
Automated Soundness Proofs for Dataflow Analyses and

Transformations via Local Rule

Technical Report UW-CSE-2004-07-04

Sorin Lerner Todd Millstein

Univ. of Washington UCLA

lerns@cs.washington.edu todd@cs.ucla.edu

Erika Rice Craig Chambers

Univ. of Washington Univ. of Washington

erice@cs.washington.edu chambers@cs.washington.edu



This document contains a formal description of the Rhodium language. Section 1 presents the Rhodium
syntax. Section 2 presents our composing framework, which is used to formalize Rhodium analyses. Sec-
tion 3 presents forward analyses and transformations, whereas section 4 presents backward analyses and
transformations. Sections 5 and 6 present the frameworks for flow-insensitive and interprocedural analyses,
respectively. Finally, appendix A is a transcript of all of our Rhodium code.

1



Chapter 1

Rhodium Syntax

In the following syntax, we use (E)∗ to represent zero or more repetitions of E, E/SEP to represent zero or
more repetitions of E separated by SEP , and {E} to represent zero or one repetition of E. Non-terminals
are in written in italics font, and terminals are written either in boldface or typewriter font.

The syntax for a Rhodium program is as follows:

RhodiumProg ::= (Decl)∗

Decl ::= VarDecls
| EdgeFactDecl
| VirtualEdgeFactDecl
| NodeFactDecl
| PropagateRule
| TransformRule

VarDecls ::= decl VarDecl/, in Decl end

EdgeFactDecl ::= define edge fact id (VarDecl/,) with meaning Meaning

VirtualEdgeFactDecl ::= define virtual edge fact id(VarDecl/,)@id = ψ

NodeFactDecl ::= define node fact id (VarDecl/, ) = ψ

VarDecl ::= id : Type

2



Meaning ::= MeaningTerm == MeaningTerm
| Meaning && Meaning
| Meaning || Meaning
| Meaning => Meaning
| ! Meaning
| forall VarDecl/, . Meaning
| exists VarDecl/, . Meaning
| MeaningPrimPredSymbol{(MeaningTerm/, )}

MeaningTerm ::= id
| η
| MeaningPrimFunSymbol{(MeaningTerm/, )}

MeaningPrimPredSymbol ::= isStmtNotStuck

| isExprNotStuck

| isLoc

| isConst

| equalUpTo

MeaningPrimFunSymbol ::= evalExpr

| evalLocDeref

| newConst

| getConst

| applyBinaryOp

| min

| max

PropagateRule ::= if ψ then EdgePred

TransformRule ::= if ψ then transform Stmt

ψ ::= NodePred
| EdgePred
| Term == Term
| case Term of (Term => ψ) ∗ endcase
| ψ && ψ
| ψ || ψ
| ψ => ψ
| ! ψ
| forall VarDecl/, . ψ
| exists VarDecl/, . ψ

3



NodePred ::= id (Term/, )

EdgePred ::= id (Term/, )@Edge

Term ::= id
| [Expr ]
| [Stmt ]
| currStmt

| currNode

| PrimFunSymbol(Term/, )

PrimFunSymbol ::= newConst

| getConst

| applyBinaryOp

| min

| max

Edge ::= cfg in (syntactic sugar for cfg in[0])
| cfg out (syntactic sugar for cfg out[0])
| cfg in[EdgeName ] (cfg in[i] is the ith cfg input edge)
| cfg out[EdgeName ] (cfg out[i] is the ith cfg input edge)

EdgeName ::= IntLiteral
| true (syntactic sugar for 0, the true successor of a branch node)
| false (syntactic sugar for 1, the false successor of a branch node)

Stmt ::= declVarExpr
| declVarExpr [VarExpr ]
| skip
| VarExpr := new
| VarExpr := newarray[VarExpr ]
| LHS := Expr
| VarExpr := Proc(BaseExpr )
| if BaseExpr goto Label else Label
| return VarExpr
| RhodiumVar

VarExpr ::= ILVar
| RhodiumVar

4



Expr ::= BaseExpr
| *VarExpr
| &VarExpr
| VarExpr [VarExpr ]
| BaseExpr OP BaseExpr
| RhodiumVar

LHS ::= VarExpr
| ∗VarExpr
| RhodiumVar

BaseExpr ::= VarExpr
| Constant
| RhodiumVar

Constant ::= 0 | 1 | 2 | . . .

RhodiumVar ::= id (Rhodium variable names)

ILVar ::= ‘id (IL variable names)

Proc ::= id (Procedure names)

Label ::= id (Node identifiers)

OP ::= + | − | ∗ | /

We allow “if ψ then EF1 && . . . && EFn” as sugar for:

if ψ then EF1

. . .
if ψ then EFn

For fresh variables t1 and t2, we also allow the following sugar for array statements:

• *(a[i]) := x as short for

t1 := a[i];

*t1 := x;

• x := *(a[i]) as short for

t1 := a[i];

x := *t1;

• *((&a)[i]) := x as short for

t1 := &a;

5



t2 := t1[i];

*t2 := x;

• x := *((&a)[i]) as short for

t1 := &a;

t2 := t1[i];

x := *t2;

• x := (&a)[i] as short for

t1 := &a;

x := t1[i];

6



Chapter 2

Composing Framework

This section outlines the composing framework that is used to formalize Rhodium analyses. The framework
presented here is the one from [3], updated in two ways. First, we make function calls explicit in the
semantics of the framework, so that we can reason about them when arguing the soundness of Rhodium
analyses. Second, the condition for semantics preservation does not require non-termination to be preserved.
As a result, if an instruction does not terminate (for example, if it runs forever or if it gets stuck), then the
instruction can be replaced with any other instruction.

2.1 Preliminaries

In this section we define basic notation and the abstract intermediate representation that we assume through-
out the rest of the paper. Section 2.3 reviews the well-know definition of a single analysis followed by
transformations, and serves as a foundation for the formalization of the novel parts of our framework in
sections 2.4 and 2.5.

2.1.1 Notation

If A is a set, then A∗ is the set
⋃

i≥0A
i, where Ak = {(a1, . . . , ak)|ai ∈ A}. We denote the ith projection

of a tuple x = (x1, . . . , xk) by x[i] , xi. Given a function f : A → B, we extend f to work over tuples by

defining
−→
f : A∗ → B∗ as

−→
f ((x1, . . . , xk)) , (f(x1), . . . , f(xk)). We also extend f to work over maps by

defining f̃ : (O → A) → (O → B) as f̃(m) , λo.f(m(o)).

We extend a binary relation R ⊆ 2D×D over D to tuples by defining the
−→
R relation by:

−→
R ((x1, . . . , xk), (y1, . . . , yk)) iff R(x1, y1) ∧ . . . ∧ R(xk, yk). Finally, we extend a binary relation R ⊆ 2D×D

to maps by defining the R̃ relation as: R̃(m1,m2) iff for all elements o in the domain of both m1 and m2, it
is the case that R(m1(o),m2(o)). To make the equations clearer, we drop the tilde and arrow annotations
on binary relations when they are clear from context.

7



2.1.2 Intermediate Representation

A program is a tuple π = (p1, . . . , pn), where each pi is a procedure. We denote by Prog the set of all
programs, and by Proc the set of all procedures. We denote by proc(name, formal, cfg) the procedure with
name name, formal name formal, and control flow graph cfg . We denote by name(p), formal(p) and cfg(p)
the name, formal name, and CFG of procedure p. We assume that all the procedures in a program have
distinct names.

A control flow graph is a tuple g = (N,E, In,Out, InEdges,OutEdges) where N ⊆ Nodes is a set of nodes
(with Nodes being a predefined infinite set), E ⊆ Edges is a set of edges (with Edges being a predefined
infinite set), In : N → E∗ specifies the input edges for a node, Out : N → E∗ specifies the output edges
for a node, InEdges ∈ E∗ specifies the input edges of the graph, and OutEdges ∈ E∗ specifies the output
edges of the graph. A CFG has one input edge and out output edge. We let Graph be the set of all control
flow graphs. When necessary, we use subscripts to extract the components of a graph. For example, if g is
a graph, then its nodes are Ng, its edges are Eg , and so on.

2.2 Semantics of the intermediate representation

Each node n has a statement associated with it, which we denote by stmtAt(n). The statement forms are
given in the section on the Rhodium syntax.

Given a node n for which stmtAt(n) = (x := f(b)) we assume that there is a procedure p in π for which
name(p) = f and we use cfg(n) to denote cfg(p).

The arity of an operator op is denoted arity(op). We assume a fixed interpretation function for each n-ary
operator symbol op: JopK : Constn → Const .

We assume an infinite set Location of memory locations, with metavariable l ranging over the set. We assume
that the set Const is disjoint from Location and contains the distinguished elements true and uninit . We
denote by Natural ⊆ Const the set of natural numbers. We also assume a set Array of array values, disjoint
from Const and Location . An array value is a pair (len, locs), where len ∈ Natural is the length of the
array and locs ∈ (Natural ⇀ Location) is a map from indices to locations. The locations mapped to are
the locations of the array elements in the store. Given an array a, we use len(a) to denotes its length, and
locs(a) to denote the addresses of its contents. Assuming 0 ≤ i < len(a), the notation a[i] denotes locs(a)(i).
We use newInitArray(〈l0, . . . , lj〉) to denote a newly initialized array (j + 1, λi.li).

The set of values is defined as Value = (Location ∪ Const ∪ Array)

An environment is a partial function ρ : Vars ⇀ Location ; we denote by Environment the set of all envi-
ronments. A store is a partial function σ : Location ⇀ Value; we denote by Store the set of all stores. The
domain of an environment ρ is denoted dom(ρ), and similarly for the domain of a store. If s = 〈x1, . . . xn〉,
s ∈ dom(ρ) denotes that each element of s is in dom(ρ); similar notation is defined for a store σ. The notation
ρ[x 7→ l] denotes the environment identical to ρ but with variable x mapping to location l; if x ∈ dom(ρ),
the old mapping for x is shadowed by the new one. The notation σ[l 7→ v] is define similarly. The notation
σ[l1 7→ v1, . . . , ln 7→ vn] denotes the store identical to σ but with each location li mapping to value vi. If li
and lj are the same and j > i, then the mapping for lj shadows the mapping for li. We use 〈l1, . . . , ln〉 7→ v
to stand for l1 7→ v, . . . , ln 7→ v. Finely, the notation σ/{l1, . . . , li} denotes the store identical to σ except
that all pairs (l, v) ∈ σ such that l ∈ {l1, . . . , li} are removed.

The current dynamic call chain is represented by a stack. A stack frame is a triple f = (n, l, ρ) : Node ×

8



Location×Environment . Here n is the CFG node that made the call to the function currently being executed,
l is the location in which to put the return value from the call, and ρ is the current lexical environment at
the point of the call. We denote by Frame the set of all stack frames. A stack ξ = 〈f1 . . . fn〉 : Frame∗ is a
sequence of stack frames. The set of all stacks is denoted Stack . Stacks support two operations defined as
follows:

push : (Frame × Stack) → Stack
push(f, 〈f1 . . . fn〉) = 〈f f1 . . . fn〉

pop : Stack ⇀ (Frame × Stack)
pop(〈f1 f2 . . . fn〉) = (f1, 〈f2 . . . fn〉),where n > 0

Finally, a memory allocator M is an infinite stream 〈l1, l2, . . .〉 of locations. We denote the set of all memory
allocators as MemAlloc.

A state of execution of a program π is a four-tuple η = (ρ, σ, ξ,M) where ρ ∈ Environment , σ ∈ Store,
ξ ∈ Stack , and M ∈ MemAlloc. We denote the set of program states by State. We refer to the corresponding
environment of a state η as env(η), and we similarly define accessors store, stack, and mem.

Definition 1 The evaluation of an expression e in a program state η, where env(η) = ρ and store(η) = σ,
is given by the partial function η(e) : (State × Expr ) ⇀ Value defined by:

η(c) = c
η(&x) = ρ(x)

where x ∈ dom(ρ)
η(x) = σ(ρ(x))

where x ∈ dom(ρ), ρ(x) ∈ dom(σ)
η(∗x) = σ(σ(ρ(x)))

where x ∈ dom(ρ), ρ(x) ∈ dom(σ), σ(ρ(x)) ∈ dom(σ)
η(op b1 . . . bn) = JopK(η(b1), . . . , η(bn))

where arity(op) = n and ∀ 1 ≤ j ≤ n . (η(bj) ∈ Const)
η(x[i]) = η(∗x)[η(i)]

where η(∗x) ∈ Array , η(i) ∈ Natural , 0 ≤ η(i) < len(η(∗x))

Note that η(e) is partial because of the side conditions in the above definition.

Each node n is the CFG has a set of input edges and a set of output edges. The vectors in(n) and out(n)
refer to the incoming and outgoing edges of n. All statements have one incoming edge and one outgoing
edge except for the following exceptions:

• If stmtAt(n) = merge then len(in(n)) = 2 where in(n)[0] and in(n)[1] are the two inputs to the merge.

• If stmtAt(n) = (if b goto L1 else L2) then len(out(n)) = 2 where out(n)[0] is the false successor and
out(n)[1] is the true successor

• If stmtAt(n) = (x := f(b)) then len(out(n)) = 2, where out(n)[0] is the intraprocedural edge from the
call site n to the return site (the immediate successor of n in the intraprocedural CFG), and out(n)[1]
is the interprocedural edge from the call site n to the entry node of f .

9



• If stmtAt(n) = (return x) then len(out(n)) = k where k is the number of call sites to the function
that n belongs to. We define callSiteIndex : Node ⇀ Natural so that out(n)[callSiteIndex (n′)] is the
edge from the return statement n to the return site of call site n′.

Definition 2 We use i, η
n
→ j, η′ to say that program state η coming along the ith input edge of n steps to η′

on the jth output edge of n. The state transition function ·, ·
·
→ ·, · ⊆ Natural×State×Node×Natural×State

is defined by:

• If stmtAt(n) = decl x then 0, (ρ, σ, ξ, 〈l, l1, l2, . . .〉)
n
→ 0, (ρ[x 7→ l], σ[l 7→ uninit ], ξ, 〈l1, l2, . . .〉)

where l 6∈ dom(σ)

• If stmtAt(n) = (decl x[i]) then 0, (ρ, σ, ξ, 〈l, l0, l1, . . . , 〉)
n
→ 0, (ρ[x 7→ l], σ[l 7→ newInitArray(s), s 7→

uinit], ξ, 〈lη(i), lη(i)+1, . . .〉)
where η = (ρ, σ, ξ,M), l 6∈ dom(σ), s 6∈ dom(σ), η(i) ∈ Natural, η(i) > 0, s = 〈l0, . . . , lη(i)−1〉

• If stmtAt(n) = skip then 0, (ρ, σ, ξ,M)
n
→ 0, (ρ, σ, ξ,M)

• If stmtAt(n) = merge then 0, (ρ, σ, ξ,M)
n
→ 0, (ρ, σ, ξ,M) and 1, (ρ, σ, ξ,M)

n
→ 0, (ρ, σ, ξ,M)

• If stmtAt(n) = (x := e) then 0, (ρ, σ, ξ,M)
n
→ 0, (ρ, σ[η(&x) 7→ η(e)], ξ,M)

where η = (ρ, σ, ξ,M), η(x) ∈ Location ∪ Const1, η(e) ∈ Location ∪ Const2

• If stmtAt(n) = (∗x := e) then 0, (ρ, σ, ξ,M)
n
→ 0, (ρ, σ[η(x) 7→ η(e)], ξ,M)

where η = (ρ, σ, ξ,M), η(x) ∈ Location, η(∗x) ∈ Location ∪ Const, η(e) ∈ Location ∪ Const

• If stmtAt(n) = (x := new) then 0, (ρ, σ, ξ, 〈l, l1, l2, . . .〉)
n
→ 0, (ρ, σ[η(&x) 7→ l, l 7→ uninit ], ξ, 〈l1, l2, . . .〉)

where η = (ρ, σ, ξ,M), η(x) ∈ Location ∪ Const, l 6∈ dom(σ)

• If stmtAt(n) = (x := new array[i]) then 0, (ρ, σ, ξ, 〈l, l0, l1, . . .〉)
n
→

0, (ρ, σ[η(&x) 7→ l, l 7→ newInitArray(s), s 7→ uninit], ξ, 〈lη(i), lη(i)+1, . . .〉)
where η = (ρ, σ, ξ,M), l 6∈ dom(σ), s 6∈ dom(σ), η(x) ∈ Location ∪ Const, η(i) ∈ Natural , η(i) > 0,
s = 〈l0, . . . , lη(i)−1〉

• If stmtAt(n) = (x := f(b)) then 0, (ρ, σ, ξ, 〈l, l1, l2, . . .〉)
n
→ 1, ({(y, l)}, σ[l 7→

η(b)], push(f, ξ), 〈l1, l2, . . .〉)
where η = (ρ, σ, ξ, 〈l, l1, l2, . . .〉), y = formal f , l 6∈ dom(σ), x ∈ dom(ρ), f = (n, ρ(x), ρ),
η(x) ∈ Location ∪ Const

• If stmtAt(n) = (if b goto L1 else L2) then 0, (ρ, σ, ξ,M)
n
→ 1, (ρ, σ, ξ,M)

where (ρ, σ, ξ,M)(b) = true

• If stmtAt(n) = (if b goto L1 else L2) then 0, (ρ, σ, ξ,M)
n
→ 0, (ρ, σ, ξ,M)

where (ρ, σ, ξ,M)(b) = false

• If stmtAt(n) = (return x) then 0, (ρ, σ, ξ,M)
n
→ j, (ρ0, σ0, ξ0,M)

where pop(ξ) = ((n0, l0, ρ0), ξ0), j = callSiteIndex (n0), dom(ρ) = {x1, . . . , xi}, σ0 =
(σ/{ρ(x1), . . . , ρ(xi)})[l0 7→ (ρ, σ, ξ,M)(x)]
where (ρ, σ, ξ,M)(x) ∈ Location ∪ Const

1This check, and the ones like it for other statement types, prevents assignment to array values.
2This check, and the ones like it, prevents array values from being copied.

