parsers
remains a painstaking, manual process prone to subtle bugs and
pitfalls. We present a programming-by-example framework called
Parsify that is able to synthesize a parser from input/output examples.
The user does not write a single line of code. To achieve this, Parsify
provides: (a) an iterative algorithm for synthesizing and refining
a grammar one example at a time, (b) an interface that provides
immediate visual feedback in response to changes in the grammar
being refined, and (c) a graphical mechanism for specifying example
parse trees using only textual selections. We empirically demonstrate
the viability of our approach by using Parsify to construct parsers
for source code drawn from Verilog, SQL, Apache, and Tiger.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.3.4 [Programming Lan-
guages]: Processors — Parsing; H.5.2 [Information Interfaces and
Presentation]: User Interfaces

General Terms Algorithms, Human Factors, Languages

Keywords Parsing, Programming by Example, Program Synthesis

1. Introduction

Bison parsers are shift/reduce automata. In some cases
(much more frequent than one would hope), looking at this
automaton is required to tune or simply fix a parser.

(Bison 3.0.2 User Manual)

Parsing is a pervasive programming task that is still difficult
for non-experts, despite decades of research into the subject. Main-
stream parser generators like Bison offer high performance but
at the cost of a steep learning curve: as Bison’s developers admit
themselves, an understanding of shift/reduce automata theory is a
necessary prerequisite. More modern incantations of parser tech-
nologies such as ANTLR [32] and Packrat parsing [[11,[13]] pave the
way for more user-friendly syntax specifications, but even so are
subject to subtle gotchas requiring an understanding of their under-
lying parsing strategies. For instance, ANTLR and other LL-based
top-down parsers disallow use of mutually left-recursive produc-
tions such as £ — T and T' — E + T', which arise naturally when
specifying the form of binary expressions and other recursive forms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PLDI’15, June 13-17, 2015, Portland, OR, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3468-6/15/06. .. $15.00.

http://dx.doi.org/10.1145/

Although it is possible to rewrite such productions to avoid left
recursion, the standard algorithm for doing so leads to an explosion
in the grammar [31]. Thus, in practice, parser writers must search
for a more concise refactoring — finding such refactorings can be an
art, as better algorithms are not known.

Packrat parsers seek to simplify parsing by eliminating ambigu-
ity via ordered choice: the first alternate to match a string is always
chosen. Unfortunately, use of ordered choice introduces a particu-
larly subtle quirk: a production such as A — a|ab, which we might
naturally expect to match either the string a or ab, cannot in fact ever
match ab because a is a prefix of ab. Although a contrived example,
this situation arises in practice whenever one alternate can match
the prefix of another, such as when matching if and if-else blocks.
Finally, the advent of efficient, generalized parsing strategies such as
GLL [34] and GLR [37] promise the ability to use any context-free
grammar without restriction, seemingly solving all our problems.
Unfortunately, the price of using a generalized parser is the freedom
to specify grammars rife with ambiguities if left unchecked. The
user is left with the unenviable task of sifting through the resulting
parse forests. Detecting ambiguities, let alone fixing them, can be a
difficult undertaking as the general problem is undecidable. Given
the numerous options, perhaps the most daunting task a non-expert
programmer must face is the decision of what parsing technology
to even choose in the first place: each has its own dark corners, and
there is no clear-cut winner.

The difficulty of constructing parsers has given rise to a par-
ticularly troubling phenomenon dubbed “cargo cult parsing,” [28]
wherein programmers eschew established parsing technologies in
favor of ad-hoc regular expressions, often copied directly from web
search results. Clearly, there is a need for tools to bridge the gap
between established parsing theory and actual practice.

Programming-by-example (PBE) is a promising approach to
bridging that gap. PBE is a programming paradigm in which
end users synthesize a program by providing sample inputs and
outputs demonstrating the result of an intended computation. PBE
has been applied to problems from diverse domains including
text editing [22], spreadsheet table transformations [17], and data
extraction from ad-hoc logs [10]. PBE presents an attractive option
for situations in which it is much easier to demonstrate correct
behavior (e.g., the correct parse of an example string), than to
provide a specification of that behavior (e.g., a formal grammar
specification accepted by a parser generator). Although much
progress has been made towards synthesis of programs for analyzing
unstructured or semi-structured strings, these results have thus far
not extended to construction of parsers for context-free languages.

We present Parsify, a graphical, interactive system for incre-
mentally synthesizing and testing parsers. In contrast to previous
PBE approaches that attempt to continuously maintain a (potentially
large) set of programs consistent with an increasing set of examples,
Parsify presents an exploratory interface in which the user poses
examples that induce the shape of production rules in the underlying
grammar being inferred. These examples are presented in the form

(©) (d)

parsify E = l o

r
ident | 4Prev = Next Resolve Ambiguity

+2;
* 4 -

1
fumeral 3 i
string (a) | ;| = ———— ox = 12
Py
Xpr
E— o B - B B e 2 e
(b) fun area wh = w * h ; 19

® "

zZ-y*areaxy+z;

Select Resolution:

expr = expr '+' expr {left}

®

Figure 1. The Parsify user interface: (a) File View, (b) Legend,
(c) Label Box, (d) Label Button, (e) Parse Tree Pane, (f) Resolution
Pane, and (g) Negative Label

of text selections (i.e., using a mouse) in an editor window present-
ing the file the user wishes to parse. The user then examines the
result of each inference step visually, as Parsify presents an overlay
with colored regions (and corresponding parse trees) that are contin-
uously updated to reflect each inference. In particular, ambiguities
are presented immediately after the offending production has been
inferred, allowing the user to either (a) ask Parsify to automatically
synthesize a disambiguating strategy, or (b) undo the last inference
and proceed along another path to avoid the ambiguity.

Contributions

1. We present a novel application of programming-by-example to
the domain of parsers for context-free languages (Sections ZH3).

2. We present techniques and algorithms for efficiently visualizing
progress, inferring production rules, and synthesizing disam-
biguating filters by example, including novel uses of generalized
parsers and A*-search (Section [3).

3. We evaluate our approach’s effectiveness via case studies: we
have generated parsers for a test suite consisting of Verilog mod-
ules, Apache logs, Tiger programs, and SQL queries (Section [).

2. Overview

We begin with a series of examples illustrating how a user might
employ Parsify to implement the parser for a small untyped func-
tional language. As we layer additional features into the concrete
syntax we will see how Parsify is able to handle various practical
difficulties that arise during parser development. The example is
kept very simple for the purpose of exposition. Our tool can actually
handle much more complicated languages and grammars, as de-
scribed in our evaluation in Section[d] Also note that for the purpose
of exposition, we describe features using textual descriptions where
possible, although the actual implementation of Parsify provides a
fully graphical user interface.

2.1 User Interface Overview

Figure [T] shows a sample view of the Parsify user interface with
several features highlighted. We now briefly describe each feature.
The File View (a) and Legend (b) together show parsing progress
on the current file: each color represents a syntactic category (i.e.,
nonterminal), as described shortly. The Label Box (c) and Label
Button (d) allow the user to annotate substrings in the file with labels.
The Parse Tree Pane (e) shows the parse tree at the current cursor
location in the File View. The Resolution Pane (f) is used to resolve
ambiguities. As we progress through our example, each feature will
be explained in further detail.