10



Because the η(e) function is partial, and because of the side conditions in the above definition, the ·, ·
·
→ ·, ·

function is partial, in that there are some i, η that cannot step. For example, if x 6∈ dom(ρ) then 0, (ρ, σ, ξ,M)
cannot step through the statement x := e.

A machine configuration is a pair δ = (e, η) where e ∈ Edge and η ∈ State. Here e indicates where control
has reached, and η represents the program state. We denote by MachineConfig be the set of all machine
configurations. We use edge(δ) to denote the edge component of δ. We use src(e) and dst(e) to denote the
source and destination nodes of an edge e. We use node(δ) to denote dst(edge(δ)), which means that node(δ)
is the node about to be executed by δ.

We define inIndex and outIndex :

inIndex (e) =

{
i if ∃i.in(dst(e))[i] = e

undefined otherwise

outIndex(e) =

{
i if ∃i.out(src(e))[i] = e

undefined otherwise

Definition 3 The machine configuration transition function → ⊆ MachineConfig × MachineConfig is
defined by:

(e, η) → (e′, η′) ⇔




inIndex (e) is defined ∧
outIndex(e′) is defined ∧

inIndex (e), η
dst(e)
→ outIndex(e′), η′




The →∗ relation is the reflexive transitive closure of the → relation.

Definition 4 The intraprocedural state transition function ·, ·
·
↪→ ·, · ⊆ Natural ×State ×Node×Natural ×

State is defined by:

• If stmtAt(n) is not a procedure call, then i, η
n
↪→ j, η′

where i, η
n
→ j, η′

• If stmtAt(n) = (x := f(b)) then 0, η
n
↪→ 0, η′

where 0, η
n
→ 1, ηp and (InEdgescfg(n)[0], ηp) →∗ (e, η′) and η′ is the first state on the trace between ηp

and η′ such that stack(η′) = stack(η)

2.3 A Single Analysis Followed by Transformations

This section reviews the well-known lattice-theoretic formulation of dataflow analysis frameworks using
abstract interpretation [1]. It shows how we use this formulation to define analyses and transformations over
the IR defined in the previous section, and provides the foundation for describing our approach in sections 2.4
and 2.5.

11



2.3.1 Definition

An analysis is a tuple A = (D,t,u,v,>,⊥, α, F ) where (D,t,u,v,>,⊥) is a complete lattice, α : Dc → D
is the abstraction function, and F : Node×D∗ → D∗ is the flow function for nodes. The elements of D, the
domain of the analysis, are dataflow facts about edges in the IR (which would correspond to program points
in a CFG representation). The flow function F provides the interpretation of nodes: given a node and a
tuple of input dataflow values, one per incoming edge to the node, F produces a tuple of output dataflow
values, one per outgoing edge from the node. Dc is the domain of a distinguished analysis, the concrete
analysis C = (Dc,tc,uc,vc,>c,⊥c, id, Fc), which specifies the concrete semantics of the program.

We use an intraprocedural collecting semantics (section 6 will define the interprocedural concrete semantics):

Definition 5 The concrete analysis is:

(Dc,tc,uc,vc,>c,⊥c) = (2State ,∪,∩,⊆,State, ∅)

where the concrete flow function Fc is:

Fc(n, cs)[k] = {η | ∃ η′ ∈ State, i ∈ Natural . [η′ ∈ cs[i] ∧ i, η′
n
↪→ k, η]} (2.1)

Because of the predicate η′ ∈ cs[i] in equation (2.1), Fc is monotonic. The concrete flow function can also
be expressed in the following equivalent formulation:

Definition 6 The concrete flow function can be equivalently defined as:

• if stmtAt(n) is not a procedure call, then Fc(n, cs)[k] = {η | ∃ η′ ∈ State, i ∈ Natural . [η′ ∈

cs[i] ∧ i, η′
n
↪→ k, η]}

• if stmtAt(n) = (x := f(b)) then Fc(n, cs)[0] =
−−−−−−−−−−−→
SC(cfg(n), (X))(OutEdgescfg(n)) where X = {η | ∃η′ ∈

State . [η′ ∈ cs[0] ∧ 0, η′
n
→ 1, η}

The solution of an analysis A over a domain D is provided by the function SA : Graph×D∗ → (Edges→ D).
Given a graph g and a tuple of abstract values for the input edges of g, SA returns the final abstract value
for each edge in g. This is done by initializing all edges in g to bottom, and then applying the flow functions
of A until a fixed point is reached. The definition of SA is given in the following definition:3

Definition 7 Given an analysis A = (D,t,u,v,>,⊥, α, F ), a graph g and a tuple of dataflow values ι ∈ D∗

for the input edges of g, SA(g, ι) is defined as follows.

First, we define the interpretation function Int : Eg × (Eg → D) → D as in Cousot and Cousot [1]: given
an edge e and the current dataflow solution m, Int computes the dataflow value for e at the next iteration.
Int is defined as:

Int(e,m) =

{
ι[k] if ∃k.e = InEdgesg[k]

F (n,−→m(Ing(n)))[k] where e = Outg(n)[k]

3Although the concrete solution function SC is usually not computable, the mathematical definition of SC is still perfectly

valid. Our framework does not evaluate SC ; we only use SC to formalize the soundness of analyses.

12



The global flow function FG : (Eg → D) → (Eg → D) takes a map representing the current dataflow
solution, and computes the dataflow solution at the next iteration. FG is defined as:

FG(m) = λe.Int(e,m)

The global ascending flow function FGA is the same as FG, except that it joins the result of the next iteration
with the current solution before returning. This ensures that the solution monotonically increases as iteration
proceeds, even if F is not monotonic. FGA is defined as:

FGA(m) = FG(m) t̃ m

Finally, the result of SA is a fixed point of FGA (the least fixed point if F is monotonic):

SA(g, ι) =
∞⊔

n=0

FGAn(⊥̃)

where ⊥̃ , λe.⊥, FGA0 = λx.x and FGAk = FGA ◦ FGAk−1 for k > 0.

An Analysis followed by Transformations, or an AT-analysis for short, is a pair (A, R) where A = (D,t,u,v
,>,⊥, α, F ) is an analysis, and R : Node × D∗ → Graph ∪ {ε} is a local replacement function. The local
replacement function R specifies how a node should be transformed after the analysis has been solved. Given
a node n and a tuple of elements of D representing the final dataflow analysis solution for the input edges
of n, R either returns a graph with which to replace n, or ε to indicate that no transformation should be
applied to this node. To be syntactically valid, a replacement graph must have the same number of input and
output edges as the node it replaces, and its nodes and edges must be unique (so that splicing a replacement
graph into the enclosing graph does not cause conflicts). We also assume that replacement graphs do not
contain function call nodes. We denote by RFD the set of all replacement functions over the domain D, or
in other words RFD = Node×D∗ → Graph ∪ {ε}.

After analysis completes, the intermediate representation is transformed in a separate pass by a transforma-
tion function T : RFD ×Graph× (Edges→ D) → Graph. Given a replacement function R, a graph g, and
the final dataflow analysis solution, T replaces each node in g with the graph returned by R for that node,
thus producing a new graph. The definition of T is given below:

Definition 8 Given a replacement function R, a graph g and some analysis results m, T (R, g,m) is defined
as follows. First, we introduce the update function Update : Graph×Node×Graph→ Graph, which is used
to replace a single node in a graph. Given an original graph old, a node n and a replacement graph repl for
this node, Update returns the result of replacing the node n with repl in old. Update is defined as follows:

Update(old, node, repl) = (Nnew, Enew , Innew, Outnew,

InEdgesnew, OutEdgesnew)

13



where

Nnew = (Nold − {n}) ∪Nrepl

Enew = (Eold ∪Erepl)−

(Elmts(InEdgesrepl) ∪ Elmts(OutEdgesrepl))

with Elmts(tuple) = {d|∃i.tuple[i] = d}

InEdgesnew = InEdgesold

OutEdgesnew = OutEdgesold

Innew(s) =

{
Inold(s) if s ∈ Nold − {n}
−−−−→
ReplIn(Inrepl(s)) if s ∈ Nrepl

Outnew(s) =

{
Outold(s) if s ∈ Nold − {n}
−−−−−−→
ReplOut(Outrepl(s)) if s ∈ Nrepl

and

ReplIn(e) =

{
Inold(n)[k] if ∃k.e = InEdgesrepl[k]

e otherwise

ReplOut(e) =

{
Outold(n)[k] if ∃k.e = OutEdgesrepl[k]

e otherwise

We now define Updateε, a simple extension to Update that works correctly if the replacement graph is ε:

Updateε(g, n, r) =

{
g if r = ε

Update(g, n, r) otherwise

The graph returned by T (R, g,m) is then simply the iterated application of Updateε on all the nodes of g.
Thus, T (R, g,m) is defined by:

T (R, g,m) = IT (R, g,m,Ng)

where IT (which stands for IteratedT ) is:

IT (R, g,m,N) =

{
IT (R, gnew,m,N − {n}) if ∃n ∈ N

g if N = ∅

with
gnew = Updateε(g, n,R(n,−→m(Ing(n))))

The effect of an AT-analysis (A, R) is given by the function JA, RK : Prog → Prog defined below:

Definition 9 If π = (p1, . . . , pn) then JA, RK(π) = (p′1, . . . , p
′
n) where:

p′i = proc(name(pi), formal(pi), ri)
ri = T (R′, gi, SA(gi,>a))
gi = cfg(pi)

and R′(n, ds) is defined as follows:

14



• if stmtAt(n) = (x := f(b)) and R(n, ds) = ε, then R′(n, ds) = singleNodeGraph(n′) where
stmtAt(n′) = (x := f(b)), cfg(n′) = rk, and name(pk) = f

• otherwise R′(n, ds) = R(n, ds)

2.3.2 Soundness

We want each CFG produced by (A, R) to have the same concrete semantics as the corresponding original
CFG. This is formalized in the following definition of soundness of (A, R):

Definition 10 Let (A, R) be an AT-analysis, let π = (p1, . . . , pn) be a program where gi = cfg(pi), and let
JA, RK(π) = π′ where π′ = (p′1, . . . , p

′
n) and ri = cfg(p′i). We say that (A, R) is sound iff:

∀i ∈ [1..n] . ∀ιc ∈ Dc .
−−−−−−→
SC(gi, ιc)(OutEdgesgi

) vc

−−−−−−→
SC(ri, ιc)(OutEdgesri

)

We define here two conditions that together are sufficient to show that an AT-analysis is sound. First, the
analysis A in (A, R) must be locally sound according to the following definition:

Definition 11 We say that an analysis A = (Da,t,u,v,>,⊥, α, Fa) is locally sound iff it satisfies the
following local soundness property:

∀(n, cs, ds) ∈ Node×D∗
c ×D∗

a.
−→α (cs) v ds⇒ −→α (Fc(n, cs)) v Fa(n, ds)

(2.2)

If A is locally sound, then it is possible to show that A is sound, meaning that its solution correctly approx-
imates the solution of the concrete analysis C. This is formalized by the following definition and theorem.

Definition 12 We say that an analysis A = (Da,t,u,v,>,⊥, α, Fa) is sound iff:

∀(g, ιc, ιa) ∈ Graph×D∗
c ×D∗

a.
−→α (ιc) v ιa ⇒ α̃(SC(g, ιc)) v SA(g, ιa)

Theorem 1 If an analysis A is locally sound then A is sound.

Proof

Let A = (Da,ta,ua,va,>a,⊥a, α, Fa) be an analysis that is locally sound. Let (g, ιc, ιa) ∈ Graph×D∗
c ×D

∗
a

such that −→α (ιc) va ιa. Also, suppose that FGc and FGa are the global flow functions in the definitions of
SC and SA respectively (see definition 7), and similarly for the global ascending flow functions FGAa and
FGAc. We need to show that:

α̃

(
∞⊔

n=0

FGAn
c (⊥̃c)

)
va

∞⊔

n=0

FGAn
a(⊥̃a)

To do this, we show ∀n ≥ 0 . α̃(FGAn
c (⊥̃c)) va FGA

n
a(⊥̃a), and then the continuity of α implies the above

equation. We first establish a few facts.

15



• Since Fc is continuous, it is monotonic, and therefore FGn
c (⊥̃c) is an ascending chain. Thus, we get:

∀n ≥ 0.FGn
c (⊥̃c) = FGAn

c (⊥̃c) (2.3)

• Let Mc = Edgesg → Dc, and Ma = Edgesg → Da. Since A is locally sound, it satisfies property (2.2),
which combined with −→α (ιc) va ιa can be used to get:

∀(mc,ma) ∈ Mc ×Ma.

α̃(mc) va ma ⇒ α̃(FGc(mc)) va FGa(ma)
(2.4)

• Since FGAa(m) = FGa(m) ta m, we have:

∀m ∈Ma.FGa(m) va FGAa(m) (2.5)

Now we can show ∀n ≥ 0 . α̃(FGAn
c (⊥̃c)) va FGA

n
a(⊥̃a). We do this by induction on n.

• Base case. When n = 0, FGA0
c(⊥̃c) = ⊥̃c, and FGA0

a(⊥̃a) = ⊥̃a. Since α̃(⊥̃c) = ⊥̃a, we then get

α̃(FGA0
c(⊥̃c)) va FGA

0
a(⊥̃a)

• Inductive case. Assume α̃(FGAk
c (⊥̃c)) va FGAk

a(⊥̃a) for some k ≥ 0. We need to show

α̃(FGAk+1
c (⊥̃c)) va FGA

k+1
a (⊥̃a). The proof is as follows:

α̃(FGAk
c (⊥̃c)) va FGA

k
a(⊥̃a)

⇔ α̃(FGk
c (⊥̃c)) va FGA

k
a(⊥̃a) using (2.3)

⇔ α̃(FGc(FG
k
c (⊥̃c))) va FGa(FGAk

a(⊥̃a)) using (2.4)

⇔ α̃(FGc(FG
k
c (⊥̃c))) va FGAa(FGAk

a(⊥̃a)) using (2.5)

⇔ α̃(FGk+1
c (⊥̃c)) va FGA

k+1
a (⊥̃a)

⇔ α̃(FGAk+1
c (⊥̃c)) va FGA

k+1
a (⊥̃a) using (2.3)

�

Property (2.2) is sufficient for proving Theorem 1. Moreover it is weaker than the local consistency property
of Cousot and Cousot (property 6.5 in [1]), which is:

∀(n, cs, ds) ∈ Node×D∗
c ×D∗

a.
−→α (Fc(n, cs)) v Fa(n,−→α (cs))

Indeed, the above property and the monotonicity of Fa imply property (2.2). We use the weaker condition
(2.2) because in this way our formalization of soundness does not depend on the monotonicity of Fa. As
shown in sections 2.4 and 2.5, the flow function Fa is usually generated by our framework and reasoning
about its monotonicity requires additional effort on the part of the analysis writer. By decoupling our
soundness result from the monotonicity of Fa, we can guarantee soundness even if Fa has not been shown
to be monotonic.4

In addition to the analysis having to be locally sound, R must produce graph replacements that are semantics-
preserving. This is formalized by requiring that the replacement function R be locally sound according to
the following definition:

4Termination in the face of a non-monotonic flow function is discussed in section 2.3.3.

16



Definition 13 We say that a replacement function R in (A, R) is locally sound iff it satisfies the following
local soundness property, where A = (Da,t,u,v,>,⊥, α, Fa):

∀(n, ds, g) ∈ Node×D∗
a ×Graph.

R(n, ds) = g ⇒

[∀cs ∈ D∗
c .
−→α (cs) v ds⇒

Fc(n, cs) vc

−−−−−→
SC(g, cs)(OutEdgesg)]

(2.6)

Property (2.6) requires that if R decides to replace a node n with a graph g on the basis of some analysis
result ds, then for all possible input tuples of concrete values consistent with ds, it must be the case that n
and g compute exactly the same output tuple of concrete values. It is not required that n and g produce
the same output for all possible inputs, just those consistent with ds. For example, if A determines that all
stores coming into a node n will always assign some variable x a value between 1 and 100 then n and g are
not required to produce the same output for any store in which x is assigned a value outside of this range.

We say that (A, R) is locally sound iff both A and R are locally sound. If (A, R) is locally sound, then it is
possible to show that (A, R) is sound according to definition 10, which means that the final graph produced
by (A, R) has the same concrete behavior as the original graph. This is stated in the following theorem:

Theorem 2 If an AT-analysis (A, R) is locally sound, then (A, R) is sound.

Before proving theorem 2, we establish two helper lemmas. Throughout the following proofs, we use the
notation Eqs(g,m) to represent the set of dataflow equations of the concrete analysis C over the graph g
with input dataflow information m.

Lemma 1 Let g and r be graphs such that r is a subgraph of g, let cs ∈ D∗
c , and let lfpg = SC(g, cs). Then:

lfpg \Edgesr = SC(r, lfpg(InEdgesr))

Proof

Let lfpr = SC(r, lfpg(InEdgesr)), so that we need to show:

lfpg \Edgesr = lfpr

Let FGg be the global flow function FG from the definition of SC(g, cs) (definition 7).

Let FGr be the global flow function FG from the definition of SC(r, lfpg(InEdgesr)) (definition 7).

Because Fc is monotonic, we have that ∀n . FGAn
g (⊥c) = FGn

g (⊥c) and ∀n . FGAn
r (⊥c) = FGn

r (⊥c).

Therefore:

lfpg =

∞⊔

n=0

FGn
g (⊥̃c)

lfpr =
∞⊔

n=0

FGn
r (⊥̃c)

17



If we can show that ∀ n . FGn
g (⊥̃c)\Edgesr v FGn

r (⊥̃c), then we are done, for then lfpg \Edgesr v lfpr, and
furthermore, since lfpg \Edgesr is a fixed point of Eqs(r, lfpg(InEdgesr)), we also have lfpr v lfpg \Edgesr,
which implies lfpg \Edgesr v lfpr (and this is what we had to show).

All we need to show now is that ∀ n . FGn
g (⊥̃c) \Edgesr v FGn

r (⊥̃c). We do this by induction on n.

• Base case. We have FG0
g(⊥̃c) = ⊥̃c, FG

0
r(⊥̃c) = ⊥̃c, and so FG0

g(⊥̃c) \Edgesr v FG0
r(⊥̃c)

• Inductive case. We assume FGn
g (⊥̃c) \Edgesr v FGn

r (⊥̃c), and we need to show:

FG(n+1)
g (⊥̃c) \Edgesr v FGn+1

r (⊥̃c)

Let mg = FGn
g (⊥̃c) and mr = FGn

r (⊥̃c). We therefore need to show:

FGg(mg) \Edgesr v FGr(mr)

which is:

∀e ∈ Edgesr . FGg(mg)(e) v FGr(mr)(e)

We pick e ∈ Edgesr, and show FGg(mg)(e) v FGr(mr)(e).

There are two cases:

– ∃k . e = InEdgesr[k]. Then from the definition of FGr (definition 7), we have:

FGr(mr)(e) = ι[k] where ι is the tuple used to initialize the fixed point computation of lfpr

= lfpg(InEdgesr)[k] since ι = lfpg(InEdgesr)
= lfpg(e) since e = InEdgesr[k]

Because Fc is monotonic, FG0
g(⊥̃c), FG

1
g(⊥̃c), FG

2
g(⊥̃c), . . . is an ascending chain, and so we have

∀n . FGn
g (⊥̃c) v lfpg .

Therefore, FGg(mg)(e) v lfpg(e), and so FGg(mg)(e) v FGr(mr)(e).

– ∃n, k . e = outr(n)[k]. From the definition of FG (definition 7), we therefore have:

FGr(mr)(e) = Fc(n,
−→mr(inr(n)))[k] (2.7)

Because r is a subgraph of g, we have ing(n) = inr(n), and so we also have:

FGg(mg)(e) = Fc(n,
−→mg(inr(n)))[k] (2.8)

Since n is a node of r, the edges in the tuple inr(n) are all elements of Edgesr, and so from the
inductive hypothesis:

−→mg(inr(n)) v −→mr(inr(n))
⇒ Fc(n,

−→mg(inr(n)))[k] v Fc(n,
−→mr(inr(n)))[k] (monotonicity of Fc)

⇒ FGg(mg)(e) v FGr(mr)(e) (using (2.7) and (2.8))

18



�

Lemma 2 Let g be a graph, and let n ∈ Nodeg be a node in g. Let r be a replacement graph for n such that

n and r have the same concrete semantics, or formally ∀ cs ∈ D∗
c . Fc(n, cs) =

−−−−−→
SC(r, cs)(OutEdgesr). Let

g′ be the graph resulting from replacing n by r in g, or g′ = Update(g, n, r). Then g and g′ have the same
concrete semantics, or:

∀cs ∈ D∗
c .

−−−−−→
SC(g, cs)(OutEdgesg) =

−−−−−−→
SC(g′, cs)(OutEdgesg′)

Proof

Pick cs ∈ D∗
c , and show

−−−−−→
SC(g, cs)(OutEdgesg) =

−−−−−−→
SC(g′, cs)(OutEdgesg′).

Let r′ be the graph that is exactly the same as r, except that it’s input and output edges are ing(n) and
outg(n). The graph r′ is the subgraph of g′ that resulted from the substitution of n.

Let −→x = ing(n).

Let lfpg = SC(g, cs).

Let csn =
−−→
lfpg(

−→x ).

Let lfpr′ = SC(r′, csn).

Let E = Edgesg′ − Edgesg. Intuitively, E is the set of edges in the replacement graph r, but without its
input and output edges.

Let m : Edgeg′ → Dc be defined as follows:

m(e) =

{
lfpg(e) if e ∈ Edgesg

lfpr′(e) if e ∈ E
(2.9)

m is a fixed point of Eqs(g′, cs), since by construction it satisfies all the dataflow equations in Eqs(g′, cs).

The claim is that m is the least fixed point of Eqs(g′, cs), which means that m = SC(g′, cs).

If this is the case, then because OutEdgesg = OutEdgesg′ and because all edges in OutEdgesg are in
Edgesg, we would have from equation (2.9):

−→m(OutEdgesg′) =
−−→
lfpg(OutEdgesg)

which, since m = SC(g′, cs) and lfpg = SC(g, cs), becomes:

−−−−−−→
SC(g′, cs)(OutEdgesg′) =

−−−−−→
SC(g, cs)(OutEdgesg)

which is what we had to show.

All we need to show now is that m is indeed the least fixed point of Eqs(g′, cs).

Let m′ be the least fixed point of Eqs(g′, cs), so that m′ = SC(g′, cs).

19



Since m′ is the least fixed point of Eqs(g′, cs), and since m is a fixed point of Eqs(g′, cs), we must have
m′ v m. We will now show m v m′, which will establish that m = m′ and that m is indeed the least fixed
point.

We will prove m \Edgesg v m′ \Edgesg, and m \E v m′ \E, which will imply m v m′ because the domain
of m and m′ is Edgesg ∪ E.

• Proof of m \Edgesg v m′ \Edgesg

By lemma 1, instantiated with g = g′, r = r′, we get that:

m′ \Edgesr′ = SC(r′,
−→
m′(InEdgesr′)) (2.10)

By the construction of how n gets replaced with r in g, we have −→x = InEdgesr′ and so we get:

m′ \Edgesr′ = SC(r′,
−→
m′(−→x )) (2.11)

From our assumptions, we know:

∀ cs ∈ D∗
c . Fc(n, cs) =

−−−−−→
SC(r, cs)(OutEdgesr)

which, because r and r′ only differ in their incoming and outgoing edges, gives us:

∀ cs ∈ D∗
c . Fc(n, cs) =

−−−−−−→
SC(r′, cs)(OutEdgesr′) (2.12)

Equations (2.10) and (2.12) tell us that if we replace r′ with n, the local constraint for n is satisfied
by m′. As a result:

m′ \Edgesg is a fixed point of Eqs(g, cs)

⇒ lfpg v m′ \Edgesg (by the defn of least fixed point)

⇒ m \Edgesg v m′ \Edgesg (since for ∀e ∈ Edgesg . m(e) = lfpg(e)) (2.13)

• Proof of m \E v m′ \E

Let cs′n =
−→
m′(−→x ). Since all the edges in the −→x tuple are in Edgesg, we get from (2.13):

−→m(−→x ) v
−→
m′(−→x )

⇒ csn v cs′n

⇒ SC(r′, csn) v SC(r′, cs′n) (by the monotonicity of SC)

⇒ lfpr′ v SC(r′, cs′n) (by defn of lfpr′)

⇒ lfpr′ v m′ \Edgesr′ (by (2.11))

⇒ lfpr′ \E v m′ \E (since E ⊆ Edgesr′)

⇒ m \E v m′ \E (by (2.9)) (2.14)

20



�

Proof of theorem 2

Without loss of generality, we can assume that the replacement function R always returns graph replacements
with only one node in them.

Indeed, if R returned a multiple node replacement graph r, then one can build a new replacement function
Rsingle which, instead of returning r, returns a graph replacement containing a single node n equivalent to

r (in that it satisfies ∀ cs ∈ D∗
c . Fc(n, cs) =

−−−−−→
SC(r, cs)(OutEdgesr)). Lemma 2 can then be used to argue

that the soundness of (A, Rsingle) implies the soundness of (A, R).

Let (A, R) be an AT-analysis that is locally sound, let π = (p1, . . . , pn) be a program where gi = cfg(pi),
and let JA, RK(π) = π′ where π′ = (p′1, . . . , p

′
n) and ri = cfg(p′i). We want to show:

∀i ∈ [1..n] . ∀ιc ∈ D∗
c .

−−−−−−→
SC(gi, ιc)(OutEdgesgi

) vc

−−−−−−→
SC(ri, ιc)(OutEdgesri

)

The CFG has one input edge, and so ιc will always be a tuple of length 1. Thus, we need to prove:

∀i ∈ [1..n] . ∀c ∈ Dc .
−−−−−−−→
SC(gi, (c))(OutEdgesgi

) vc

−−−−−−−→
SC(ri, (c))(OutEdgesri

)

We let FGAgi
and FGgi

be the global flow function and the global ascending flow function in the definition
of SC(gi, (c)).

We let FGAri
and FGri

be the global flow function and the global ascending flow function in the definition
of SC(ri, (c)).

Since Fc is monotonic, we have that FGn
ri

(⊥̃c) and FGn
gi

(⊥̃c) are ascending chains, and so:

∀n ≥ 0.FGn
gi

(⊥̃c) = FGAn
gi

(⊥̃c)

∀n ≥ 0.FGn
ri

(⊥̃c) = FGAn
ri

(⊥̃c)
(2.15)

For η ∈ State, we let stackDepth(η, i) be the maximum stack depth that occurs during execution of gi

starting in η, and we let stackDepth+(η, i) be stackDepth(η, i) minus the stack depth of η. In other words,
stackDepth+(η, i) is the number of additional stack frames required for execution of gi starting in η.

For c ∈ Dc (i.e. c is a set of states η), we let maxStackDepth+(c, i) be maxη∈c(stackDepth+(η, i)).

For l ≥ 0, let P (l) be the following formula:

P (l) = ∀i ∈ [1..n] . ∀c ∈ Dc .maxStackDepth+(c, i) ≤ l ⇒
−−−−−−−→
SC(gi, (c))(OutEdgesgi

) vc

−−−−−−−→
SC(ri, (c))(OutEdgesri

)

Our goal is to prove ∀l ≥ 0 . P (l). We do this by induction on l.

• Base case. We need to show P (0).

Pick i ∈ [1..n], d ∈ Dc, assume:
maxStackDepth+(c, i) ≤ 0 (2.16)

and show: −−−−−−−→
SC(gi, (c))(OutEdgesgi

) vc

−−−−−−−→
SC(ri, (c))(OutEdgesri

)

21



Using the definition of SC this is:

∞⊔

j=0

FGAj
gi

(⊥̃c) vc

∞⊔

j=0

FGAj
ri

(⊥̃c)

Using (2.15), we need to show:

∞⊔

j=0

FGj
gi

(⊥̃c) vc

∞⊔

j=0

FGj
ri

(⊥̃c)

To do this, we show:

∀j ≥ 0 . FGj
gi

(⊥̃c) vc FG
j
ri

(⊥̃c)

We do this by induction on j.

– Base case. We need to show FG0
gi

(⊥̃c) vc FG
0
ri

(⊥̃c). This follows immediately from the fact that

FG0
gi

(⊥̃c) = ⊥̃c and FG0
ri

(⊥̃c) = ⊥̃c.

– Inductive case. We assume FGj
gi

(⊥̃c) vc FGj
ri

(⊥̃c), and we need to show FGj+1
gi

(⊥̃c) vc

FGj+1
ri

(⊥̃c).

Let a = FGj
gi

(⊥̃c) and b = FGj
ri

(⊥̃c), so that we assume:

a vc b (2.17)

We need to show FGgi
(a) vc FGri

(b), which, because Edgesgi
= Edgesri

, is:

∀e ∈ Edgesgi
. FGgi

(a)(e) vc FGri
(b)(e)

Which is:

∀e ∈ Edgesgi
. Intgi

(e, a) vc Intri
(e, b)

Let e ∈ Edgesgi
, and we need to show:

Intgi
(e, a) vc Intri

(e, b) (2.18)

There are four cases, based on the definition of Int(e,m), and on how n was transformed:

∗ There is some integer k such that e = InEdges[k]
In this case, Intgi

(e, a) = c and Intri
(e, b) = c, and so Intgi

(e, a) vc Intri
(e, b).

∗ There is some integer k and some node n such that e = outgi
(n)[k], and n was not modified

from gi to ri.
Then by the definition of Int, we get Intgi

(e, a) = Fc(n,
−→a (ingi

(n)))[k].
Since n was not modified from gi to ri, we have that e = outri

(n)[k], and so by the definition

of Int, we get Intri
(e, b) = Fc(n,

−→
b (inri

(n)))[k].
Since n was not modified from gi to ri, we have that ingi

(n) = inri
(n). Let −→x = ingi

(n).
Thus:

22



Intgi
(e, a) = Fc(n,

−→a (−→x ))[k] (2.19)

Intri
(e, b) = Fc(n,

−→
b (−→x ))[k] (2.20)

From (2.17), we know that a vc b, and so −→a (−→x ) vc

−→
b (−→x ).

By the monotonicity of Fc, we then get:

Fc(n,
−→a (−→x ))[k] vc Fc(n,

−→
b (−→x ))[k]

And this is:

Intgi
(e, a) vc Intri

(e, b)

which is what we had to show in (2.18).

∗ There is some integer k and some node n such that e = outgi
(n)[k], and n in gi was modified

to n′ in ri because R returned a single-node replacement graph rn for n.
Then by the definition of Int, we get Intgi

(e, a) = Fc(n,
−→a (ingi

(n)))[k].
Since n was modified to a single-node graph n′, by the definition of T , we get that e =

outri
(n′)[k], and so by the definition of Int, we get Intri

(e, b) = Fc(n
′,
−→
b (inri

(n′)))[k].
Since n was modified to a single-node graph n′, by the definition of T , we get that ingi

(n) =
inri

(n′). Let −→x = ingi
(n). Thus:

Intgi
(e, a) = Fc(n,

−→a (−→x ))[k]

Intri
(e, b) = Fc(n

′,
−→
b (−→x ))[k]

Let FGAa be the global ascending function from the definition of SA(gi,>a).
Since α(⊥c) va >a, we have from the proof of of theorem 1:

∀j ≥ 0 . α̃(FGj
gi

(⊥̃c)) va FGA
j
a(⊥̃a)

Instantiating this with the current j, we get::

α̃(FGj
gi

(⊥̃c)) va FGA
j
a(⊥̃a)

Or:

α̃(a) va FGA
j
a(⊥̃a)

Furthermore, from the definition of SA, we have that:

FGAk
a(⊥̃a) va SA(gi,>a)

Thus, by transitivity:

α̃(a) va SA(gi,>a)

Let m = SA(gi,>a), so that:

α̃(a) va m

Let cs = −→a (−→x ) and let ds = −→m(−→x ). Therefore −→α (cs) va ds.

23



From the definition of JA, RK (definition 9), we know that:

ri = T (R′, gi,m)

For n to have been replaced with rn, by the definition of T , it therefore must be the case
that:

R′(n,−→m(−→x )) = rn

Since we assumed that rn was returned by R, we must be in the second case of the definition
of R′ (definition 9), and thus:

R(n,−→m(−→x )) = rn

From the soundness of R, we know that (2.6) holds. Instantiating (2.6) with n = n, ds =
ds, g = rn, cs = cs, and using −→α (cs) va ds, we get:

Fc(n, cs) vc

−−−−−−→
SC(rn, cs)(OutEdgesrn

)

Since rn is a single-node graph with node n′, we have that

−−−−−−→
SC(rn, cs)(OutEdgesrn

) = Fc(n
′, cs)

Thus:

Fc(n, cs) vc Fc(n
′, cs)

⇒ Fc(n,
−→a (−→x )) vc Fc(n

′,−→a (−→x )) (2.21)

From(2.17), we have:

a vc b

⇒ −→a (−→x ) vc

−→
b (−→x )

⇒ Fc(n
′,−→a (−→x )) vc Fc(n

′,
−→
b (−→x )) monotonicity of Fc

⇒ Fc(n,
−→a (−→x )) vc Fc(n

′,
−→
b (−→x )) transitivity and (2.21)

⇒ Fc(n,
−→a (−→x ))[k] vc Fc(n

′,
−→
b (−→x ))[k]

⇒ Intgi
(e, a) vc Intri

(e, b) using (2.19) and (2.20)

And this is what we had to show in (2.18).

∗ There is some integer k and some node n such that e = outgi
(n)[k], and n in gi was modified

to n′ in ri because R′ return a single-node replacement graph rn for n, but R returned ε as
a replacement for n.
We are in the first case of the definition of R′ (from definition 9).
We therefore know that stmtAt(n) = (y := f(z)).
From (2.16), we know that maxStackDepth+(c, i) ≤ 0, which means that
maxStackDepth+(c, i) = 0. This implies that the execution of this CFG on input c
does not cause any calls.
Since n is a call (since stmtAt(n) = (y := f(z))), it follows that n cannot execute.

As a result it must be the case that −→a (ingi
(n)) =

−→
⊥c, for otherwise n would execute in the

current CFG on input c.

24



By the definition of Int, we have

Intgi
(e, a) = Fc(n,

−→a (ingi
(n)))[k]

= Fc(n,
−→
⊥c)[k]

= ⊥c

It is then trivial that Intgi
(e, a) vc Intri

(e, b), which is what we had to show in (2.18).