2.2 Basic Inference

To start defining a parser for a simple functional language, the user

first constructs a file with the following arithmetic expressions:
1+ 2 ;
3 x4 -5 ;
12 + x + 19 ;

Every Parsify session begins with default predefined production
rules that encode basic tokens such as integers and alphanumeric
identifiers, along with the standard assumption that whitespace
is a discarded token separator. Using these default rules, Parsify
colorizes various substrings that can be derived from the built-
in ident or numeral rules, where uncolored regions represent
substrings that cannot yet be derived from any rule in the grammar:

1+ 2 ;
3 x4 -5
12 + x + 19 ;

The above colorization is our textual representation of the UI
mechanism shown in the File View of Figure [T] For the paper to
be readable in black-and-white, we also use bold-face font for
red, overline italics for blue, and underline for green. The
user’s first interaction is to “teach” Parsify that a literal numeral is
a form of expression. To do this, the user selects the substring 2 in
the File View, types expr in the Label Box, and then clicks on the
Label Button. This instructs Parsify to apply the label expr to the
selected string 2, which causes Parsify to infer a new production
rule to add to the grammar: expr — numeral. Whenever making
an inference, Parsify immediately recolors its output to represent
the change. In particular, the first line now becomes 1 + 2 to reflect
the fact that the substrings 1 and 2 can be derived from the new rule
for expr. Notice that there now exist two valid colorizations for
the substring 1 (and likewise 2), as they can be derived from either
of rules expr and numeral — in such cases, Parsify prefers expr
as it corresponds to the “more general” production (we informally
define the more general production as the one higher in the parse
hierarchy — we defer to Section [3]a formal definition). Following
the same procedure, the user can likewise select the identifier x
on the third line and apply label expr, from which Parsify infers
expr — ident and produces the following colorization in which
all identifier and numerals are correctly parsed as expressions.

2.3 Infix Expressions

The user now proceeds to binary infix expressions by applying label
expr to the substring 1 + 2, which allows Parsify to infer the new
production rule expr — expr + expr.

Associativity At this point, the user has unwittingly introduced
an ambiguity into the grammar, a concrete example of which is
found on line 3. Parsify immediately detects that line 3 has an
ambiguous parse and visually depicts it with a red dashed under-
line: 12 + x + 19. The ambiguity results because the expr rule
just introduced allows for both left-associative and right-associative
parses: [12 + x] + 19and 12 + [x + 19]. Itis in this situa-
tion that existing parser generators such as Bison or ANTLR would
require some modification to the syntax specification to remove
the offending construct. Parsify shields the user from performing
such modifications manually by simply presenting both parse trees
visually and asking the user to choose the correct one. The different
parse trees are shown one at a time in the Parse Tree Pane, as shown
in Figure[T] with Next and Prev buttons to browse through the differ-
ent trees, and a Resolve Ambiguity button to resolve the ambiguity

using the currently displayed tree. The Parse Tree Pane of Figurem
is precisely in the middle of such an ambiguity resolution phase.
Let’s assume the user intends + to be a left-associative operator,
thus choosing the left-associative parse tree. To implement this pref-
erence, Parsify makes use of so-called disambiguating filters [20],
which can be used to remove unwanted parses. More specifically,
in this case Parsify automatically synthesizes an associativity filter,
written expr — expr + expr {left}, which disallows derivation
of trees with form expr + [expr + expr]. The filter that would
be used to resolve the conflict is displayed in the Resolution Pane at
the bottom of the UI, as shown in Figure[l]}

Priority Now the user proceeds similarly for the and - operators,
teaching Parsify the production rules expr — expr * expr and
expr — expr - expr by applying the label expr to substrings
3 « 4and 3 * 4 - 5insequence. This exposes a new ambiguity
evidenced on line 2,3 * 4 - 5, due to the fact that no precedence
has been specified between the « and - operators. Parsify presents
two valid parse trees, [3 = 4] - 5 and 3 « [4 - 5], from
which the user chooses the first: the « operator should bind tighter
than the - operator. Parsify is able to synthesize a priority filter that
disallows derivation of trees that give — higher precedence than the »
operator: expr — expr * expr > expr — expr — expr. Note
that this is not the only filter that discriminates between the two
parses. Another valid filter that disallows the second parse tree would
be left { expr — expr * expr ; expr — expr - expr
}, which specifies that the « and - operators are left-associative
with respect to one another. This is the reason for displaying the
actual filter at the bottom of the UI in the Resolution Pane, as
shown in Figure [T} If the proposed filter is not the one the user
intended, Parsify provides the option of rejecting the suggested filter
by clicking the red box marked X. The synthesis algorithm then
proceeds to search for another filter that also satisfies the user’s
preference of parse tree. In the above example, Parsify would first
present the priority filter. If the user rejects this filter, Parsify’s next
suggestion would be the left-associative filter.

2.4 Function Definitions

The user now adds functions to the language. To begin, the user
appends to the current file some examples of function definitions.

fun square x = x * x ;

fun area w h = w x h ;

Notice that some of the colors are incorrect: in particular, it
appears the fun keywords are incorrectly identified as expzrs. Of
course, this is to be expected because we have not given Parsify any
indication that the sequence of characters “fun” should be treated
any differently than other identifiers.

Negative labels To inform Parsify of the mistake, the user can
apply negative labels in the Parse Tree Pane against the labeling on
both keywords. The user does this by clicking on the nodes in the
parse tree whose labeling is wrong, and then clicking on the red box
that appears next to the node. An example of this mechanism being
applied to an expr label is shown at (g) in Figure[T] In response to
the negative labels, Parsify now refines its output:

fun square x = x * x ;

fun area w h = w * h ;

This is almost, but not quite what the user wants — the function
names and formal parameters have been identified as expzs as well,
but the desired syntax restricts them to be bare identifiers. Thus
we apply negative labels against the expr label on all offending
substrings, resulting in the following:

fun square =X * X ;

x
fun area w h = w * h ;

Generalization Now the user applies the label fundef to each of
the two lines above. If Parsify follows the process described so far,
it would produce two basic production rules of the form

fundef — ‘fun’ ident ident = expr ;
fundef — ‘fun’ ident ident ident = expr ;

Although these rules parse the given program, they preclude func-
tion definitions that have greater than 2 parameters. Thus, Parsify
detects such redundant productions and infers the generalization

fundef — ‘fun’ ident+ = expr ;

in which an arbitrary number of parameters is permissible.

2.5 Function Calls

Now let us turn our attention to the last feature the user will add:
syntax for function calls. As in OCaml or Haskell, the user wishes a
function call to take the form of expressions separated by whitespace.
The user adds one last example to the file, an expression containing
a function call:

y *x area xy +ty -z ;

Unfortunately, this colorization is quite far from the user’s desire.
It seems y + area has been parsed as an expr even though area
should be the beginning of the function call area x y. The root
cause, of course, is that we have not provided an example of a
function call to Parsify, so it does not know to treat area x yasa
new kind of expression.