• Inductive case. We assume P (l) and show P (l+ 1), which is:

∀i ∈ [1..n] . ∀c ∈ Dc .maxStackDepth+(c, i) ≤ l+1 ⇒
−−−−−−−→
SC(gi, (c))(OutEdgesgi

) vc

−−−−−−−→
SC(ri, (c))(OutEdgesri

)

Pick i ∈ [1..n], d ∈ Dc, assume:
maxStackDepth+(c, i) ≤ l + 1 (2.22)

and show: −−−−−−−→
SC(gi, (c))(OutEdgesgi

) vc

−−−−−−−→
SC(ri, (c))(OutEdgesri

)

The proof proceeds as in the base case, except for the following subcase:

– Inside the inductive case for the induction over j

∗ There is some integer k and some node n such that e = outgi
(n)[k], and n in gi was modified

to n′ in ri because R′ return a single-node replacement graph rn for n, but R returned ε as
a replacement for n.
Then by the definition of Int, we get Intgi

(e, a) = Fc(n,
−→a (ingi

(n)))[k].
Since n was modified to a single-node graph n′, by the definition of T , we get that e =

outri
(n′)[k], and so by the definition of Int, we get Intri

(e, b) = Fc(n
′,
−→
b (inri

(n′)))[k].
Since n was modified to a single-node graph n′, by the definition of T , we get that ingi

(n) =
inri

(n′). Let −→x = ingi
(n). Thus:

Intgi
(e, a) = Fc(n,

−→a (−→x ))[k]

Intri
(e, b) = Fc(n

′,
−→
b (−→x ))[k]

Because R returned ε, we are in the first case of the definition of R′ (from definition 9).
We therefore know that stmtAt(n) = (y := f(z)) and stmtAt(n′) = (y := f(z)). Since both
n and n′ are call nodes, they only have one successor, and so it must be the case that k = 0.
Thus:

Intgi
(e, a) = Fc(n,

−→a (−→x ))[0]

Intri
(e, b) = Fc(n

′,
−→
b (−→x ))[0]

From the definition of Fc in (6), we get:

Intgi
(e, a) =

−−−−−−−−−−−→
SC(cfg(n), (X))(OutEdgescfg(n′))

where X = {η | ∃η′ ∈ State . [η′ ∈ a(x[0]) ∧ 0, η′
n
→ 1, η}

Intri
(e, b) =

−−−−−−−−−−−→
SC(cfg(n′), (Y ))(OutEdgescfg(n′))

where Y = {η | ∃η′ ∈ State . [η′ ∈ b(x[0]) ∧ 0, η′
n′

→ 1, η}

(2.23)

From the definition of R′, we know that there is some u ∈ [1..n] such that cfg(n′) = ru and
name(pu) = f .

25



Since name(pu) = f , and since stmtAt(n) = (y := f(z)), it must be the case that cfg(n) = gu.
Because n is a call, we have:

maxStackDepth+(c, i) ≥ maxStackDepth+(X,u) + 1

Combined with (2.22), this gives:

maxStackDepth+(X,u) + 1 ≤ l + 1
⇒ maxStackDepth+(X,u) ≤ l

The induction hypothesis is P (l), which is:

∀i ∈ [1..n] . ∀c ∈ Dc .maxStackDepth+(c, i) ≤ l ⇒
−−−−−−−→
SC(gi, (c))(OutEdgesgi

) vc

−−−−−−−→
SC(ri, (c))(OutEdgesri

)

We instantiate this with i = u and c = X , and we get:

−−−−−−−−→
SC(gu, (X))(OutEdgesgu

) vc

−−−−−−−−→
SC(ru, (X))(OutEdgesru

)

From (2.17), we know that a vc b, and so a(x[0]) vc b(x[0]). As a result, X vc Y , and by
the monotonicity of SC :

−−−−−−−−→
SC(ru, (X))(OutEdgesru

) vc

−−−−−−−−→
SC(ru, (Y ))(OutEdgesru

)

Since cfg(n) = ru and cfg(n′) = ru, and using (2.23), we get:

Intgi
(e, a) vc Intri

(e, b)

which is what we had to show in (2.18)

�

2.3.3 Termination

If the lattice has finite height, then the termination of an analysis A = (D,t,u,v,>,⊥, α, F ) is guaran-
teed from within SA, even if F is not monotonic: as iteration proceeds, SA forces the dataflow values to
monotonically increase by joining the next solution with the current solution at each step. If the lattice has
infinite height, then the flow function for loop header nodes can include widening operators [1] to guarantee
termination.

We chose to enforce termination from within SA, instead of requiring F to be monotonic, for the same
reason we chose the weaker soundness condition (2.2): flow functions are generated by our framework, and
proving that they are monotonic requires additional effort on the part of the analysis writer. By having
termination and soundness be decoupled from the monotonicity of F , we allow analysis designers the option
of not proving that F is monotonic. The drawback of not having F be monotonic is that the fixed point
computed by SA is not necessarily a least fixed point anymore. As a result, the solution returned by SA is
not guaranteed to be the most precise one.

2.4 Integrating Analysis and Transformation

Now that we have defined a single analysis followed by some transformations, we proceed to formalizing how
our framework integrates an analysis with its transformations.

26



2.4.1 Definition

An Integrated Analysis is a tuple IA = (D,t,u,v,>,⊥, α, FR) where (D,t,u,v,>,⊥) is a complete
lattice, α : Dc → D is the abstraction function, and FR : Node×D∗ → D∗ ∪ Graph is a flow-replacement
function. The flow-replacement function FR takes a node and a tuple of input abstract values, one per
incoming edge to the node, and returns either a tuple of output abstract values, one per outgoing edge from
the node, or a graph with which to replace the node.

An integrated analysis is an analysis which has been combined with its transformations. The flow replace-
ment function can now return graph transformations that are taken into account during the fixed point
computation, and used after the fixed point has been reached to make permanent transformations to the
graph.

The meaning of an integrated analysis is defined in terms of an associated AT-analysis, for which the behavior
has already been defined in section 2.3.1. Given an integrated analysis IA = (D,t,u,v,>,⊥, α, FR), we
define the associated AT-analysis ATIA as (A, R), with A = (D,t,u,v,>,⊥, α, F ), where F and R are
derived from FR as follows:

F (n, ds) =

{
FR(n, ds) if FR(n, ds) ∈ D∗

SolveSubGraphF (FR(n, ds), ds) otherwise

SolveSubGraphF (g, ds) =
−−−−−−→
SA(g, ds)(OutEdgesg)

R(n, ds) =

{
ε if FR(n, ds) ∈ D∗

SolveSubGraphR(FR(n, ds), ds) otherwise

SolveSubGraphR(g, ds) = T (R, g, SA(g, ds))

The definition of F above shows how transformations are taken into account while the analysis is running.
If FR returns a tuple of dataflow values, then that tuple is immediately returned. If, on the other hand,
FR chooses to do a transformation, the replacement graph is recursively analyzed and the dataflow values
computed for the output edges of the graph are returned. The next time the same node gets analyzed, FR
can choose another graph transformation, or possibly no transformation at all. Transformations are only
committed after the analysis has reached a final sound solution, as specified by the definition of R. If at
the final dataflow solution, FR returns a tuple of dataflow values, then R returns ε, indicating that the
analysis has chosen not to do a transformation. If, on the other hand, FR chooses a replacement graph,
then R returns this replacement graph after transformations have been applied to it recursively. Although
the definition of R above reanalyzes recursive graph replacements, an efficient implementation, such as the
ones in Vortex and Whirlwind, can cache the solution of the last replacement graph computed by FR for
each node, so that the transformation pass need not recompute them.

2.4.2 Soundness

An integrated analysis IA is sound if the associated AT-analysis ATIA is sound. We define here conditions
that are sufficient to show that ATIA is sound, and therefore that IA is sound. Intuitively, we want the
flow-replacement function FR to satisfy condition (2.2) when it returns a tuple of dataflow values, and
condition (2.6) when it returns a replacement graph. Formally, this amounts to having IA be locally sound
according to the following definition:

27



Definition 14 We say that an integrated analysis IA = (D,t,u,v,>,⊥, α, FR) is locally sound iff it
satisfies the following two local soundness properties:

∀(n, cs, ds) ∈ Node×D∗
c ×D∗.

FR(n, ds) ∈ D∗ ⇒

[−→α (cs) v ds⇒ −→α (Fc(n, cs)) v FR(n, ds)]

(2.24)

∀(n, ds, g) ∈ Node×D∗ ×Graph.

FR(n, ds) = g ⇒

[∀cs ∈ D∗
c .
−→α (cs) v ds ⇒

Fc(n, cs) v
−−−−−→
SC(g, cs)(OutEdgesg)]

(2.25)

Note that the first property is the same as (2.2) with Fa replaced by FR, except for the additional antecedent
FR(n, ds) ∈ D∗, and the second property is the same as (2.6), with R replaced by FR.

Theorem 3 If an integrated analysis IA is locally sound, then the associated AT-analysis ATIA is sound,
and therefore IA is sound.

Proving Theorem 3 involves showing that if FR satisfies properties (2.24) and (2.25), then F and R as
defined in section 2.4.1 satisfy properties (2.2) and (2.6) respectively. Throughout this subsection, F and
R will always refer to the definitions from section 2.4.1. The proof is by induction on the graph nesting
structure. We give an intuitive description of what this means, and then we proceed with the proof.

Since we are not interested in proving soundness when the algorithm does not terminate, we assume there
is no infinite nesting of graph replacements. This means that at some point in the recursion, there is a
graph whose nodes do not request graph replacements. These nodes are the base case of the induction, and
correspond in the definitions of F and R to the condition FR(n, ds) ∈ D∗. The inductive case is the one
where a node does choose a graph transformation. The inductive hypothesis is that the property of interest
holds for nodes in the replacement graph, and our goal is to prove that the property holds for the current
node.

Proof that F satisfies property (2.2)

Base case. We are in the first case of the definition of F , the one where FR(n, ds) ∈ D∗. We therefore have
F (n, ds) = FR(n, ds), and then property (2.24) immediately implies (2.2).

Inductive case. We are in the second case of the definition of F , the one where FR(n, ds) ∈ Graph. The
induction hypothesis is that property (2.2) holds for nodes in the recursive graph g = FR(n, ds), and we
want to prove that property (2.2) holds at the current node n. To do this, we assume −→α (cs) v ds, and show
−→α (Fc(n, cs)) v F (n, ds).

Since −→α (cs) v ds, we have from property (2.25):

Fc(n, cs) v
−−−−−→
SC(g, cs)(OutEdgesg) (2.26)

28



By the induction hypothesis, F satisfies property (2.2) in g. Since in addition −→α (cs) v ds, we can then use
Theorem 1 (with ιc = cs and ιa = ds) to get:

α̃(SC(g, cs)) v SA(g, ds)

⇔ −→α (
−−−−−→
SC(g, cs)(OutEdgesg)) v

−−−−−−→
SA(g, ds)(OutEdgesg)

⇔ −→α (
−−−−−→
SC(g, cs)(OutEdgesg)) v F (n, ds) (using def of F )

⇔ −→α (Fc(n, cs)) v F (n, ds) (using (2.26) and the monotonicity of α)

�

Proof that R satisfies property (2.6)

Base case. We are in the first case of the definition of R, the one where FR(n, ds) ∈ D∗. We therefore have
R(n, ds) = ε, and then property (2.6) holds trivially because the antecedent R(n, ds) = g is false.

Inductive case. We are in the second case of the definition ofR, the one where FR(n, ds) ∈ Graph. The induc-
tion hypothesis is that property (2.6) holds in the recursive graph g = FR(n, ds), and we want to prove that
property (2.6) holds at the current node n. To do this, we assume −→α (cs) v ds, we let r = T (R, g, SA(g, ds),

which implies that r = R(n, ds), and we want to show that Fc(n, cs) =
−−−−−→
SC(r, cs)(OutEdgesr). Note that

the g in (2.6) has been replaced here with r since it is r which equals R(n, ds). g in our case stands for
FR(n, ds).

As in the previous proof, equation (2.26) holds because of property (2.25) combined with −→α (cs) v ds.

By the inductive hypothesis, R satisfies property (2.6) for the nodes in g. In addition, we have already shown
that F satisfies property (2.2), and we also know that −→α (cs) v ds. We can therefore use Theorem 2 (with
ιc = cs and ιa = ds) to get:

−−−−−→
SC(r, cs)(OutEdgesr) w

−−−−−→
SC(g, cs)(OutEdgesg)

Combined with (2.26), this gives the required result:

Fc(n, cs) v
−−−−−→
SC(r, cs)(OutEdgesr)

�

2.4.3 Termination

As in the case of an AT-analysis, the function SA forces the solution to monotonically increase as iteration
proceeds, even if the flow function F is not monotonic. If the designer of the analysis puts in the effort to
prove that F is monotonic, then SA computes the least fixed point. Otherwise, the result computed by SA

is not necessarily a least fixed point, but it is nevertheless sound as long as properties (2.24) and (2.25) hold.

However, having the solution monotonically increase is no longer sufficient to ensure termination: it is now
possible for the flow functions to choose graph replacements that cause infinite recursion of nested graph
analysis. For example, an inlining optimization could choose to inline a recursive function indefinitely. To
ensure termination, we require that the user’s graph replacements do not trigger such endless recursive
transformations. Graph replacements either obviously simplify the program (such as deleting a node or
replacing a complex node with several simpler ones), and thus cannot cause unbounded recursive graph

29



replacements, or there are standard ways of avoiding endless recursive graph transformations (for instance,
by marking selected nodes in the replacement graph as non-replaceable). Our framework does not enforce
an arbitrary fixed bound on recursive graph replacements. Instead, we feel that individual dataflow analyses
will have their own most appropriate solution, which can be explicitly implemented in the flow-replacement
function. This non-termination issue with our framework is already present in any system that iteratively
applies analyses and transformations. Such systems have either imposed some fixed bound on the number
of iterations, or, as we do, require the analyses to avoid endless transformations.

2.4.4 Combining an AT-analysis

Our framework also allows a sound AT-analysis to be automatically converted into a sound integrated
analysis. In particular, given an AT-analysis AT = (A, R) where A = (D,t,u,v,>,⊥, α, F ), then the
associated integrated analysis IAAT is defined as (D,t,u,v,>,⊥, α, FR), where FR is derived from F and
R as follows:

FR(n, ds) =

{
F (n, ds) if R(n, ds) = ε

R(n, ds) if R(n, ds) 6= ε

Theorem 4 If an AT-analysis AT is locally sound, then the associated integrated analysis IAAT is sound.

Proof

Immediate from properties (2.2) and (2.6) �

2.5 Combining Multiple Analyses

In this section, we define how our framework automatically combines several modular analyses, while still
allowing mutually beneficial interactions.

2.5.1 Definition

The Composition of k Integrated Analyses, or a Composed Analysis for short, is a tuple CA =
(IA1, IA2, . . . , IAk), where each IAi is an integrated analysis (Di,ti,ui,vi,>i,⊥i, αi, FRi).

Here again, we define the meaning of a composed analysis in terms of an associated AT-analysis. Given a
composed analysis CA = (IA1, IA2, . . . , IAk), we define the associated AT-analysis ATCA as (A, R), where
A = (D,t,u,v,>,⊥, α, F ). We first define the lattice (D,t,u,v,>,⊥) of the composed analysis, then
we define the composed abstraction function α, the composed flow function F and finally the composed
replacement function R.

Composed lattice. The lattice (D,t,u,v,>,⊥) of the composed analysis is the product of the individual
lattices, namely:

• D , D1 ×D2 × . . .×Dk

30



• t is defined by (a1, . . . , ak) t (b1, . . . , bk) , (a1 t1 b1, . . . , ak tk bk)

• u is defined similarly to t

• v is defined by (a1, . . . , ak) v (b1, . . . , bk) , a1 v1 b1 ∧ . . . ∧ ak vk bk

• > , (>1,>2, . . . ,>k) and ⊥ , (⊥1,⊥2, . . . ,⊥k)

Composed abstraction function. The abstraction function α : Dc → D is defined by α(c) ,

(α1(c), . . . , αk(c)).

Composed flow function. Before defining F , we must first introduce two helper functions, c2s and s2c.
The first function, c2s (which stands for “composed to single”), is used to extract the dataflow values of an
individual analysis from the dataflow values of the composed analysis. Given an integer i, and an n-tuple of
k-tuples, c2s returns an n-tuple whose elements are the ith entries of each k-tuple. Formally:

c2s(i, (x1, . . . , xn)) , (x1[i], . . . , xn[i])

For example, if ds ∈ D∗ is a tuple of input values to a node in the composed analysis, then c2s(i, ds) is the
tuple of input values to that node for the ith component analysis.

The second function, s2c (which stands for “single to composed”) has the exact opposite role as c2s: it
combines the dataflow values of individual analyses to form the dataflow values of the composed analysis.
Formally, it is defined by

s2c(x1, . . . , xk) , ((x1[1], . . . , xk[1]), . . . , (x1[n], . . . , xk[n]))

where each xi is an n-tuple. For example, if x1, . . . , xk are n-tuples, each one being the result of a single
analysis for the n output edges of a given node, then s2c(x1, . . . , xk) is the output tuple of the composed
analysis for that node. Also, note that c2s(i, s2c(x1, . . . , xk)) = xi.

We are now ready to give the definition of F :

F (n, ds) = s2c(res1, . . . , resk)

where for each i ∈ [1..k]:

resi = lresi ui ui
g∈gsi

c2s(i, SolveSubGraphF (g, ds))

lresi =

{
fresi if fresi ∈ D∗

i

c2s(i, SolveSubGraphF (fresi, ds)) otherwise

fresi = FRi(n, c2s(i, ds))

gsi = Graph ∩
⋃

j∈[1..k]∧j 6=i

{fresj}

and
SolveSubGraphF (g, ds) =

−−−−−−→
SA(g, ds)(OutEdgesg)

The above definition looks daunting but it is in fact quite simple. To compute the result resi of the ith

analysis, the composed flow function first determines what the ith analysis would do in isolation by evaluating

31



FRi and storing the result in fresi. The next step is to determine the dataflow value lresi that results from
the selected action. lresi is either fresi if fresi is a tuple of dataflow values, or the result of a recursive
analysis if fresi is a replacement graph. Finally, the expression for resi takes into account not only the action
of the ith analysis, through the lresi term, but also the actions of other analyses, through the second term.
This second term of resi computes the result of the ith analysis on all graph replacements (gsi) selected by
other analyses. Because graph replacements are required to be sound with respect to the concrete semantics,
they are sound to apply for any analysis, not just the one that selected them. This means that the result
produced by the ith analysis on any graph replacement is sound given the current dataflow approximation.
Doing a meet of these recursive results, each of which is sound, provides the most optimistic inference that
can be soundly drawn.

This last term in the definition of resi is important for two reasons. First, it allows analyses to communi-
cate implicitly through graph replacements. If one analysis makes a transformation, then the chosen graph
replacement will immediately be seen by other analyses. Second, it ensures a certain precision guarantee.
Because all potential graph replacements are recursively analyzed, and the returned value is the most opti-
mistic inference that can be drawn from these recursive results, we are guaranteed to get results which are at
least as good as any inter-leaving of the individual analyses. Although analyzing all potential graph replace-
ments is theoretically required to ensure this precision result, an implementation could choose to recursively
analyze only a subset of the potential graph replacements. The Vortex and Whirlwind implementations in
fact only analyze those graph replacements selected by the PICK function defined below.

Composed replacement function. The definition of R relies on a cost function PICK : 2Graph →
Graph ∪ {ε} to select which graph replacement to apply if more than one analysis selects a transformation.
Although the composed flow function recursively analyses all graph replacements, only one of these graphs
can actually be applied once the analysis has reached fixed point. The PICK function is used to make
this decision: given a set of graphs, PICK selects at most one of them to apply, which means that if
PICK(gs) = g, then either g = ε, or g ∈ gs. R can now be defined as follows:

R(n, ds) =

{
ε if PICK(gs) = ε

SolveSubGraphR(PICK(gs), ds) otherwise

where gs = Graph ∩
⋃

j∈[1..k]{FRj(n, c2s(j, ds))}

SolveSubGraphR(g, ds) = T (R, g, SA(g, ds))

This definition of R is very similar to the one for an integrated analysis from section 2.4.1, except that here
the PICK function selects which graph to apply from the set (gs) of all potential replacement graphs. If
PICK selects no transformation, then R does the same. If, however, PICK chooses a replacement graph,
then this replacement graph is returned after transformations have been applied to it recursively.

2.5.2 Soundness

A composed analysis CA is sound if the associated AT-analysis ATCA is sound. We say that a composed
analysis CA = (IA1, IA2, . . . , IAk) is locally sound if each integrated analysis IAi is locally sound (according
to definition 14).

Theorem 5 If a composed analysis CA is locally sound, then the associated AT-analysis ATCA is sound,
and therefore CA is sound.

32



Theorem 5 says that if each integrated analysis has been shown to be sound (by showing that each one is
locally sound), then the composed analysis is sound. Proving Theorem 5 involves showing that if each FRi

satisfies properties (2.24) and (2.25), then F and R as defined in section 2.5.1 satisfy properties (2.2) and
(2.6) respectively. Throughout this subsection, F and R will always refer to the definitions from section 2.5.1.

Again, the proof is by induction on the graph nesting structure. The base case is the one where all analyses
choose to propagate dataflow information, instead of doing a graph transformation. The inductive case is
the one where at least one analysis selects a transformation. The inductive hypothesis is that the property
of interest holds in all selected replacement graphs, and our goal is to show that the property holds at the
current node.

Proof that F satisfies property (2.2)

Base case. We are in the case where no graph replacements are chosen, which means that ∀i.fresi ∈ D∗
i and

∀i.gsi = ∅. As a result, resi = FRi(n, c2s(i, ds)), and then property (2.24) for each one of the FRi together
imply property (2.2).

Inductive case. This is the case where at least one analysis selects a transformation. The inductive hypothesis
is that F satisfies property (2.2) for nodes in any replacement graph g = FRi(n, ds), and we need to
show that F satisfies property (2.2) at the current node n. To do this, we assume −→α (cs) v ds, and
show −→α (Fc(n, cs)) v F (n, ds), or ∀i.−→αi(Fc(n, cs)) vi resi. We also let gs be the set of all possible graph
replacements, in other words gs = Graph ∩

⋃
j∈[1..k]{FRj(n, c2s(j, ds))}.

The proof proceeds with 3 claims that we prove individually, and which are then used together to arrive at
the required result.

Claim :
∀g ∈ gs.Fc(n, cs) v

−−−−−→
SC(g, cs)(OutEdgesg) (2.27)

Proof : Let g ∈ gs be the graph returned by an analysis, say the ith analysis, so that g = FRi(n, c2s(i, ds)).

Since −→α (cs) v ds, we have −→αi(cs) vi c2s(i, ds). Also, since the integrated analyses are all sound, FRi

satisfies property (2.25), which can then be used to get:

Fc(n, cs) v
−−−−−→
SC(g, cs)(OutEdgesg)

�

Claim :

∀i.∀g ∈ gs.
−→αi(Fc(n, cs)) vi c2s(i, SolveSubGraphF (g, ds))

(2.28)

33



Proof : Let g ∈ gs. By the induction hypothesis, F satisfies property (2.2) in g. Since −→α (cs) v ds, we can
then use Theorem 1 (with ιc = cs and ιa = ds) to get:

α̃(SC(g, cs)) v SA(g, ds)

⇔ −→α (
−−−−−→
SC(g, cs)(OutEdgesg)) v

−−−−−−→
SA(g, ds)(OutEdgesg)

⇔ −→α (Fc(n, cs)) v
−−−−−−→
SA(g, ds)(OutEdgesg)

(using (2.27) and the monotonicity of α)

⇔ −→α (Fc(n, cs)) v SolveSubGraphF (g, ds)

(using def of F )

⇔ −→αi(Fc(n, cs)) vi c2s(i, SolveSubGraphF (g, ds))

(projecting onto ith analysis)

�

Claim :
∀i.−→αi(Fc(n, cs)) vi lresi (2.29)

Proof : There are two cases in the definition of lresi, one where fresi ∈ D∗
i , and one where fresi ∈

Graph. If fresi ∈ D∗
i , then lresi = FRi(n, c2s(i, ds)). Furthermore, we have −→αi(cs) vi c2s(i, ds) because

of −→α (cs) v ds and then property (2.24) of FRi implies −→αi(Fc(n, cs)) vi lresi. If fresi ∈ Graph then
lresi = c2s(i, SolveSubGraphf(fresi, ds)). Claim (2.28) then implies −→αi(Fc(n, cs)) vi lresi.

�

Now we are ready to prove ∀i.−→αi(Fc(n, cs)) vi resi. For the ith analysis, from property (2.28) and the fact
that gsi ⊆ gs we have, for any candidate replacement graph g ∈ gsi:

−→αi(Fc(n, cs)) vi c2s(i, SolveSubGraphF (g, ds))

and from property (2.29), we have:
−→αi(Fc(n, cs)) vi lresi

Since x v a ∧ x v b implies x v a u b, we get:

−→αi(Fc(n, cs)) vi lresi uiui
g∈gsi

c2s(i, SolveSubGraphF (g, ds))

or −→αi(Fc(n, cs)) vi resi, which is what we wanted to show.

�

Proof that R satisfies property (2.6)

Base case. We are in the first case of the definition of R, the one where PICK(gs) = ε. We therefore have
R(n, ds) = ε, and then property (2.6) holds trivially because the antecedent R(n, ds) = g is false.

Inductive case. We are in the second case of the definition of R, the one where PICK(gs) ∈ Graph. The
induction hypothesis is that property (2.6) holds for all graphs in gs, and in particular, that it holds for
g = PICK(gs). We now want to prove that property (2.6) holds at the current node n. To do this, we
assume −→α (cs) v ds, we let r = T (R, g, SA(g, ds), which implies that r = R(n, ds), and we want to show that

34



Fc(n, cs) =
−−−−−→
SC(r, cs)(OutEdgesr). Note that the g in (2.6) has been replaced here with r since it is r which

equals R(n, ds). g in our case stands for PICK(gs).

From property (2.27), we have that:

Fc(n, cs) v
−−−−−→
SC(g, cs)(OutEdgesg) (2.30)

By the inductive hypothesis, R satisfies property (2.6) for the nodes in g. In addition, we have already shown
that F satisfies property (2.2), and we also know that −→α (cs) v ds. We can therefore use Theorem 2 (with
ιc = cs and ιa = ds) to get:

−−−−−→
SC(r, cs)(OutEdgesr) w

−−−−−→
SC(g, cs)(OutEdgesg)

Combined with (2.30), this gives the required result:

Fc(n, cs) v
−−−−−→
SC(r, cs)(OutEdgesr)

�

2.5.3 Termination

Termination is handled in a similar way to the case of integrated analyses from section 2.4.3. The only
difference is that the analysis designer must now show that the composed analysis does not cause endless
recursive graph replacements. Even if each integrated analysis by itself does not cause infinite recursive
analysis, the interaction between two analyses can. For example, two analyses can oscillate back and forth,
the first one optimizing a statement that the second one reverts back to the original form. However, as long
as the lattice has finite height, our framework does guarantee that non-termination will never be caused by
infinite traversal of the lattice.

35



Chapter 3

Forward analyses and transformations

In this section, we assume that we are dealing with the following “forward” Rhodium program P :

define edge fact EF1(. . .) with meaning M1

. . .
define edge fact EFk(. . .) with meaning Mk

PR1

. . .
PRl

TR1

. . .
TRm

TRi above is a transformation rule. We assume that all node facts and all edge facts without meanings have
been macro-expanded, so we are only left with edge facts that have meanings.

We also assume that all transformation and propagation rules are forward. In particular, each PRi has the
form if ψ then EFj(. . .)@cfg out[h], where ψ only refers to CFG input edges, and each TRi has the form
if ψ then transform s, where ψ only refers to CFG input edges.

3.1 Abstract semantics

We define the meaning of P using an AT-analysis (AP , RP ). We first define the analysis AP , and then the
replacement function R. In this section we only deal with intraprocedural analyses. Chapter 6 will show
how Rhodium handles interprocedural analyses.

36



3.1.1 Analysis

We assume that the analysis is running on procedure p. The analysis for P is AP = (D,t,u,v,>,⊥, F, α).
The domain D of the analysis is:

D = 2Facts

where
Facts = {EFi(t1, . . . , tj) | i ∈ [1..k] ∧ t1 ∈ Term ∧ . . . ∧ tj ∈ Term}

The lattice of the analysis is:

(D,t,u,v,>,⊥) = (D,∩,∪,⊇, ∅,Facts)

The flow function F : Node ×D∗ → D∗ gives the interpretation of nodes. Given a tuple of input dataflow
values, one per incoming edge to the node, F produces a tuple of output dataflow values, one per outgoing
edge from the node. It is defined as follows (where stmtAt(n) denotes the statement at CFG node n):

F (n, ds)[h] = {θ(EF (t1, . . . , tj)) | ∃i, ψ. PRi = (if ψ then EF (t1, . . . , tj)@cfg out[h]) ∧
θJψKds

stmtAt(n)}
(3.1)

The meaning of a formula ψ is given by a function JψK : Subst ×D∗ × Stmt → bool . We write θJψKdss for
JψK(θ, ds , s). JψK is defined as follows (we assume that case expressions have been expanded into foralls and
conjunctions, and that each primitive p has a meaning JpK):

θJtrueKdss = true
θJfalseKdss = false
θJ! ψKdss = ¬θJψKdss

θJψ1 || ψ2K
ds
s = θJψ1K

ds
s ∨ θJψ2K

ds
s

θJψ1 && ψ2K
ds
s = θJψ1K

ds
s ∧ θJψ2K

ds
s

θJψ1 => ψ2K
ds
s = θJψ1K

ds
s ⇒ θJψ2K

ds
s

θJforall X : τ. ψKdss = ∀t : τ. θ[X 7→ t]JψKds
s

θJexists X : τ. ψKdss = ∃t : τ. θ[X 7→ t]JψKds
s

θJEF (t1, . . . , tj)@cfg in[h]Kdss = EF (θJt1Ks, . . . , θJtjKs) ∈ ds [h]
θJt1 == t2K

ds
s = θJt1Ks = θJt2Ks

θJPrimPredSymbol (t1, . . . , tj)K
ds
s = JPrimPredSymbol K(θJt1Ks, . . . , θJtjKs)

where the semantics of a term t at a statement s under substitution θ is defined by:

θJcurrStmtKs = s
θJPrimFunctionSymbol (t1, . . . , tj)Ks = JPrimFunctionSymbol K(θJt1Ks, . . . , θJtjKs)
θJWilExpr Ks = θ(WilExpr )

The abstraction function α will be defined later.

3.1.2 Replacement function

The replacement function R is defined by:

37



R(n, ds) =

{
singleNodeGraph(n, θ(s)) if ∃i, ψ, θ.

[
TRi = (if ψ then transform s) ∧ θJψKds

stmtAt(n)

]

ε otherwise

(3.2)

where singleNodeGraph(n, s) creates a sub-graph with a single node n′ that has as many input and output
edges as n and that satisfies stmtAt(n′) = s.

3.2 Abstraction

The meaning of an edge fact declaration:

define edge fact EF (X1 : τ1, . . . , Xn : τn) with meaning M

is given by JEF K : τ1 × . . .× τn × State → bool and is defined by:

JEF K(t1, . . . , tn, η) = θ(M)(η)

where θ = [X1 7→ t1, . . . , Xn 7→ tn], θ(M) applies the substitution θ to M , and P (η) evaluates a predicate P
at a program state η.

The abstraction function α : Dc → D is defined as:

α(ηs) = {EFi(t1, . . . , tj) | 1 ≤ i ≤ k ∧ ∀η ∈ ηs.JEFiK(t1, . . . , tj , η)} (3.3)

3.3 Conditions for soundness

These are local soundness conditions, which we ask the theorem prover to discharge. The conditions below
work for arbitrary number of inputs and outputs to a node.

3.3.1 Propagation rule

Definition 15 A forward propagation rule if ψ then EF (t1, . . . , tn)cfg out[h′] is said to be sound iff the
following condition holds:

∀(n, η, η′, h, h′, ds, θ) ∈ Node × State2 × Natural2 ×D∗ × Subst.

θJψKds

stmtAt(n) ∧

h, η
n
↪→ h′, η′ ∧

allMeaningsHold (ds[h], η)


 ⇒ JEF K(θ(t1), . . . , θ(tn), η′)

(fwd-prop-sound)

where allMeaningsHold is defined as follows:

38



allMeaningsHold (d, η) , ∀(EF, t1, . . . , tj) ∈ EdgeFact × Termj .
EF (t1, . . . , tj) ∈ d⇒ JEF K(t1, . . . , tj , η)

Intuitively, the above condition says the following. Suppose the propagate rule fires at a node n on some
incoming facts ds. For every index h into ds, we assume that some state η on input edge h steps through n
to η′ on output edge h′. Further, we assume that the meanings of all the dataflow facts in ds[h] hold of the
state η. It then better be the case that the meaning of the propagated dataflow fact holds of η ′.

The condition (fwd-prop-sound) can be restated as follows:

∀(n, η, η′, h, h′, θ) ∈ Node × State2 × Natural2 × Subst .[
J◦ψ◦K(θ, n, h, η) ∧

h, η
n
↪→ h′, η′

]
⇒ JEF K(θ(t1), . . . , θ(tn), η′)

where J◦ψ◦K : Subst ×Node×Natural × State is defined by:

J◦ψ◦K(θ, n, h, η) , ∃ ds ∈ D∗ . (θJψKds
stmtAt(n) ∧ allMeaningsHold (ds[h], η))

3.3.2 Transformation rule

Definition 16 A forward transformation rule if ψ then transform s is said to be sound iff the following
condition holds:

∀(n, n′, η, η′, h, h′, ds, θ) ∈ Node2 × State2 × Natural2 ×D∗ × Subst .


θJψKds
stmtAt(n) ∧

h, η
n
↪→ h′, η′ ∧

stmtAt(n′) = θ(s) ∧
allMeaningsHold (ds[h], η)


 ⇒ h, η

n′

↪→ h′, η′
(fwd-trans-sound)

Intuitively, the above condition says the following. Suppose the transformation rule fires at a node n on some
incoming facts ds. For every index h into ds, we assume that some state η on input edge h steps through n
to η′ on output edge h′. Then η on edge h should also step to η′ on edge h′ through the transformed node
n′.

3.4 Metatheory

3.4.1 Monotonicity

We have the following theorem about the monotonicity of F .

Theorem 6 (monotonicity of F ) If the syntactic form ψ1 => ψ2 is disallowed, and the syntactic form
!ψ is allowed only if ψ is an equality (i.e. t1 == t2) or a primitive (i.e. PrimPredSymbol (t1, . . . , tj)) then
F is monotonic.

39



Theorem 6 can be used to implement a simple syntactic check that guarantees the monotonicity of F .
For each rule, transform the antecedent as follows: convert ψ1 => ψ2 to !ψ1 || ψ2, and then push all the
negations to the inside in the standard way (through conjunctions, disjunctions, existentials, and universals).
If after this conversion all the antecedents are in the form required by theorem 6, then F is guaranteed to
be monotonic.