The user provides 3 negative labels to tell Parsify that it has
incorrectly colored various parts of our expression:

y * area x y +y - z ; —negale y * area
y *x area x y +y -z ; —negate y +y — z
y » area x y +y - z ; —negate y +y
Yy » area x y ty -z ;

Now the user selects area x y and applies label call, then
expr, to reflect that a call is a kind of expression.

vy » area x y +y — z; —apply call: area x y
y » area X y +y - z; —apply expr: area x y

At this point, Parsify correctly colors the full expression but also
reveals an ambiguity: y * area x y + y — z.There are 9 valid

parse trees for this string, but the intended parse groups subexpres-
sions to the left and gives function calls highest precedence:

[[ly » [area x y]] + y] - z]

After the user chooses the intended parse tree, Parsify is able to
synthesize the following set of disambiguating filters,

left {
expr — expr + expr
expr — expr - expr
}

expr — call > expr — expr * expr

which specify that the + and — operators are left-associative with re-
spect to one another, and that function calls have higher precedence
than =, as expected.

2.6 Challenges

To achieve this level of interaction, we address several challenges:

1. What is a concise, natural way of presenting partial progress to
the user? Although we experimented with many representations,
we found the most natural representation was that of a coloring
in which different nonterminals of the grammar correspond to
different colors, and colored regions are “as big as possible.”

2. How do we achieve performance capable of supporting interac-
tive use? The interface would be unusable if the user were forced
to wait long periods of time between colorings. Our solution
employs a greedy algorithm for generating colored labels based
on ranking of partial parses generated by a GLL parser.

3. How can we synthesize disambiguating filters in a more prin-
cipled way than brute force? Even with a small parse tree, the
number of possible disambiguations can grow exponentially (via
subset construction). Our solution formulates synthesis as an
instantiation of A*-search to avoid unlikely candidates.

Section 3] details our solutions to these challenges.

3. Algorithm

In this section we formalize the core algorithms employed by Parsify
for inferring context-free grammars. We begin with a preliminary
overview of context-free grammars, parsing, and disambiguating
filters, but point the reader to [1} 14} 20] for thorough coverage.

3.1 Preliminaries: Context-Free Grammars

A context-free grammar is a tuple G = (N, X, P, S), where N
is a set of nonterminals, ¥ is a set of terminals, S is a designated
start nonterminal, and P C (N x V™) is a set of productions
where V' = N U X is the set of symbols called the vocabulary of
G. Unless otherwise stated we will use the following notational
conventions throughout this paper: the upper case letters A, B, C
are nonterminals, the lower case letters a, b, ¢ are terminals, the
lowercase Greek letters «, 3, v, i are (possibly empty) strings of
symbols in V/, the letter w is a (possibly empty) string of terminals in
3, and productions (A, 8) € P are written equivalently as A — (.
We write G(A) to mean the grammar G with start nonterminal
replaced by A.

String Indexing String indices begin at 0. We write «[¢] to mean
the symbol at index ¢ of string «. The notation «|i...] denotes the
suffix of « starting at index 7. We write |«| to mean the length of o
and « - § for concatenation of « and .

Derivations We say « derives [3 in a single step, written o« = (3, if
P contains a production A — p such that o = yAd and S = yud.
Equivalently, = is the single-step derivation relation such that
(a, B) € = iff a derives [in a single step. Let =" be the transitive
closure of =-. We say « derives (3 iff (o, 8) € =", and a derivation
of B from « is a sequence o = ... = [3 that witnesses a =" 3.

A sentential form is a string o € V™ such that S =" a.
A sentence is a sentential form containing only terminals, and
the language of G, written L(G), is the set of all its sentences.
A terminated derivation is a derivation whose final element is a
sentence. A full derivation is a terminated derivation whose initial
element is the start nonterminal S. We define Dg(w) to be the
(possibly empty) set of all full derivations of sentence w with respect
to G. We write D(w) when G is clear from context.

Parse Trees A parse tree is a tree t such that: (a) every internal
node is labeled with a nonterminal in IV, (b) every leaf node is
labeled with a terminal in X, (c¢) for every internal node with label
A and children with labels v, ..., v, € V/, there exists a production
A — vi..v, € P. For ease of textual representation, we depict
trees as nested bracketed forms [L t; ... t,], where L is the node
label, and each of 1, ..., t,, are themselves either bracketed forms
or leaf labels. The yield of ¢, written yield(t), is the string formed
by concatenating its leaf node labels (e.g., yield([A [Balb]) = ab).
The signature of t, written sig(t), is the production corresponding
to the root of ¢ (e.g., sig([A [Balb]) = A — Bb). The root symbol
of ¢, written rootSymbol(t), is the symbol at the root node of ¢ (e.g.,
rootSymbol([A [Balb]) = A).

For any derivation d we can construct its corresponding parse
tree ¢ by induction on the elements of d. Let tree(d) be the
map from derivations to their parse trees. We can now define
the set of parse trees of a sentence w as follows: trees(w) =
{tree(d) | d € D(w)} which we extend to grammars naturally:

trees(G) = Uy er(q) trees(w).

Index Trees The index tree £ of t is the tree isomorphic to ¢, with
identical internal node labels, but with its leaf labels replaced from
left to right by consecutively increasing integers starting from O.
For example, the index tree of [A [Ba]b] is [A [B 0] 1]. We define
index(t) to be the map from parse trees to their index trees. The
span of index tree £, written span(t), is the pair (4, j) of the labels
of its leftmost and rightmost leaves, respectively.

Ambiguity A sentence w is ambiguous with respect to G iff
3di,d2 € Dg(w).tree(d1) # tree(dz). For brevity, we say
w is ambiguous when G is clear from context. A grammar G is
ambiguous iff L(G) contains an ambiguous sentence.

Parsers A parser p is a function of type G x X* — P(trees(G) X
¥*) that given a grammar G and string w, returns a set of tuples,
called parses, with two elements: a parse tree ¢ for some non-empty
prefix of w, and a string suffix w’ such that w = yield(t) - w’. In
other words, a parser does not necessarily consume its entire input
string, and thus returns the unconsumed portion. A full parser p is a
parser that always consumes its entire input or not at all: the second
element of each parse must be the empty string. (Note that this does
not mean a full parser always produces a parse tree for any string: if
astring w ¢ L(G) then p(G,w) = (.)

Generalized Parsers A parser p is generalized iff Vw € L(G),
w € X*. p(G,w-w') D trees(w)xw’. In other words, generalized
parsers produce all possible parse trees for all inputs. Real-world
examples of generalized parsers are GLL or GLR-based parsers
such as instaparse [19] or Elkhound [26]], respectively. In the
remainder of this paper, let pgrr. be such a generalized parser (our
implementation uses the instaparse GLL parser).

3.2 Preliminaries: Disambiguating Filters

We formalize disambiguating filters as predicates on trees: the
intuition is that whenever the predicate evaluates to true, we say
that the tree is invalid and removed from the parser’s output set.
Disambiguating filters provide a declarative approach to removing
ambiguity from syntax specifications without resorting to rewriting
the grammar’s productions.

More formally, let 7(¢) be a predicate on trees, and let p be a
parser. The disambiguation of p with respect to T, written p|. is
defined as follows:

Pl (G w) = {(t,w') | =7 (t) A (t,0') € p(G,w)}

The composition of two filters is simply disjunction: (71 o m2)(t) =
m1(t) V m2(t); we lift disambiguations to sets of filters II naturally:

plm = {(t,w’) [=\ 7)) A (t,w') € p(G, w)}

mell

Note that a naive implementation of the above would simply
discard parse trees as a postprocessing step after parsing, which can
be extremely expensive if the number of parse trees is high. Our
actual implementation embeds filters into the parser’s internals such
that trees are discarded early.