Proof of theorem 6

We assume the syntactic restrictions on the antecedents from theorem 6 and we need to show:

∀ n, ds1, ds2 . ds1 v ds2 ⇒ F (n, ds1) v F (n, ds2)

Or, equivalently:

∀ n, ds1, ds2, h . ds1 v ds2 ⇒ F (n, ds1)[h] v F (n, ds2)[h]

Using the definition of v, we need to show:

∀ n, ds1, ds2, h . ds1 v ds2 ⇒ F (n, ds1)[h] ⊇ F (n, ds2)[h]

Using the definition of F , it is sufficient to show:

∀ ψ, ds1, ds2, θ, s . (ds1 v ds2 ∧ θJψKds2

s ) ⇒ θJψKds1

s

Let P (ψ) = ∀ ds1, ds2, θ, s . (ds1 v ds2 ∧ θJψKds2

s ) ⇒ θJψKds1

s . We need to show ∀ψ . P (ψ). We do this by
induction on the syntactic form of ψ.

• Cases where ψ is true, false, t1 == t2, or PrimPredSymbol (t1, . . . , tj)

In all these cases θJψKds
s does not depend on ds.

Therefore θJψKds1

s = θJψKds2

s , and so P (ψ) holds.

• Case !ψ

We need to show P (!ψ).

Because of the syntactic restrictions mentioned in theorem 6, this case only occurs with ψ = (t1==t2)
or ψ = PrimPredSymbol (t1, . . . , tj).

In both of these cases, θJψKds
s does not depend on ds, so that θJψKds1

s = θJψKds2

s .

This implies ¬θJψKds1

s = ¬θJψKds2

s .

By the the definition of θJ · Kds
s this implies θJ!ψKds1

s = θJ!ψKds2

s .

And therefore P (!ψ) holds.

• Case ψ1 || ψ2

By the induction hypothesis we know P (ψ1) and P (ψ2), and we need to show P (ψ1 || ψ2).

To show P (ψ1 || ψ2), we assume:

40



ds1 v ds2 ∧ θJψ1 || ψ2K
ds2

s

and show:

θJψ1 || ψ2K
ds1

s

By the definition of θJ · Kds
s We have:

θJψ1 || ψ2K
ds2

s = θJψ1K
ds2

s ∨ θJψ2K
ds2

s

θJψ1 || ψ2K
ds1

s = θJψ1K
ds1

s ∨ θJψ2K
ds1

s

Let A = θJψ1K
ds2

s , B = θJψ2K
ds2

s , C = θJψ1K
ds1

s , and D = θJψ2K
ds1

s .

Thus we are assuming ds1 v ds2 and A∨B and trying to show C ∨D. We do case analysis on whether
or not A holds.

– Case where A holds. Then by ds1 v ds2 and P (ψ1), we get that C holds, and so C ∨D.

– Case where A does not hold. Then B must hold. Then by ds1 v ds2 and P (ψ2), we get that D
holds, and so C ∨D.

• Case ψ1 && ψ2

By the induction hypothesis we know P (ψ1) and P (ψ2), and we need to show P (ψ1 && ψ2).

To show P (ψ1 && ψ2), we assume:

ds1 v ds2 ∧ θJψ1 && ψ2K
ds2

s

and show:

θJψ1 && ψ2K
ds1

s

By the definition of θJ · Kds
s We have:

θJψ1 && ψ2K
ds2

s = θJψ1K
ds2

s ∧ θJψ2K
ds2

s

θJψ1 && ψ2K
ds1

s = θJψ1K
ds1

s ∧ θJψ2K
ds1

s

Let A = θJψ1K
ds2

s , B = θJψ2K
ds2

s , C = θJψ1K
ds1

s , and D = θJψ2K
ds1

s .

Thus we are assuming ds1 v ds2 and A ∧B and trying to show C ∧D.

Because A holds, using ds1 v ds2 and P (ψ1), we get that C holds.

Because B holds, using ds1 v ds2 and P (ψ2), we get that D holds.

Thus C ∧D holds.

• Case ψ1 => ψ2

Because of the syntactic restrictions mentioned in theorem 6, this case does not occur.

41



• Case forall X : τ . ψ

By the induction hypothesis, we know P (ψ), and we need to show P (forall X : τ . ψ).

To show P (forall X : τ . ψ), we assume:

ds1 v ds2 ∧ θJforall X : τ . ψKds2

s

and show:

θJforall X : τ . ψKds1

s

By the definition of θJ · Kds
s We have:

θJforall X : τ . ψKds2

s = ∀ t : τ . θ[X 7→ t]JψKds2

s

θJforall X : τ . ψKds1

s = ∀ t : τ . θ[X 7→ t]JψKds1

s

Let A = ∀ t : τ . θ[X 7→ t]JψKds2

s and B = ∀ t : τ . θ[X 7→ t]JψKds1

s .

Thus we are assuming ds1 v ds2 and A and trying to show B.

To show B, pick a t : τ , and show θ[X 7→ t]JψKds1

s .

Instantiating A with t, we get θ[X 7→ t]JψKds2

s .

Using ds1 v ds2 and P (ψ), we get θ[X 7→ t]JψKds1

s (Note that the θ in the P (ψ) quantifier gets
instantiated with θ[X 7→ t]).

• Case exists X : τ . ψ

By the induction hypothesis, we know P (ψ), and we need to show P (exists X : τ . ψ).

To show P (exists X : τ . ψ), we assume:

ds1 v ds2 ∧ θJexists X : τ . ψKds2

s

and show:

θJexists X : τ . ψKds1

s

By the definition of θJ · Kds
s We have:

θJexists X : τ . ψKds2

s = ∃ t : τ . θ[X 7→ t]JψKds2

s

θJexists X : τ . ψKds1

s = ∃ t : τ . θ[X 7→ t]JψKds1

s

Let A = ∃ t : τ . θ[X 7→ t]JψKds2

s and B = ∃ t : τ . θ[X 7→ t]JψKds1

s .

Thus we are assuming ds1 v ds2 and A and trying to show B.

From A we know there exists t such that θ[X 7→ t]JψKds2

s .

Using ds1 v ds2 and P (ψ), we get θ[X 7→ t]JψKds1

s (Note that the θ in the P (ψ) quantifier gets
instantiated with θ[X 7→ t]).

Thus B holds, with t being the witness to the existential quantifier in B.

42



• Case EF (t1, . . . , tj)@cfg in[h]

We need to show P (EF (t1, . . . , tj)@cfg in[h]).

To show this, assume:

ds1 v ds2 ∧ θJEF (t1, . . . , tj)@cfg in[h]Kds2

s

and show:

θJEF (t1, . . . , tj)@cfg in[h]Kds1

s

By the definition of θJ · Kds
s We have:

θJEF (t1, . . . , tj)@cfg in[h]Kds2

s = EF (θJt1Ks, . . . , θJtjKs) ∈ ds2[h]
θJEF (t1, . . . , tj)@cfg in[h]Kds1

s = EF (θJt1Ks, . . . , θJtjKs) ∈ ds1[h]

Let A = EF (θJt1Ks, . . . , θJtjKs) ∈ ds2[h] and B = EF (θJt1Ks, . . . , θJtjKs) ∈ ds1[h].

Thus we are assuming ds1 v ds2 and A and trying to show B.

Since ds1 v ds2, we have ds1[h] v ds2[h].

By the definition of v, we get ds1[h] ⊇ ds2[h].

ds1[h] ⊇ ds2[h] combined with A then gives B.

�

3.4.2 Soundness

We need to show that if conditions (fwd-prop-sound) and (fwd-trans-sound) hold for all propagation rules
and transformation rules, and we perform all the transformations, then the concrete fixed point of the original
procedure and the concrete fixed point of the transformed procedure are the same. This condition is stated
in the following theorem:

Theorem 7 (main forward soundness) If all propagation rules and transformation rules in a forward
Rhodium program P are sound, then the induced AT-analysis (AP , RP ) is sound.

Theorem 7 follows from the following two lemmas and theorem 2:

Lemma 3 If all propagation rules in a forward Rhodium program P are sound then F as defined in (3.1)
is sound.

Lemma 4 If all transformation rules in a forward Rhodium program P are sound, then R as defined in (3.2)
is sound.

All we need to do now is prove lemmas 3 and 4. Before doing this, we establish the following helper lemma:

Lemma 5

∀(η, cs, ds, h) ∈ State ×D∗
c ×D × Natural . (−→α (cs) v ds ∧ η ∈ cs[h]) ⇒ allMeaningsHold (ds[h], η)

43



Proof of lemma 5

We assume (−→α (cs) v ds ∧ η ∈ cs[h]), and we need to show:

∀(EF , t1, . . . , tj) ∈ EdgeFact × Termj .
EF (t1, . . . , tj) ∈ ds[h] ⇒ JEF K(t1, . . . , tj , η)

To do this, pick (EF , t1, . . . , tj) ∈ EdgeFact × Termj , assume EF (t1, . . . , tj) ∈ ds[h] and show:

JEF K(t1, . . . , tj , η) (3.4)

From the assumptions we know that −→α (cs) v ds, which means ∀i . α(cs[i]) v ds[i], and using the definition
of v, ∀i . α(cs[i]) ⊇ ds[i]. Thus, from EF (t1, . . . , tj) ∈ ds[h], we get:

EF (t1, . . . , tj) ∈ α(cs[h])

Using the definition of α, this means that:

∀η ∈ cs[h] . JEF K(t1, . . . , tj , η)

From the assumptions we know that η ∈ cs[h], and thus we get JEF K(t1, . . . , tj , η), which is what we had to
show in (3.4).

�

Proof of lemma 3

We need to show:

∀(n, cs, ds) ∈ Node ×D∗
c ×D∗

−→α (cs) v ds ⇒ −→α (Fc(n, ds)) v F (n, ds)

Pick (n, cs, ds) ∈ Node ×D∗
c ×D∗, assume −→α (cs) v ds, and show −→α (Fc(n, ds)) v F (n, ds).

To show −→α (Fc(n, ds)) v F (n, ds), we need to show that ∀ h′ . α(Fc(n, ds)[h
′]) v F (n, ds)[h′].

So pick h′, and show α(Fc(n, ds)[h
′]) v F (n, ds)[h′], which, using the definition of v is α(Fc(n, ds)[h

′]) ⊇
F (n, ds)[h′]. To show this, pick x ∈ F (n, ds)[h′], and show that:

x ∈ α(Fc(n, ds)[h
′]) (3.5)

Using the definition of F from (3.1), x ∈ F (n, ds)[h′] implies that there is a θ, ψ, i such that:

x = θ(EF (t1, . . . , tj)) (3.6)

PRi = (if ψ then EF (t1, . . . , tj)@cfg out[h]) (3.7)

θJψKdsstmtAt(n) (3.8)

Using the definition of α from (3.3), we get:

44



α(Fc(n, ds)[h
′]) = {EFi(t1, . . . , tj) | 1 ≤ i ≤ k ∧ ∀η′ ∈ Fc(n, ds)[h

′] . JEFiK(t1, . . . , tj , η
′)} (3.9)

To show (3.5), because of (3.6), we must show that θ(EF (t1, . . . , tj)) ∈ α(Fc(n, ds)[h
′]). Using (3.9), this

amounts to showing:

∀η′ ∈ Fc(n, ds)[h
′] . JEF K(θ(t1), . . . , θ(tj), η

′)

Pick η′ ∈ Fc(n, ds)[h
′], and show:

JEF K(θ(t1), . . . , θ(tj), η
′) (3.10)

From the definition of Fc in (2.1), we know that there exists η, h such that:

η ∈ cs[h] (3.11)

h, η
n
↪→ h′, η′ (3.12)

Because all propagation rules in the Rhodium program P are sound, we have that PRi satis-
fies (fwd-prop-sound).

We instantiate (fwd-prop-sound): the first two conditions of the antecedent are met from (3.8) and (3.12),
and the third condition of the antecedent follows from (3.11), −→α (cs) v ds and lemma 5. By instantiat-
ing (fwd-prop-sound), we get (3.10), which is what we had to show.

�

Proof of lemma 4

We need to show:
∀(n, ds, g) ∈ Node×D∗ ×Graph.
R(n, ds) = g ⇒

[∀cs ∈ D∗
c .
−→α (cs) v ds⇒

Fc(n, cs) vc

−−−−−→
SC(g, cs)(OutEdgesg)]

(3.13)

Pick (n, ds, g) ∈ Node × D∗ × Graph, assume R(n, ds) = g, then pick cs ∈ D∗
c , assume −→α (cs) v ds and

show:
Fc(n, cs) vc

−−−−−→
SC(g, cs)(OutEdgesg)

By the definition of R from equation (3.2), and from R(n, ds) = g, we know that there exists i, ψ and θ such
that:

TRi = (if ψ then transform s)

g = singleNodeGraph(n, θ(s))

θJψKdsstmtAt(n) (3.14)

stmtAt(n′) = θ(s) where n′ is the node from the single-node graph g (3.15)

Because g is a single node CFG, we have:

45



−−−−−→
SC(g, cs)(OutEdgesg) = Fc(n

′, ds)

Thus, we need to show:
Fc(n, cs) vc Fc(n

′, cs)

Or:
∀ k .Fc(n, cs)[k] vc Fc(n

′, cs)[k]

Pick a k, and show:
Fc(n, cs)[k] vc Fc(n

′, cs)[k]

By the definition of v, this is:

Fc(n, cs)[k] ⊆ Fc(n
′, cs)[k]

To show this, pick ηout ∈ Fc(n, cs)[k], and show:

ηout ∈ Fc(n
′, cs)[k] (3.16)

Since ηout ∈ Fc(n, cs)[k], by the definition of Fc from equation (2.1), we know that there exists ηin ∈ State
and i ∈ Natural such that:

ηin ∈ cs[i] (3.17)

i, ηin

n
↪→ k, ηout (3.18)

Because all transformation rules in the Rhodium program P are sound, we know that PRi satis-
fies (fwd-trans-sound).

We instantiate (fwd-trans-sound): the first three conditions of the antecedent are met from (3.14), (3.15)
and (3.18), and the fourth condition of the antecedent follows from (3.17), −→α (cs) v ds and lemma 5. By

instantiating (fwd-trans-sound), we get get i, ηin

n′

↪→ k, ηout.

Since i, ηin

n′

↪→ k, ηout, and since ηin ∈ cs[i] from (3.17), by the definition of Fc from equation (2.1), we get
that ηout ∈ Fc(n

′, cs), which is what we had to show in (3.16).

�

46



Chapter 4

Backward analyses and

transformations

In this section, we assume that we are dealing with the following “backward” Rhodium program P :

define edge fact EF1(. . .) with meaning M1

. . .
define edge fact EFk(. . .) with meaning Mk

PR1

. . .
PRl

TR1

. . .
TRm

Like in the forward case, each TRi above is a transformation rule, and we assume that all node facts and all
edge facts without meanings have been macro-expanded.

Finally, we assume that all transformation and propagation rules are backward. In particular, each PRi has
the form if ψ then EFj(. . .)@cfg in[h], where ψ only refers to cfg output edges, and each TRi has the
form if ψ then transform s, where ψ only refers to cfg output edges.

4.1 Abstract semantics

Again, we define the meaning of P using an AT-analysis (AP , RP ). The definitions are identical to the
forward case, except that cfg out becomes cfg in and vice-versa.

In particular, everything is the same, except for the following changes:

47



F (n, ds)[h] = {θ(EF (t1, . . . , tj)) | ∃i, ψ. PRi = (if ψ then EF (t1, . . . , tj)@cfg in[h]) ∧
θJψKdsstmtAt(n)}

(4.1)

θJEF (t1, . . . , tj)@cfg out[h]Kdss = EF (θJt1Ks, . . . , θJtjKs) ∈ ds [h]

4.2 Concrete semantics

We use a weakest precondition concrete semantics, as described in section 3.2 of [2]. In particular, the
backward concrete semantics is given in terms of an arbitrary condition C. At each program point, we want
to compute the weakest condition P such that if execution is started at that program point with condition
P , execution ends with condition C.

There are two notions of weakest precondition: strict weakest precondition (wp) and liberal weakest pre-
condition (wlp). The difference between the two is in how they handle errors and termination. The strict
weakest precondition of P through S is the weakest condition Q such that S terminates when started in a
state satisfying Q and the state after executing S satisfies P . The liberal weakest precondition of P through
S is the weakest condition Q such that if S terminates without errors when started in a state satisfying Q,
then the state after executing S satisfies P .

The two are related in the following way:

wp(S, P ) = wp(S, true) ∧ wlp(S, P )

In our formalism, we use the strict weakest precondition. The liberal version is not well suited for our
purposes because it would allow the transformed program to run forever even if the original program did
not. Suppose we set the end condition C to be x = 3. Then the programs x := 3 and loop forever have the
same liberal weakest precondition semantics.

The concrete backward analysis is defined as:

C = (Dc,tc,uc,vc,>c,⊥c, Fc, id )

where the lattice is:

(Dc,tc,uc,vc,>c,⊥c) = (Pred ,∧,∨,⇐, false , true)

The concrete flow function Fc is defined as:

Fc(n, Ps)[h] =
∨

i∈[1..Len(out(n))]

wpp(Ps[i], out(n)[i], in(n)[h])

where wp : Procedure × Pred × Edge × Edge → Pred is the strict weakest precondition function:
wpp(P, edst , esrc) is the weakest condition Q such that if the procedure p is stepped once starting at program
point (edge) esrc in a state satisfying Q, execution will end up at program point edst in a state satisfying P .