Associativity Filters Associativity filters rule out a common form
of ambiguity that arises when there exists a sentential form A® A in
which two valid derivationsare A =" AQ A="a® R A ="
a®RfRvand A =" AQRA =" AQBRy="a®B®1.

The underlying problem is that the two derivations induce trees of
different shape: [A[Aa® Bl ®[A~]]and [A [A o] ® [A B ®7]],
respectively. We define here a constructor for left-associativity filters
that given a set of productions R, returns a filter that rejects trees
containing non-left-associative uses of any production in R:
frp (R) = Mt.3t" € nodes(t).
Vi, (sig(t') € RAsig(ts) € R) ift' = [Ato...tn]
false otherwise

In words, left-associativity filters reject any tree in which a parent
and a child in non-leftmost position each have a signature in R.
Analogously, right-associativity filters do so for non-rightmost
positions, and non-associativity filters simply disallow any child
from sharing its parent production. We omit formal definitions of
right- and non-associativity filter constructors fr. and fr, as they
are immediately analogous.

Priority Filters We now define simple priority filters based on a
relative priority between two productions.

frs (rh, 1) = M3t € nodes(t).

sig(t') = ra ANy sig(ts) =r ift' = [Ato...tn]
false otherwise

Priority filters reject any tree in which a child’s production has
lower priority than its parent’s.

Consistency Because filters are simply predicates on trees, it is
possible that a composition of filters gives rise to a trivially satisfi-
able predicate (7(t) V 7'(t)) < true. Such a composition rejects
all trees (e.g., consider the composition of two filters that specify
left- and right-associativity of the same operator). In this case, we
say the set of filters is inconsistent, and otherwise consistent.

3.3 Interaction

We now formalize our model of user interaction as a core set of user
operations that transition between session states.

3.3.1 Session State

Intuitively, a session state encapsulates a hypothesis for the grammar
and set of disambiguating filters inferred from examples seen so far.
After any user operation, this hypothesis is updated to reflect new
information. A session state ¢ is a tuple (G, I, M, w, C) where G
is a grammar, 11 is a set of disambiguating filters, M is a set of
labels (the negative labels of o), w is the text we wish to parse (a
string of terminals in the alphabet of), and C is a coloring on w.

A label is atuple (A, 7,7) € N x NxN. That is, a label contains
a nonterminal together with a start index (inclusive) and end index
(exclusive) that index into the string w. The set of all labels is L. A
coloring C C L is simply a set of labels. The intuition is that each
label in a coloring corresponds 1-to-1 with a single colored region in
the interface: our interface graphically presents a different color for
each nonterminal. For example, if (expr, 3,10) € C, then Parsify
colors the seven character substring, starting at index 3, with the
color corresponding to expr.

3.3.2 Operations

The following 5 atomic operations comprise the building blocks for
user-facing interactions in Parsify:

1. DRAW: compute a new coloring.

2. ANNOTATE: accept a new label.

3. GENERALIZE: generalize an existing production.
4. NEGATE: reject an existing label.

5. RESOLVE: synthesize a new disambiguating filter.

In particular, each action performed by the user maps to a sequence
of operations as follows:

1. Apply Label: ANNOTATE — GENERALIZE — DRAW
2. Reject Label: NEGATE — DRAW
3. Disambiguate: RESOLVE — DRAW

Note that we intentionally omit two auxiliary features of our
interface from the formalism: (a) visualizations of parse trees, which
are just visual sugar for the underlying parse trees, and (b) red
dashed underlines under ambiguous regions, which are applied as a
postprocessing step on the editor view after generating a coloring.

We now define the semantics of each atomic operation as
functions from session state to session state. We use the notation
[O]o to denote the result of executing operation O on state o.
We define the initial session state to be o9 = (Go, 0,0,w, @),
where w is the string being parsed and Gy is an initial grammar
containing only predefined, basic productions for tokens such as
identifiers and numbers. To ease exposition, we make the simplifying
assumption that inputs contain no contiguous region of more than
one whitespace symbol, although as previously mentioned, our
actual implementation handles arbitrary whitespace by discarding
whitespace at token boundaries.

Draw Our system relies crucially on presenting colorings that
correspond to likely sentential forms in the language being parsed.
To do this, we define a comparison function better that prefers
parses according to the following metric: (a) prefer parses that
consume more text, and (b) when the yield of two parse trees
are of the same length, prefer the tree that subsumes the other.
Subsumption is determined by constructing a preorder C¢; on
the nonterminals of the grammar such that tree ¢ subsumes tree
' iff rootSymbol(t') C& rootSymbol(t) A rootSymbol(t) L
rootSymbol(t'). Intuitively, A C¢, B if there may exist a parse tree
with root symbol B that contains a node with symbol A. Formally,
let G = (N, X, P,S). We define C¢, as the transitive closure of
binary relation C¢, where A Co Biff A= BV(B — aAB € P).
We can then sort parses according to better and choose the root
symbol of the highest rated parse tree to be part of a member of the
new coloring (in the case of ties, we simply choose one).

The COLOR function that actually computes a new coloring is a
simple greedy algorithm that performs a linear scan, accepting the
best parse found at each examined position.

1: function COLOR(0)
let (G,1I, M, wo,_) =0
let (N,_,_,)=G

2

3

4 C+ 0w+ wo;n+«0
5: while |w| > 0
6.
7
8

let X = {(t,w’) |
JA€N. (t,w') € parrn(G(A),w) A
: Vi € nodes(index(t)).LABEL(,n) ¢ M}
9: itX 0
10: let (t,w") = first(sortBy(better, X))
11: C <~ CU{LABEL(indez(t),n) }
12: w < w'yn < n+ |yield(t)]
13: else
14: w+—wl.]jn<n+1
15: return C

16: function LABEL(f, n)A
17: let (¢,7) = span(t)
18: return (rootSymbol(t),i +mn,j + 1+ n)
With COLOR defined, we can now define the operation DRAW,
which simply threads a new coloring into the session state:

[DRAW] (0 = (G, 11, M, w,C)) = (G, 11, M, w, COLOR(0))

An important consideration is that it is possible for the computed
coloring to be incorrect, in the sense that the user does not agree with
the label assigned to some part of the text. (Recall from Section[2.4]
that this occurred when fun keywords were incorrectly identified
as instances of expr.) In such cases, it is important that the user be
permitted to inform Parsify that it has made a mistake. The NEGATE
operation, which we define next, allows the user to do exactly that.

Negate The NEGATE operation is the user’s mechanism for speci-
fying that a coloring is incorrect. In particular, negation of a label
tells Parsify that in subsequent DRAW operations, (a) that label can-
not appear in a coloring again, and (b) no parse tree whose subtrees
induce the negated label may be considered when computing a new
coloring. Line[8]of function COLOR performs this check. The defini-
tion of the NEGATE operation is then almost trivial: we simply add
the negated label to the set of negative labels M in the session state.

[NEGATE(A, 7,)] (c = (G, 11, M,w,C)) =
(G, IL,MU{(A,4,5)},w,C)

Returning to our running example, consider the situation from
Section[2.4]in which the user wished to tell Parsify that the substring
“fun” at indices 0 through 3 was incorrectly identified to be an expr.
In the UI, the user applied a red box to the offending parse tree node,
which caused the interface to immediately refresh with a corrected
coloring. Under the hood, Parsify actually performed the operation
NEGATE(expr, 0, 3), followed immediately by a DRAW operation
to regenerate a new coloring respecting the new constraint.