48



The strict weakest precondition solution is the greatest fixed point of the precondition equations, not the
least fixed point (or alternatively, it’s the least fixed point in the inverted lattice).1

We have two options for the notion of semantics preservation based on whether or not we want to preserve
non-termination. If we want to preserve non-termination, then we must use exact equality of the WP
semantics to compare the original and the transformed program: the condition computed at each program
point in the original program must be equal to the condition computed at the same program point in the
transformed program. If we want to relax the requirement of preserving non-termination (in other words,
allow programs that run forever or hit errors to be transformed in any way), then we want implication of the
WP semantics: the condition in the original program must imply the condition in the transformed program.
For now, we will not require non-termination preservation (meaning that if the original program does not
terminate, the transformed program can do anything).

4.3 Abstraction

The meaning of an edge fact declaration:

define edge fact EF (X1 : τ1, . . . , Xn : τn) with meaning R

is given by JEF K : τ1 × . . .× τn × Pred → bool and is defined by:

JEF K(t1, . . . , tn, P ) = ∀(η1, η2) ∈ State2 . θ(R)(η1, η2) ⇒ P (η1) = P (η2)

where θ = [X1 7→ t1, . . . , Xn 7→ tn], θ(R) applies the substitution θ to R, and P (η) evaluates a predicate P
at a program state η.

We only accept R’s that match program points, meaning that R(η1, η2) ⇒ edge(η1) = edge(η2). We achieve
this in the implementation by having the user define a different relation, namely R′, which is not allowed to
mention the program point part of the state. We then define R(η1, η2) , R′(η1, η2) ∧ edge(η1) = edge(η2).

The abstraction function α : Dc → D is defined as:

α(P ) = {EFi(t1, . . . , tn) | 1 ≤ i ≤ k ∧ JEFiK(t1, . . . , tn, P )}

4.4 Conditions for soundness

4.4.1 Propagation rule

Definition 17 A backward propagation rule if ψ then EF (t1, . . . , tn)cfg in[h′] is said to be sound iff the
following condition holds:

1To use liberal weakest preconditions, we would have to change wpp to the liberal version wlpp and then use the least fixed

point instead of the greatest fixed point

49



∀(P, P ′, ds, n, θ, h, p) ∈ Pred × Pred ×D∗ × Node × Subst × Natural × Proc.


θJψKds
stmtAt (n) ∧

P ′ = wpp(P, out(n)[h], in(n)[h′]) ∧
∀(EF ′, t′1, . . . , t

′
j) ∈ EdgeFact × Termj .

EF ′(t′1, . . . , t
′
j) ∈ ds[h] ⇒ JEF ′K(t′1, . . . , t

′
j , P )


 ⇒ JEF K(θ(t1), . . . , θ(tn), P ′)

(bwd-prop-sound)

4.4.2 Transformation rule

Definition 18 A backward transformation rule if ψ then transform s is said to be sound iff the following
condition holds:

∀(P, P ′, P ′′, ds, n, θ, h, p, p′) ∈ Pred3 ×D∗ × Node × Subst × Natural × Proc2.


θJψKds
stmtAt(n) ∧

P ′ = wpp(P, out(n)[h], in(n)[h′])) ∧
P ′′ = wpp′(P, out(n′)[h], in(n′)[h′])) ∧
stmtAt(n′) = θ(s) ∧
∀(EF ′, t′1, . . . , t

′
j) ∈ EdgeFact × Term j .

EF ′(t′1, . . . , t
′
j) ∈ ds[h] ⇒ JEF ′K(t′1, . . . , t

′
j , P )




⇒ (P ′ ⇒ P ′′)
(bwd-trans-sound)

4.5 Metatheory

The main soundness theorem for the backward case is similar to the forward case:

Theorem 8 (main backward soundness) If all propagation rules and transformation rules in a backward
Rhodium program P are sound, then the induced AT-analysis (AP , RP ) is sound.

Theorem 8 follows from the following two lemmas and theorem 2:

Lemma 6 If all propagation rules in a backward Rhodium program P are sound then F as defined in (4.1)
is sound.

Lemma 7 If all transformation rules in a backward Rhodium program P are sound, then R as defined
in (3.2) is sound.

We do not yet have the proofs of lemmas 6 and 7, but we foresee no problems in making these proofs go
through. Furthermore, we need to update the composing framework from section 2.3 in order to handle our
weakest precondition semantics. This will be not be hard, because the proofs in section 2.3 for the most part
do not refer to the actual semantics of the concrete domain. We are currently working on these proofs.

50



Chapter 5

Framework for flow-insensitive

analyses

In order to define flow-insensitive analyses, we adapt the composing dataflow analyses and transformations
framework so that flow functions take a map from edges to dataflow information, instead of just a tuple of
the input dataflow information. We call such flow functions map flow functions.

The concrete map flow function Fmc : Node × (Edge → Dc) → D∗
c is defined as:

Fmc(n,mc) = Fc(n,
−→mc(in(n)))

The condition for soundness of a flow function is then:

Definition 19 A map flow function Fa is said to be sound iff the following condition holds:

∀(n,mc,ma) ∈ Node × (Edge → Dc) × (Edge → Da).
α(mc) v ma ⇒ α(Fmc(n,mc)) v Fa(n,ma)

Lemma 8 (condition for (A, R) to be sound with map flow functions) Given an AT-analysis
(A, R), if the map flow function Fa of A is sound and R is sound, then (A, R) is sound.

The proof of lemma 8 would be almost identical to the proof of lemma 2. We are currently working on
adapting the proof of lemma 2 to lemma 8.

Given a flow sensitive analysis A = (D,t,u,v,>,⊥, α, F ) with flow-function F : Node × D∗ → D∗, we
define the flow-insensitive version of this analysis Afi = (D,t,u,v,>,⊥, α, Ffi), where the flow-insensitive
flow function is a map flow function Ffi : Node × (Edge → D) → D∗ defined as:

Ffi(n,m)[k] =
⊔
S

where S = {ds[j] | ds = F (n,m(in(n))) ∧ n ∈ Node ∧ 0 ≤ k ≤ len(ds)}
(5.1)

Ffi computes the join of all the results returned by all nodes in the CFG. The join is returned for all nodes
on all outgoing edges. As a result, all edges in the CFG will have the same dataflow value throughout the

51



analysis. The execution engine can therefore keep only one copy of this value. Also, the execution engine
can perform the regular chaotic iteration optimization of executing only one node at a time (and keeping a
worklist), instead of executing all nodes on each iteration.

Theorem 9 (main flow-insensitive soundness) If F is sound then Ffi is sound.

Proof of theorem 9

We need to show
∀(n,mc,m) ∈ Node × (Edge → Dc) × (Edge → D).

α(mc) v m⇒ α(Fmc(n,mc)) v Ffi(n,m)

Pick (n,mc,m) ∈ Node × (Edge → Dc) × (Edge → D), assume α(mc) v m, and show α(Fmc(n,mc)) v
Ffi(n,m).

To show α(Fmc(n,mc)) v F (n,m), we need to show Fmc(n,mc)[k] v Ffi(n,m)[k].

We have:

α(mc) v m
⇒ α(mc(in(n))) v m(in(n))
⇒ α(Fc(n,mc(in(n)))) v F (n,m(in(n))) (soundness of F )
⇒ α(Fmc(n,mc)) v F (n,m(in(n))) (definition of Fmc)
⇒ α(Fmc(n,mc))[k] v F (n,m(in(n)))[k]

Since F (n,m(in(n)))[k] ∈ S in (5.1), we have F (n,m(in(n)))[k] v
⊔
S.

Therefore F (n,m(in(n)))[k] v Ffi(n,m)[k].

And by transitivity we get α(Fmc(n,mc))[k] v Ffi(n,m)[k].

�

52



Chapter 6

Framework for interprocedural

analyses

6.1 Concrete semantics

For the concrete semantics, we use a trace semantics. A trace t is a sequence of machine configurations:
t = [δ1, . . . , δn]. We denote by Trace the set of all traces.

Given a trace t = [δ1, . . . , δn], where δn = (e, η), we use lastMachineConfig (e) to denote δn and lastState to
denote η.

Definition 20 The trace transition function → ⊆ Trace × Trace is defined as:

[δ1, . . . , δn] → [δ1, . . . , δn, δn+1] where δn → δn+1

So the concrete interprocedural domain is

(Dic,tic,uic,vic,>ic,⊥ic) = (2Trace,∪,∩,⊆,Trace , ∅)

The concrete flow function is:

Fic : Node × (Edge → Dic) → D∗
ic

Given a node n and a map m providing the information at each edge Fic(n,m) returns a tuple of outgoing
concrete facts, one for each outgoing edge from the node.

At a call site, Fic(n,m) returns a pair, with Fic(n,m)[0] being the information to propagate to the return
site and Fic(n,m)[1] being the information to propagate to the callee’s entry edge.

The definition of Fic is split based on whether or not we are at a call site.

If stmtAt(n) 6= [call . . .] then:

53



Fic(n,m)[k] = {t | edge(lastMachineConfig (t)) = out(n)[k] ∧
∃ t′ ∈ Trace, i ∈ Natural . [t′ ∈ m(in(n)[i]) ∧ t′ → t]}

If stmtAt(n) = [call fn ] then:

Fic(n,m)[0] = {step(t) | t ∈ m(outEdge(fn)) ∧ callSite(t) = n}
Fic(n,m)[1] = {step(t) | t ∈ m(in(n)[0])}

where:

• step(t) = t′ iff t → t′. The step function is partial, but in the uses above, it is well defined because
program execution cannot fail at a call site or at a return site.

• callSite(t) is the call site of the latest stack frame. In particular, callSite(t) = node(currentCall(t)),
where currentCall(t) returns the machine configuration in t that produced the call to the currently
executing function. Alternatively, callSite(t) = n iff pop(stack(lastState(t))) = ((n, , ), ).

• outEdge(fn) returns fn’s CFG edge right before the return statement.

6.2 Abstract semantics

6.2.1 Domain

We assume a lattice of contour keys (CK ,tck ,uck ,vck ,>ck ,⊥ck).

Recall that the abstract domain is (D,t,u,v,>,⊥).

We define the domain of the interprocedural analysis as (Di,ti,ui,vi,>i,⊥i) where:

Di , CK → D

f1 ti f2 , λ ck . f1(ck) t f2(ck)
f1 ui f2 , λ ck . f1(ck) u f2(ck)
f1 vi f2 , ∀ ck . f1(ck) v f2(ck)

>i , λ ck . >
⊥i , λ ck . ⊥

The domain Di is a domain of total maps from CK to D. The domain of partial maps described in the
POPL paper [4] can be seen as an implementation strategy for the domain of total maps. Partial maps can
be used to represent total maps if the missing entries have implicit mappings (for example all missing entries
can map to ⊥).

6.2.2 Translating information from callers to callees and vice-versa

The function callerToCallee : Node × D → D translates information from the caller to the callee at call
site: given a call site n, and some information d coming into the call site, callerToCallee (n, d) returns the
information at the entry to the caller. This function translates facts from the caller to the callee.

54



Similarly the function calleeToCaller : Node ×D → D translates facts from the callee’s return instruction to
the calling site: given a call site n, and some information d coming into the return statement of the function
which is called at n, calleeToCaller(n, d) returns the information at the return site of n. This function
translates facts from the callee to the caller.

Definition 21 The translation function callerToCallee is said to be sound iff it satisfies the following con-
dition:

∀(n, η, η′, h, h′, d) ∈ Node × State2 × Natural2 ×D .


stmtAt(n) = (x := p(y)) ∧

h, η
n
→ h′, η′ ∧

allMeaningsHold (d, η)


 ⇒ allMeaningsHold (callerToCallee(n, d), η′)

(6.1)

Definition 22 The translation function calleeToCaller is said to be sound iff it satisfies the following con-
dition:

∀(n, ncall, η, η
′, h, h′, d) ∈ Node2 × State2 × Natural2 ×D .



stmtAt(n) = (return x) ∧

h, η
n
→ h′, η′ ∧

pop(stack(η)) = ((ncall, , ), ) ∧
allMeaningsHold (d, η)


 ⇒ allMeaningsHold (calleeToCaller (ncall, d), η

′)
(6.2)

The following two lemmas follow from the above definitions of soundness of callerToCallee and calleeToCaller .

Lemma 9 If callerToCallee is sound then:

∀(n, d,X) ∈ Node ×D × 2Trace

[∀t ∈ X . stmtAt(node(lastMachineConfig (t))) = (x := p(y))] ⇒
[α({lastState(t) | t ∈ X}) v d⇒ α({lastState(step(t)) | t ∈ X}) v callerToCallee (n, d)]

Lemma 10 If calleeToCaller is sound then:

∀(n, d,X) ∈ Node ×D × 2Trace

[∀t ∈ X . callSite(t) = n ∧ stmtAt(node(lastMachineConfig (t))) = (return x)] ⇒
[α({lastState(t) | t ∈ X}) v d⇒ α({lastState(step(t)) | t ∈ X}) v calleeToCaller (n, d)]

We use t[x 7→ y] to denote the term t with x replaced by y, and we use EF (t1, . . . , tj)[x 7→ y] to denote
EF (t1[x 7→ y], . . . , tj [x 7→ y]).

We now define value facts. These facts have the property that they are preserved through assignments by
just replacing the assigned variable in the fact.

Definition 23 The set valueFacts of edge facts is defined as: EF ∈ valueFacts iff the following condition
holds:

∀(n, η, η′, x, y, t1, . . . , tj) ∈ Node × State2 ∈ Var2 × Termj .



JEF K(t1, . . . , tj , η) ∧
stmtAt(n) = (x := y) ∧

0, η
n
→ 0, η′


⇒ JEF K(t1[y 7→ x], . . . , tj [y 7→ x], η′)

55



We now define sound translation functions callerToCallee and calleeToCaller :

Definition 24 If stmtAt(n) = (x := p(b)) then:

callerToCallee (n, d) = {EF (t1, . . . , tj)[b 7→ formal p] | EF (t1, . . . , tj) ∈ d ∧ EF ∈ valueFacts ∧
∀ 1 ≤ i ≤ j . (ti = b ∨ ti ∈ Const)}

Definition 25 If stmtAt(n) = (x := p(b)) and the return statement of p is return r then:

calleeToCaller (n, d) = {EF (t1, . . . , tj)[r 7→ x] | EF (t1, . . . , tj) ∈ d ∧ EF ∈ valueFacts ∧
∀ 1 ≤ i ≤ j . (ti = r ∨ ti ∈ Const)}

These translation functions are very conservative: only value facts are are propagated and the translation is
performed only for formals and return values. As future work, we plan to investigate more precise translation
functions.

6.2.3 Abstract flow function

The interprocedural flow function is:

Fi : Node × (Edge → Di) → D∗
i

Given a node n and a map m providing the information at each edge Fi(n,m) returns a tuple of outgoing
dataflow facts, one for each outgoing edge from the node.

At a call site, Fi(n,m) returns a pair, with Fi(n,m)[0] being the information to propagate to the return site
and Fi(n,m)[1] being the information to propagate to the callee’s entry edge.

The definition of Fi is split based on whether or not we are at a call site.

If stmtAt(n) 6= [call . . .] then:

Fi(n,m)[k] = λ ck . F (n, [d1, . . . , dj ])[k] where di = m(in(n)[i])(ck) for i ∈ [1..j]

If stmtAt(n) = [call fn ] then:

Fi(n,m)[0] = λ ck . calleeToCaller (n,m(outEdge(fn))(BC(ck,m(in(n)[0])(ck), n)))

For the transfer function strategy:

Fi(n,m)[1] = λ ck . callerToCallee (n, ck)

For all other strategies:

Fi(n,m)[1] = λ ck .
⊔
{callerToCallee(n,m(in(n)[0])(ck′)) | ck = BC(ck′,m(in(n)[0])(ck′), n)}

The function BC : (CK ×D×Node) → CK determines the contour key to be used for analyzing the callee
of a particular call site. If a call site n to function fn is analyzed in contour key ck and dataflow fact d, then
BC(ck, d, n) returns the contour key to use in analyzing fn for call site n.

56



Fi(n,m)[1] is defined more conservatively for the transfer function strategy in order to make the proofs go
through. We are currently looking at how to unify the definition of Fi(n,m)[1] for the transfer function
strategy with the general definition of Fi(n,m)[1].

The abstraction function αi : Dic → Di is defined as follows:

αi(ts) = λ ck . α({lastState(t) | t ∈ ts ∧ matchesContour (t, ck)}

where:

• α is the abstraction function of the intraprocedural (in our case α is defined as in sections 3.2 and 4.3,
but the following formalization does not in any way depend on the details of those definitions)

• matchesContour(t, ck) says whether or not a trace t matches contour ck:

matchesContour(t, ck) =





true if t = [call main] ∧ ck = >ck

false if t = [call main] ∧ ck 6= >ck

∃ ck′ ∈ CK, d ∈ D . α({currentCall(t)}) v d ∧

ck = BC(ck′, d,node(currentCall(t))) ∧

matchesContour(prefix (t, currentCall(t)), ck′)

otherwise

• [call main] is the trace that is about to execute a call to main. The program is started in the trace
[call main;S1], where S1 is the first statement in main. The trace [call main;S1] is about to execute
S1. As a result, the call to main is never executed in the concrete semantics – it is there so that
currentCall(t) is always well defined (see below).

• currentCall(t) returns the machine configuration in t that produced the call to the currently executing
function. The call to main is at the beginning of all traces so that currentCall(t) is always defined,
even when t is about to execute a statement in main.