Annotate 'When the user selects a region of text and applies a
name to the selection, the underlying operation is an ANNOTATE
operation that generates a new production using the selected region
as a template for the body of the production.

1: function GEN-PROD(o, A, 1, 7)

2: let(,_, ,w,C)=0

3: idx <+ 358 + []

4: while idx < j

5: let X = {(A",¢,5") € C|ide =i Nj < j}
6: if| X|=1

7 let {(A,_, j')} = X
8: B+ p-A

9: idx + j’

10: elseif | X| =0

11: B <+ B - wlidz]

12: idx < idr + 1

13: else // unreachable

14: return A — (8

Informally, GEN-PROD scans the selected range from left to right
looking for labels in C that fit within the selected range. Intuitively,
in the user interface this corresponds to a textual selection in the
File View — for every colored region contained within the selection,
Parsify adds the corresponding nonterminal to the production body
being inferred (Lines [6H9). If Parsify finds a terminal that is
uncolored, then Parsify simply appends the terminal to the inferred
production body (Lines [TOHIZ). The branch body on Line [I3] is
unreachable because its corresponding branch predicate is satisified
when | X| > 1, which can only happen when the coloring contains
overlapping labels. However, COLOR never produces overlapping
labels due to the increment on Line[[2]of function COLOR.

The definition of ANNOTATE generates a new production with
GEN-PROD, then simply threads the production into the grammar.

[ANNOTATE(A, 4, 5)]o = (G', I, M, w,C)

where (G,II, M, w,C) = o
(N3, P8) = G
P = PU {GEN-PROD(A4,1,j)}

G = (NUAXP.S)

Generalize The GENERALIZE operation provides Parsify the abil-
ity to expand the grammar by permitting arbitrary repetition of
strings in a controlled fashion. For this purpose, we extend our gram-
mars with a standard meta-syntax for repetitions borrowed from
Extended Backus-Naur Form’s regular expressions: o (and o*) for
1 or more (and O or more) repetitions of cv. Note that these constructs
do not increase expressive power beyond context-free grammars and
can be desugared into forms without explicit repetition [[14].
Given two production bodies, the function GEN attempts to find

a compatible partition of both bodies. Informally, a compatible par-
tition of two strings «, 3 € V™ is a 1-to-1 correspondence between
non-empty substrings of a and § such that corresponding substrings
are either (a) exactly equal, or (b) both consistent with some number
of repetitions of the same sequence of symbols, possibly separated
by occurrences of a single delimiter symbol. For example, suppose
a=BAAC;C and 8 = BAAAC. Then a compatible partition of
«aand 8 would be B, AA,C; C and B, AAA, C because B equals
B, AA equals AAA modulo repetitions, and C'; C' equals C' modulo
repetitions with delimiter *“;”. The result of generalization would be
anew body BATC(; C)*. The algorithm uses brute force search
of all partitions with 4 or fewer non-empty substrings to find a
compatible partition.

1: function PARTITION(c, 1)

2: return { A | concat(A) = a A |Al=n A

Vée A |6 >0}
3: function COMPATIBLE(A., Ag)
4: return V (o, 8) € zip(Aa, Ag).a = BV
REP-EQ(c, 8) # L V DELIM-EQ(av, B) # L

5: function EXTRACT(c,)

6: if a=p

7: return o

8 else if REP-EQ(av,) # L

9: return regex REP-EQ(c, 3) ™

10: else if DELIM-EQ(a, B) # L

11: let (A, b) = DELIM-EQ(a, f8)
12: return regex A(bA)*

13: else return o

14: function GEN(«, (3)

15: for1 <n<5

16: for (A, Ag) € PARTITION(q, n) X PARTITION(f3, n)
17: if COMPATIBLE(A., Ag)

18: v+

19: for (o, 8') € zip(Aa, Ap)

20: 7 < 7y - EXTRACT(/, B)

21: return -y

22: return |

The algorithm uses two helper functions: (a) REP-EQ returns
nonterminal A if its two arguments match regex pattern A™ (the
same nonterminal repeated 1 or more times), (b) DELIM-EQ returns
the pair (A, b) if its two arguments match regex pattern A(bA)*
(the same nonterminal A repeated 1 or more times, with repetitions
separated by the delimiter b), and both functions return L if no
match is found. We also use two functional programming primitives:
zip, which given two sequences returns a sequence of pairs of
corresponding input elements, and concat, which concatenates the
elements of a sequence.

With the specifics defined, we can now define our GENERALIZE
operation, which takes a nonterminal and two production bodies to
be generalized, and replaces the corresponding productions with a
generalized variant if found:

[GENERALIZE(A, o, 8)]o

(G I, M,w,C) if GEN(e, B) #L
e otherwise
where (G,II, M,w,C) = o
(N7 27 P7 S) = G
P = P—{A—a}
—{A—pB}
U{A — GEN(o, 8)}
G' = (N,%,P,S)

Now let us return to the running example from Section [2.4]
in which we wished to generalize two productions specifying the
syntax for function definitions. The compatible partition discovered
by GEN is depicted visually in the following tables: each column of
the upper table contains a corresponding pair of substrings, and the
final row depicts the generalized production body returned by GEN:

‘fun’ ident ident = expr
‘fun’ ident ident ident = expr
l ‘fun’ [ident+ [= expr]

Resolve The RESOLVE operation enables Parsify to synthesize a
set of disambiguating filters given an ambiguous sentence w and its
correct parse tree t. The goal is to find a set of filters that reject all but
the correct parse tree on the example. We use the following strategy
for defining and searching the space of possible disambiguations:

1. Identity a set of possible filters II;,; based on the structure of
the provided ambiguous example,

2. define a heuristic cost function h that assigns a score to each
candidate drawn from P (I1y,;),

3. define the successors relation on candidates, and

4. perform A*-search [I8] on the directed graph induced by
successors to find a low-cost set of filters that correctly disam-
biguates the example.

We wish to minimize the number of candidates considered
in order to reduce the space of filters to search. The main in-
tuition is that even though a parse tree may be large, we con-
sider only those subtrees whose yield is ambiguous, which may
be small. Let T = {t' € nodes(t) | yield(t') is ambiguous w.r.t.
G(rootSymbol(t'))}. We define a candidate set of productions rules
Rambig = {sig(t) |t € TYU{sig(t') | t € T At' € children(t)},
and from Rampig construct our template set I1;,; as follows:

Wit ={frs (r,7") | 7,7’ € Rampig A # 7'} U
{fre({r D) frrn({r 1) fan ({7 }) |7 € Rambig} U
(e (L"), frn (L 1) e (') |
77" € Rampig AT # 7'}

In other words, I1;;,; consists of all possible priority and associativity
filters that mention two or fewer productions in Rmpig. Although
this may seem like a large set, we rely on heuristic-guided search to
avoid evaluating many poor candidates.

For our heuristic, we wish to assign higher cost to candidates
that are less likely to correctly disambiguate the given example. Our
heuristic is simple: prefer candidates that invalidate more parse
trees, but reject a candidate if it rejects the correct tree. More
precisely, we define a HEURISTIC function that takes a candidate set
of disambiguating filters II, a correct tree ¢, and returns the score
for II. There are three particular features to note: (a) on line@ we
return oo if the resulting disambiguation removes the intended parse

tree from the set of parses, because the candidate cannot possibly
be a solution, (b) on line[6] we return 0 if the candidate has rejected
all but the intended parse tree, meaning this candidate is indeed a
solution, and (c) on line [§] we otherwise cap our heuristic cost at
10 such that we need not enumerate parse trees beyond the first 10
returned by the parser (the parser computes parse forests lazily).

1: function HEURISTIC(II, t)
2: let ps = Parr|u(G(rootSymbol(t)), yield(t))

33 if-3(t,s") eps.t’ =t
4: return co

5: if |ps| =1

6: return 0

7: else

8: return min(|ps|, 10)

To define the successors of a candidate 11, the naive approach
would be to simply append each member of II;,; to II in turn. In
other words, a successor is just a candidate with one more filter
than before. Unfortunately, with such a construction many of the
successors would be inconsistent and thus useless. Thus, we define
a more refined notion of successor that excludes any inconsistent
candidate:

1: function SUCCESSORS(II)
2: for m € 11y,

3: let II" = MERGE-FILTERS(IT U {7})
4: if =CONSISTENT(IT)

5: next

6: else

7: yield I/

We define helper function MERGE-FILTERS (II) as follows:

1. If there exist in IT two priority filters 7w~ (r,7') and 7> (7', 7""),
then add the filter 7~ (r, ") to IT if it does not already exist.

2. If there exist in II two priority filters 7~ (7, ') and 7w~ (", 7""")
and also an associativity filter 1, (R), 7r(R), or mx (R) such
that ', 7" € R, then add the filter 7~ (7, r""") to IT if it does not
already exist.

3. If there exist in II two left-associativity filters 7z (R) and
7z (R') such that R N R' # (), then replace them in II with
mr(R U R'), essentially combining two left-associativity filters
into one. Do analogously for right- and non-associativity filters.

4. Repeat the previous steps until no more additions can be made.

The intuition behind MERGE-FILTERS(II) is that it is natural to
view priorities and associativities as a partially ordered set of sets
of operators. As such, steps [I]and 2] transitively close the priorities,
and step [3] expands equivalence classes of associativities. Finally,
the function CONSISTENT(IT) simply checks that a set of filters is
consistent. In particular, it checks that (a) IT contains no cycle of
priority filters such that 7~ (r, ') and 7~ (7', 7), and (b) IT contains
no conflicting associativity filters wx (R) and 7y (R’) such that
X#YARNR #0.

We are now ready to define our instantiation of A*-search.
A*-SEARCH(II, t) employs a graph search algorithm that in each
iteration picks the candidate II” in its frontier with minimum value
of d(IT") + HEURISTIC(IT',), where d is a measure of distance
from the initial candidate. In our case the initial candidate is
simply the existing set of disambiguation filters II from our session
state. The distance metric d is a weighted sum [+ 2r + 3n +
1.5p where [, r, n, p are the number of additional productions in
left-associativity, right-associativity, non-associativity, and priority
filters, respectively. Intuitively, this choice of coefficients encodes
the fact that left-associativity is most preferred, followed by priority,
right-associativity, and non-associativity filters.

Language Paradigm | Source LOC
Verilog Imp HLS tools 10,184
Tiger Imp/Func | textbook 362
Apache [small] Ad-hoc online repo 1,546
SQL [small] Query census-postgres | 1,492
Apache [big] Ad-hoc NASA 3.5M
SQL [big] Query census-postgres | 228K

Figure 2. Benchmark suite

On every iteration, if the chosen candidate IT’ has heuristic score
0 we know it is a possible disambiguation for our example and we
add it to the set of solutions. Otherwise, we add the successors of IT’
to our frontier and continue. Crucially, because the user may reject
a given candidate, A*-SEARCH returns a lazily computed sequence
of solutions by continuing to search for more candidates, even when
a solution has already been found.

[RESOLVE()](c = (G, TI, M, w,C)) = (G, TTUTI', M, w,C)

where IT' is the first element of A*-SEARCH(IL, t) accepted by the
user, otherwise ().

4. Evaluation

We evaluate Parsify along two dimensions: (a) versatility: can
Parsify handle the complexities of a wide variety of languages from
different language paradigms? and (b) usability: how easy is the
tool to use, and what are best practices to make usage as effective as
possible? To examine these questions, we ran several case studies
in which one of the authors built several parsers from benchmarks
drawn from different languages. To demonstrate versatility, our
chosen benchmarks come from different programming paradigms
and styles. Figure[2] shows the different benchmarks for which we
constructed parsers. For each, we also list the language paradigm,
the source of the benchmark, and the number of lines of code. We
divide our benchmarks into two sets: (a) the first 4, which we call
the breadth set, (b) and the last 2, much larger benchmarks, which
we call the depth set. During each case study, we used Parsify with
examples drawn from the breadth set to build a parser for the given
language. Then, in the case for Apache and SQL, the constructed
parsers were applied to the the depth set, without modification, to
test for overfitting.

We now describe each of the languages in our benchmark set.
Verilog is a popular hardware description language used to define
digital circuits. Our goal was to parse the Verilog output of two high-
level synthesis tools: Xilinx Vivado and C-to-Verilog, which compile
C code to Verilog. The benchmarks come from an unpublished
suite. Tiger is a textbook imperative language [4] with functional
idioms (e.g., control statements as expressions). Apache logs come
from the Apache web server. The small dataset was downloaded
from an online repository [30], and the large dataset comes from
a public NASA repository [3]]. Log entries encode the requesting
server, requested URL, server return code and size of the reply.
Our goal was to perform a deep parse (e.g., parse URLs fully by
matching CGI parameters separately, rather than parsing URLSs as
opaque strings). SQL is a ubiquitous database query language. We
picked SQL because its syntax is drastically different from above
languages. The queries were mined from the census-postgres open
source project [6].

4.1 Versatility

We were able to build parsers to successfully parse 100% of each
breadth benchmark. Additionally, with no modification to the parsers
generated for Apache and SQL, we were able to achieve 97%
and 86% coverage, respectively, on the large Apache and SQL

benchmarks in our depth set. We measured coverage by splitting
input files into individual top-level entities (a single log entry for
Apache, and a single query for SQL). We then ran our inferred
parsers against each entity. We report coverage as the number of
lines successfully parsed in this way.

To diagnose the lower coverage achieved for the SQL benchmark,
we examined a randomly sampled selection of code that failed to
parse to determine the reason for failure. In all cases, we determined
that the cause for failure was the presence of a syntactic form that
did not exist in our smaller breadth sets. After allowing Parsify to
learn on one more example, we were able to achieve 97% coverage
on the large SQL benchmark.

Language features across the four benchmarks included: for
and while loops; named records; function declarations and calls;
conditionals (e.g., branches and switches); regular expressions; and
various unary, binary, and ternary arithmetic operators.

4.2 Usability

To understand the level of interaction required to build a parser,
we use progression plots. A progression plot shows the cumulative
progress made as a function of number of UI actions taken. In
particular, the x-axis of a progression plot shows the number
of actions taken, where an action is any single UI interaction:
applying a label, applying a negative label, resolving an ambiguity,
undoing, or redoing. For each x-value, a progression plot displays
the cumulative progress: the percentage of all the code in the project
that is fully and successfully parsed after the first « actions. To
compute progress, rather than count the number of characters parsed,
we count the positions between characters that are part of some
coloring. We do this for an important reason: if we were to count
characters, then suppose two separate colored regions (labels) were
directly adjacent. This would appear to achieve 100% when in fact a
better parse would encompass both. Figure[3]show the progression
plots for each of our breadth benchmarks: Verilog, Tiger, Apache,
and SQL. Note that we are able to build each of these parsers with
fewer than 400 Ul interactions.

Completion Time A second important metric is the amount of
time taken to reach a solution. We used Verilog as the first large
case study, and not surprisingly it uncovered a variety of bugs in the
implementation of Parsify. As a result, our experiment with Verilog
was interspersed with several bug fixes and restarts, so we do not
have an accurate measure of how much time Verilog took. On the
other hand, the parsers for Tiger, Apache and SQL took between
6-8 hours. The authors of this paper had prior experience building
manually written parsers for Verilog and Tiger: those prior efforts
took nearly an order of magnitude longer than the corresponding
Parsity effort — in fact much of the inspiration for Parsify is the wish
to avoid previous difficulties.

To better understand where the time is spent when using Parsify,
we analyzed recordings of each case study. A particularly interesting
observation is that in some cases, an ambiguity was encountered
that could not be resolved by synthesizing a disambiguating filter.
The only course of action was to undo several actions. Because
undo operations are counted as actions in our progression plots,
these situations often correspond to some of the “plateaus” we see
in the progression plots, during which no progress is made. After
carefully analyzing the underlying reasons, we have formulated
several “best practice” guidelines for building parsers even more
quickly by avoiding these problems. Completion times were reduced
significantly when following these practices, with times ranging
from 30 minutes to 2 hours for each of the 4 languages.

4.3 Best Practices

Build bottom-up: 1t is important to employ a bottom-up approach
when building parsers with Parsify. Consider two nonterminals, one

100% 100%
85% 85%
70% 70%

55% 55%

100%
85%
70%

55%

40% 40%

0 50 100 150 200 250 300 0 50 100 150 200 250 300

40%
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350

Figure 3. Progression plots for Verilog, Tiger, Apache Logs, and SQL (left to right)

of which always occurs higher in parse trees than the other (e.g.,
stmt and expr, where stmt always occurs higher than expr). In
this case it is best to give as many examples as possible for expr,
making it as complete as possible, before moving to stmt. This
ordering is preferable because it allows detection and resolution
of ambiguities earlier, on smaller examples, which makes it easier
for both the human and Parsify. For instance, consider a simple
ambiguity that occurs on a small expression when adding a new
operator. This ambiguity is simple to visualize for the user, and
easy to resolve for Parsify because the search space is small. In
contrast this ambiguity becomes much more difficult to resolve if the
ambiguity is discovered after statements have been parsed, because
the ambiguity could occur deeply nested in a large statement. This
not only makes the parse tree hard to visualize, but it also makes it
harder for Parsify to resolve, because the search space of possible
disambiguations can be much larger.

Consistency for Generalization We have determined two “styles”
for using Parsify’s generalization feature. Parsify works best when
the user consistently uses one or the other, but not both, for the
same syntactic entity. Consider the simple example of parsing literal
arrays: suppose we have two arrays [a] and [a,b], where the
expressions a and b have already been correctly identified as expzrs.
There are two styles we can use, depending on whether we use an
intermediate nonterminal or not.

Style 1: don’t use an intermediate nonterminal for sequences.
Apply label array to [a] and [a,b], and Parsify generalizes the
array rule to produce: “[”, followed by a comma-separated list of
exprs, followed by “17.

Style 2: use an intermediate nonterminal for sequences. We start
by applying label eseq to both a,b and a, at which point Parsify
generalizes the eseq rule to match a comma-separated sequence of
exprs. The two expressions we are trying to parse have now been
recolored and look as follows: [a] and [a,b]. At this point, we
just need to label one of these two expressions as array.

Both styles work individually, but Parsify does not generalize
well when the two styles are mixed for a given syntactic category (in
the above example, arrays). In future work, we plan to investigate
ways to augment our generalization technique to detect “mixed-style”
usage and appropriately modify grammars to generalize these cases.

5. Related Work

Grammatical Inference The topic of grammatical inference [38]],
broadly focused on the challenge of inferring latent structure from
text, has been studied extensively for decades. The classical problem,
termed identification in the limit, is concerned with the ability
to infer a correct language specification given a set of positive
and negative examples (strings inside and outside the language,
respectively). Steady progress has been made on inferring language
specifications for regular languages [3l], reversible languages [2]],
reversible context-free grammars with structural descriptions [33]],
and ultimately context-free languages [24].

We distinguish ourselves from this line of prior work in two ways:
(a) prior work focuses more on the theoretical problem of correct
grammar inference, whereas we focus on practical techniques that
scale to software engineering problems; and (b) the ability in prior
work to infer some grammar, does not mean the inferred grammar

is meaningful to a human engineer: the parser developer also
has an expectation that the corresponding syntax trees are easily
comprehensible. In particular, a recent survey [21] found known
efforts to apply grammatical inference to programming language
parsers [9,127] to be limited in nature, and it remains unclear whether
these techniques scale to nontrivial software engineering problems.
The second limitation points to the need for tools such as Parsify that
allow more fine-grained control of the form of inferred productions.

Programming-by-example PBE techniques [7,|16] are concerned
with constructing programs that implement an informal specification
provided in the form of input and output examples. For example,
researchers have proposed PBE techniques for domains such as text
editing [15)], spreadsheet table transformations [17], number trans-
formations [35]], and extraction from semi-structured sources [23]].
A particularly relevant instantiation of PBE is the PADS system [10]
for automatically inferring the structure of ad-hoc data formats such
as log files. Due to its focus on such formats, PADS makes several
simplifying assumptions, for example that log entries are chunked
line-by-line or file-by-file, and that format specifications are not
recursive. As a result it is unclear whether their techniques can
generalize to context-free languages.

Some PBE systems have a visual component similar to our own:
for example, LAUNCHPADS [8]], LAPIS [29], SMARTedit [22],
and STEPS [39]]. LAUNCHPADS is a visual frontend for the
PADS system described above. SMARTedit and LAPIS support
repetitive edits by example, but do not export the hierarchical
structure of the underlying text. STEPS provides a facility for
highlighting and labeling regions similarly to Parsify, but for the
purpose of facilitating more limited text transformations akin to that
accomplished by “a short Perl/ AWK script.”

Parser Generators We focus here on recent advances towards
more user-friendly parsing. Recent work [25] has employed natural-
language processing to generate parsers from English descriptions
of input formats. Generalized parsers of the GLL [34]] and GLR [37]
families have recently gained popularity due to their ability to ac-
cept any context-free grammar while still offering good performance.
Unfortunately, the ability to specify ambiguous grammars is a signif-
icant disadvantage in comparison to parser generators based on more
restricted grammars. More so, such parsers offer no mechanism for
disambiguation besides refactoring productions. Disambiguating
filters [20, 136] offer a declarative mechanism for disambiguation
without modifications to the grammar. Parsify uses the instaparse
GLL parser, which we augmented with disambiguating filters.

6. Future Work and Conclusion

We have presented a novel application of programming-by-example
to parsers and implemented a tool, Parsify, that embodies this
approach. Our evaluation shows that the approach is feasible and
works well on a variety of languages and paradigms.

Still, there are many lines of future work left to be pursued. As
mentioned in Section[4.3] one direction would be to improve our
generalization technique to handle scenarios where the two styles of
generalization are mixed. Another direction would be to improve the
disambiguation algorithm to handle more cases. One particular kind
of disambiguation that Parsify does not support well is what we term

context-sensitive disambiguation (not to be confused with context-
sensitive grammars), where the disambiguation is done based on
the context in which the ambiguity occurs. Consider the following
situation, adapted from our Apache log benchmark. We wish to
parse a sequence of id-value pairs of the form id=expr, where
expr matches both floating point values and regular expressions.
The string x=1.37 is ambiguous because 1.37 can be parsed as
either a floating point value or a regular expression (with “.” meaning
any character). Proper disambiguation requires knowing the context
in which the expr occurs: expr can be a regular expression if and
only if id is the string “search”. Parsify cannot automatically
provide this kind of context-sensitive disambiguation. Although an
unambiguous grammar that handles this construct can be built in
Parsity today, this does require that the user avoid inferring the
offending productions from the start. It would be interesting to
investigate how one can enhance Parsify to handle these context-
sensitive disambiguations in the future.

A key limitation of our current prototype deals with token
structure: we rely on predefined rules for parsing initial tokens
and collapsing whitespace. In future iterations we aim to add
token inference to allow constructs such as syntactically significant
whitespace (e.g., as in Python).

Finally, two interesting avenues for future work involve system-
atic evaluation of our tool across a larger audience. First, we seek
to develop a methodology for more systematic evaluation of Par-
sify’s heuristics. For example, the set of coefficients used in our
distance metric have worked well for the benchmarks we evalu-
ated in Section[d] but it is possible that other coefficients may be
more appropriate for languages with different characteristics that
we have not tested. Second, we aim to perform a broader user study
to see how other programmers make use of our tool. The website for
Parsify is available athttp://goto.ucsd.edu/parsify,

Acknowledgements

We would like to thank the anonymous reviewers for their insightful
comments. This work was supported by the National Science
Foundation through grants 1228967, 1219172 and 1423517, and a
generous gift from Google.

References

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling. Prentice-Hall, 1972.

[2] D. Angluin. Inference of reversible languages. J. ACM, 29(3), 1982.

[3] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2), 1987.

[4] A. W. Appel. Modern Compiler Implementation in ML: Basic Tech-
niques. Cambridge University Press, 1997.

[5] M. E. Arlitt and C. L. Williamson. Web server workload characteriza-
tion: The search for invariants. In SIGMETRICS, 1996.

[6] census-postgres, 2014. URL https://github.com/leehach/
census—postgres.

[71 A. Cypher, editor. Watch What I Do — Programming by Demonstration.
MIT Press, 1993.

[8] M. Daly, M. F. Fernandez, K. Fisher, Y. Mandelbaum, and D. Walker.
LAUNCHPADS: A system for processing ad hoc data. In PLAN-X,
2006.

[9] A. Dubey, S. Aggarwal, and P. Jalote. A technique for extracting
keyword based rules from a set of programs. In CSMR, 2005.

[10] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels:
Fully automatic tool generation from ad hoc data. In POPL, 2008.

[11] B. Ford. Parsing expression grammars: A recognition-based syntactic
foundation. In POPL, 2004.

[12] GNU Bison manual. GNU Software Foundation. URL http:
//www.gnu.org/software/bison/manual/,

[13] R. Grimm. Better extensibility through modular syntax. In PLDI, 2006.

[14] D. Grune and C. J. H. Jacobs. Parsing Techniques: A Practical Guide.
Ellis Horwood, 1990.

[15] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In POPL, 2011.

[16] S. Gulwani. Synthesis from examples: Interaction models and algo-
rithms. In SYNASC, 2012.

[17] W. R. Harris and S. Gulwani. Spreadsheet table transformations from
examples. In PLDI, 2011.

[18] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2), 1968.

[19] instaparse, 2014. URL https://github.com/Engelberg/
instaparse.

[20] P.Klint and E. Visser. Using filters for the disambiguation of context-
free grammars. In ASMICS, 1994.

[21] P. Klint, R. Limmel, and C. Verhoef. Toward an engineering discipline
for grammarware. ACM TOSEM, 14(3), 2005.

[22] T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Programming
by demonstration using version space algebra. Mach. Learn., 53(1-2),
2003.

[23] V. Le and S. Gulwani. FlashExtract: A framework for data extraction
by examples. In PLDI, 2014.

[24] L. Lee. Learning of context-free languages: A survey of the literature.
Technical Report TR-12-96, Harvard University, 1996.

[25] T. Lei, F. Long, R. Barzilay, and M. C. Rinard. From natural language
specifications to program input parsers. In ACL, 2013.

[26] S. McPeak and G. Necula. Elkhound: A fast, practical GLR parser
generator. In CC, 2004.

[27] M. Mernik, G. Gerli¢, V. Zumer, and B. R. Bryant. Can a parser be
generated from examples? In SAC, 2003.

[28] M. Might and D. Darais. Yacc is dead. CoRR, abs/1010.5023, 2010.

[29] R. C. Miller and B. A. Myers. Lightweight structured text processing.
In USENIX ATC, 1999.

[30] MonitorWare. Apache (Unix) log samples, 2004. URL http!
//www.monitorware.com/en/logsamples/apache.php.

[31] R. C. Moore. Removing left recursion from context-free grammars. In
NAACL, 2000.

[32] T. Parr and K. Fisher. LL(*): The foundation of the antlr parser
generator. In PLDI, 2011.

[33] Y. Sakakibara. Efficient learning of context-free grammars from
positive structural examples. Information and Computation, 97(1),
1992.

[34] E. Scott and A. Johnstone. GLL parsing. ENTCS, 253(7), 2010.

[35] R. Singh and S. Gulwani. Synthesizing number transformations from
input-output examples. In CAV, 2012.

[36] M. Thorup. Disambiguating grammars by exclusion of sub-parse trees.
Acta Informatica, 33(5), 1996.

[37] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, 1985.

[38] E. Vidal. Grammatical inference: An introductory survey. In Grammat-
ical Inference and Applications, LNCS. 1994.

[39] K. Yessenov, S. Tulsiani, A. Menon, R. C. Miller, S. Gulwani, B. Lamp-

son, and A. Kalai. A colorful approach to text processing by example.
In UIST, 2013.

http://goto.ucsd.edu/parsify
https://github.com/leehach/census-postgres
https://github.com/leehach/census-postgres
http://www.gnu.org/software/bison/manual/
http://www.gnu.org/software/bison/manual/
https://github.com/Engelberg/instaparse
https://github.com/Engelberg/instaparse
http://www.monitorware.com/en/logsamples/apache.php
http://www.monitorware.com/en/logsamples/apache.php

	Introduction
	Overview
	User Interface Overview
	Basic Inference
	Infix Expressions
	Function Definitions
	Function Calls
	Challenges

	Algorithm
	Preliminaries: Context-Free Grammars
	Preliminaries: Disambiguating Filters
	Interaction
	Session State
	Operations

	Evaluation
	Versatility
	Usability
	Best Practices

	Related Work
	Future Work and Conclusion