• prefix(t, δ) returns the prefix of t up to and including machine configuration δ. It is not defined if δ
does not occur in t.

We have the following lemma about matchesContour :

Lemma 11

∀ (t1, t2) ∈ Trace2 .
t1 6= [call main] ∧ t2 6= [call main] ∧ currentCall(t1) = currentCall(t2) ⇒

∀ ck ∈ CK . matchesContour (t1, ck) = matchesContour (t2, ck)

Proof of lemma 11

The proof is immediate from the fact that if t1 6= [call main] ∧ t2 6= [call main], then t1 appears
in matchesContour (t1, ck) only as currentCall(t1) and t2 appears in matchesContour(t2, ck) only as
currentCall(t2).

�

57



6.3 Call strings strategy

If we want to implement the k-length call-string strategy, then CK = list [string ] and BC (ck, d, n) =
concat(ck, [fn(n)]).last(k) where fn(n) is the name of the function called at node n, concat is the list concate-
nation function (concat : list [string ]× list [string ] → list [string ]), and l.last k(k) returns the a list containing
the last k elements of l (last k : list [string ]×nat → list [string ]). Note that we use a.f(b) as sugar for f(a, b).

The BC function in this case does not depend on d and so we also define the simpler version BC [str](ck, n) that
does not take the d parameter. The simpler version is defined as BC [str](ck, n) = concat(ck, [fn(n)]).lastk(k).

We call matchesContour [str] the resulting matchesContour function.

We define the function last k calls : Trace × Natural → list [string ] so that t.last k calls(k) returns a list
with the last k function names on the call stack. We then have the following theorem:

Lemma 12 matchesContour [str](t, ck) = (t.last k calls(k) = ck)

Proof of lemma 12

By induction on the length of the trace t.

�

Note that for convenience, we have defined BC in such a way so that we include the current function being
analyzed in the call string. Thus, when we analyze function f when it is called from g, the call string is
[g, f ], not just [g]. This means that our k is one bigger than the k from k-CFA. For example, for 1-CFA, we
must actually set k = 2.

Lemma 13 If a trace t is about to execute a call at node n and matchesContour [str](step(t), ck) and
matchesContour [str](t, ck

′) then ck = BC[str](ck
′, n).

6.4 Transfer function strategy

If we want to implement the calling-context strategy, then CK = D, and BC (ck, d, n) = d. In this case, we
call matchesContour [trans] the resulting matchesContour function.

Lemma 14

matchesContour[trans](t, ck) =





true if t = [call main] ∧ ck = >ck

false if t = [call main] ∧ ck 6= >ck

α({currentCall (t)}) v ck ∧

∃ ck′ ∈ CK .

matchesContour [trans](prefix(t, currentCall (t)), ck′)

otherwise

Proof of lemma 14

58



Only the third case needs to be shown equivalent. We take the third case from the definition of
matchesContour , and expand BC:

∃ ck′ ∈ CK, d ∈ D . α({currentCall(t)}) v d ∧
ck = d ∧
matchesContour [trans](prefix (t, currentCall(t)), ck′)

⇐⇒
∃ ck′ ∈ CK, d ∈ D . α({currentCall(t)}) v ck ∧

ck = d ∧
matchesContour [trans](prefix (t, currentCall(t)), ck′)

⇐⇒
α({currentCall(t)}) v ck ∧
∃ ck′ ∈ CK, d ∈ D . ck = d ∧

matchesContour [trans](prefix (t, currentCall(t)), ck′)

⇐⇒
α({currentCall(t)}) v ck ∧
∃ ck′ ∈ CK . matchesContour [trans](prefix (t, currentCall(t)), ck′)

�

6.5 Soundness

We want to show that Fi is sound if F is sound. The definition of soundness of Fi is the same as that for
F , except that it is adapted for the fact that we have a global map as input to Fi (instead of just a tuple of
dataflow facts for the input edges of the node).

Definition 26 An interprocedural flow function Fi is said to be sound iff it satisfies the following condition:

∀(n,mic,mi) ∈ Node × (Edge→ Dic) × (Edge→ Di) .
αi(mic) v mi ⇒ αi(Fic(n,mic)) vi Fi(n,mi)

Theorem 10 (main interprocedural soundness) If F , callerToCallee and calleeToCaller are all sound
then Fi is sound.

Proof of theorem 10

We need to show:
∀(n,mic,mi) ∈ Node × (Edge→ Dic) × (Edge→ Di) .

αi(mic) v mi ⇒ αi(Fic(n,mic)) vi Fi(n,mi)

Pick n ∈ Node , mic ∈ (Edge → Dic) and mi ∈ (Edge → Di) and assume αi(mic) vi mi. We now want to
show αi(Fic(n,mic)) vi Fi(n,mi).

• Case where stmtAt(n) = [Call fn]

There are two output edges to a call node, so we must show αi(Fic(n,mic)[0]) vi Fi(n,mi)[0] and
αi(Fic(n,mic)[1]) vi Fi(n,mi)[1].

59



– Proof of αi(Fic(n,mic)[0]) vi Fi(n,mi)[0]

Let f1 = αi(Fic(n,mic)[0]) and f2 = Fi(n,mi)[0]. We must show ∀ ck ∈ CK . f1(ck) v f2(ck).
Pick ck ∈ CK, and show f1(ck) v f2(ck).

Using the definition of αi and of Fic, we get:

f1(ck) = α(T )
where T = {lastState(step(t)) | t ∈ mic(outEdge(fn)) ∧

callSite(t) = n ∧matchesContour(step(t), ck)})

Using the definition of Fi, we get:

f2(ck) = calleeToCaller (n,mi(outEdge(fn))(x))
where x = BC(ck,mi(in(n)[0])(ck), n)

Since αi(mic) vi mi, we get:

αi(mic(outEdge(fn))) vi mi(outEdge(fn))
⇒ ∀ ck . αi(mic(outEdge(fn)))(ck) v mi(outEdge(fn))(ck)
⇒ αi(mic(outEdge(fn)))(x) v mi(outEdge(fn))(x)
⇒ α({lastState(t) | t ∈ mic(outEdge(fn)) ∧ matchesContour (t, x)} v mi(outEdge(fn))(x)

Using lemma 10 with X = {t | t ∈ mic(outEdge(fn)) ∧ matchesContour (t, x)} we get:

α({lastState(step(t)) | t ∈ mic(outEdge(fn)) ∧ matchesContour (t, x)} v
callerToCallee (n,mi(outEdge(fn))(x))

Or:

α({lastState(step(t)) | t ∈ mic(outEdge(fn)) ∧ matchesContour(t, x)} v f2(ck)

Let S = {lastState(step(t)) | t ∈ mic(outEdge(fn)) ∧ matchesContour (t, x)} so that:

α(S) v f2(ck)

All we need to show now is that for t ∈ mic(outEdge(fn)), [callSite(t) = n ∧
matchesContour(step(t), ck)] ⇒ matchesContour(t, x). For if this is the case, then T ⊆ S
and then by the monotonicity of α we get α(T ) v α(S), or f1(ck) v α(S), which by transitivity
of v gives us f1(ck) v f2(ck).

So we pick t ∈ mic(outEdge(fn)), and assume callSite(t) = n ∧ matchesContour(step(t), ck),
and we need to show matchesContour(t, x).

Because t ∈ mic(outEdge(fn)), we know that t 6= [call main], and so we are the third case of the
definition of matchesContour . Thus, we need to show:

∃ ck′ ∈ CK, d ∈ D . α({currentCall(t)}) v d ∧
x = BC(ck′, d,node(currentCall (t))) ∧
matchesContour(prefix (t, currentCall(t)), ck′)

The claim is that setting ck′ = ck and d = mi(in(n)[0])(ck) makes the existential valid.

60



To show this, we need to show:

α({currentCall(t)}) v mi(in(n)[0])(ck) ∧
x = BC(ck,mi(in(n)[0])(ck),node(currentCall(t))) ∧
matchesContour (prefix(t, currentCall (t)), ck)

We do these in reverse order:

∗ Proof of matchesContour (prefix(t, currentCall (t)), ck)
Since t ∈ mic(outEdge(fn)), t is about to step out of a call. As a result, step(t) is at the
return site of the call node n.
Let t′ = prefix (t, currentCall(t)). t′ is the prefix of the trace t right about to execute the call
node n. Thus, t′ is the trace right before the call node n is executed, and step(t) is the trace
once execution has returned from the call.
Thus, t′ and step(t) are at the same calling level, meaning that currentCall(t′) =
currentCall(step(t)).
We also know that n cannot be a call to main, since the original call to main is not executed
or analyzed. Thus, t′ 6= [call main]. Also, step(t) cannot be [call main] since [call main]
cannot result from stepping.
Using lemma 11 with t1 = t′ and t2 = step(t), we get matchesContour (t′) =
currentCall(step(t)).
Since we know matchesContour (step(t), ck), then matchesContour(t′, ck), or equivalently
matchesContour (prefix (t, currentCall(t)), ck).

∗ Proof of x = BC(ck,mi(in(n)[0])(ck),node(currentCall(t)))
We already know that x = BC(ck,mi(in(n)[0](ck)), n). We also assumed that n = callSite(t).
Expanding the definition of callSite, we get n = node(currentCall(t)). And so we therefore
get x = BC(ck,mi(in(n)[0])(ck),node(currentCall(t))).

∗ Proof of α({currentCall(t)}) v mi(in(n)[0])(ck)
Let t′ = prefix (t, currentCall(t)). By the definition of prefix, we get that currentCall(t) =
lastState(t′).
So we need to show α({lastState(t′)}) v mi(in(n)[0])(ck).
Since αi(mic) vi mi, we get:

αi(mic(in(n)[0])) vi mi(in(n)[0])
⇒ ∀ ck . αi(mic(in(n)[0]))(ck) v mi(in(n)[0])(ck)
⇒ αi(mic(in(n)[0]))(ck) v mi(in(n)[0])(ck)
⇒ α({lastState(t) | t ∈ mic(in(n)[0]) ∧ matchesContour (t, ck)} v mi(in(n)[0])(ck)

We have already shown that matchesContour(t′, ck).
Furthermore, because t ∈ mic(outEdge(fn)) and t′ is a prefix of t, by the definition of the
concrete semantics we must have t′ ∈ mic(in(n)[0].
Thus, we get that:

{lastState(t′)} ⊆ {lastState(t) | t ∈ mic(in(n)[0]) ∧ matchesContour(t, ck)}
⇒ α({lastState(t′)}) v α({lastState(t) | t ∈ mic(in(n)[0]) ∧ matchesContour (t, ck)}) monotonic α
⇒ α({lastState(t′)}) v mi(in(n)[0])(ck) transitivity of v

– Proof of αi(Fic(n,mic)[1]) vi Fi(n,mi)[1]

61



∗ Transfer function strategy
Let f1 = αi(Fic(n,mic)[1]) and f2 = Fi(n,mi)[1]. We must show ∀ ck ∈ CK . f1(ck) v f2(ck).
Pick ck ∈ CK, and show f1(ck) v f2(ck).
Using the definition of αi and of Fic, we get:

f1(ck) = α({lastState(step(t)) | t ∈ mic(in(n)[0]) ∧ matchesContour [trans](step(t), ck)})
(6.3)

We know that step(t) cannot be equal to [call main], since step(t) has already taken at least
one step. Thus, we can expand the definition of matchesContour [trans](step(t), ck) in (6.3)
into the third case:

f1(ck) = α({lastState(step(t)) | t ∈ mic(in(n)[0])∧
α({currentCall(step(t))}) v ck ∧
∃ ck′ ∈ CK .

matchesContour [trans](prefix (t, currentCall(step(t))), ck′)})

Since currentCall(step(t)) = lastState(t), we get:

f1(ck) = α({lastState(step(t)) | t ∈ mic(in(n)[0])∧
α({lastState(t)}) v ck ∧
∃ ck′ ∈ CK .

matchesContour [trans](prefix (t, lastState(t)), ck′)})

Let T be the set that is a parameter to α above so that f1(ck) = α(T ).
Let f ′

1(ck) be defined as:

f ′
1(ck) = α({lastState(step(t)) | t ∈ mic(in(n)[0])∧

α({lastState(step(t))}) v callerToCallee (n, ck) ∧
∃ ck′ ∈ CK .

matchesContour [trans](prefix (t, lastState(t)), ck′)})
(6.4)

Let S be the set that is the parameter to α above, so that f ′
1(ck) = α(S).

From lemma 9, we know that:

[α({currentCall(step(t))}) v ck] ⇒ [α({lastState(step(t))}) v callerToCallee(n, ck)]

Thus T ⊆ S and by the monotonicity of α, α(T ) v α(S), or f1(ck) v f ′
1(ck).

We wanted to show f1(ck) v f2(ck). Because of f1(ck) v f ′
1(ck) and the transitivity of v, it

suffices to show f ′
1(ck) v f2(ck)

Because of the condition α({lastState(step(t))}) v callerToCallee(n, ck) in (6.4), we have
∀ η ∈ S . α({η}) v callerToCallee (n, ck).
From the continuity of α, we know that for any set X of elements from 2State we have
α(
⊔
X) v

⊔
{α(x) | x ∈ X}. Since t is ∪ we get:

α(
⋃
X) v

⊔
{α(x) | x ∈ X} (6.5)

If we let X = {{η} | η ∈ S} then from (6.5) we get:

62



α(
⋃
X) v

⊔
{α(x) | x ∈ X}

⇒ α(S) v
⊔
{α({η}) | η ∈ S}

⇒ f ′
1(ck) v

⊔
{α({η}) | η ∈ S}

By the monotonicity of t, which says (a v b) ∧ (c v d) ⇒ (a t c) v (b t d), and from
∀ η ∈ S . α({η}) v callerToCallee (n, ck), we get:

⊔
{α({η}) | η ∈ S} v callerToCallee(n, ck)

By transitivity of v we get:

f ′
1(ck) v callerToCallee (n, ck)

Using the definition of Fi, we get:

f2(ck) = callerToCallee (n, ck)

And therefore:
f ′
1(ck) v f2(ck)

∗ Call-strings strategy
Let f1 = αi(Fic(n,mic)[1]) and f2 = Fi(n,mi)[1]. We must show ∀ ck ∈ CK . f1(ck) v f2(ck).
Pick ck ∈ CK, and show f1(ck) v f2(ck).
Using the definition of αi and of Fic, we get:

f1(ck) = α({lastState(step(t)) | t ∈ mic(in(n)[0]) ∧ matchesContour(step(t), ck)})

Using the definition of Fi, we get:

f2(ck) =
⊔

{callerToCallee(n,mi(in(n)[0])(ck′)) | ck = BC(ck′,mi(in(n)[0])(ck′), n)}

Or equivalently:

f2(ck) =
⊔

ck′∈X{callerToCallee(n,mi(in(n)[0])(ck′))}

where X = {ck′ | ck = BC(ck′,mi(in(n)[0])(ck′), n)}
(6.6)

Since αi(mic) vi mi, we get:

αi(mic(in(n)[0])) vi mi(in(n)[0])
⇒ ∀ ck . αi(mic(in(n)[0]))(ck) v mi(in(n)[0])(ck)
⇒ ∀ ck . α({lastState(t) | t ∈ mic(in(n)[0]) ∧ matchesContour (t, ck)}) v mi(in(n)[0])(ck)

Since t ∈ mic(in(n)[0]), t is about to execute a call. Using lemma 9 with X = {t | t ∈
mic(in(n)[0]) ∧ matchesContour (t, ck)}, we get:

∀ ck . α({lastState(step(t)) | t ∈ mic(in(n)[0]) ∧ matchesContour (t, ck)}) v
callerToCallee (n,mi(in(n)[0])(ck))

(6.7)

63



Since we know ∀ t ∈ Traces . ∃ ck ∈ CK . matchesContour (t, ck), we can re-express the
definition of f1 as:

f1(ck) = α(
⋃

ck′∈CK{lastState(step(t)) | t ∈ mic(in(n)[0])∧
matchesContour (step(t), ck) ∧
matchesContour (t, ck′)})

(6.8)

All we did here was re-express the argument to α as a union over all the ck′, and for each ck′

we only look at those traces that satisfy matchesContour (t, ck′). This definition is equivalent
to the original one because we know that each trace t will be covered by some ck ′.
Let P (t, ck′) , t ∈ mic(in(n)[0]) ∧ matchesContour(step(t), ck) ∧ matchesContour (t, ck′) so
that (6.8) becomes:

f1(ck) = α(
⋃

ck′∈CK

{lastState(step(t)) | P (t, ck′)}) (6.9)

Using (6.5) and (6.9) we get:

f1(ck) v
⊔

ck′∈CK

{α({lastState(step(t)) | P (t, ck′)})} (6.10)

Since we are using call-strings, from lemma 13 we get:

P (t, ck′) ⇒ ck = BC(ck′,mi(in(n)[0])(ck′), n)

Then (6.10) becomes:

f1(ck) v
⊔

ck′∈CK

{α({lastState(step(t)) | P (t, ck′) ∧ ck = BC(ck′,mi(in(n)[0])(ck′), n)})}

(6.11)
which becomes:

f1(ck) v
⊔

ck′∈X{α({lastState(step(t)) | P (t, ck′)})}

where X = {ck′ | ck = BC(ck′,mi(in(n)[0])(ck′), n)}
(6.12)

Equation (6.12) is equivalent to (6.11) because for whatever ck′ that is not in X , ck =
BC(ck′,mi(in(n)[0])(ck′), n) will be false in (6.11), making the set that is a parameter to α
the empty set. Since α(∅) = ⊥, this ck′ does not affect the join in (6.11), and thus can be
omitted.
Now, notice the parallel between equations (6.6) and (6.12).
By the monotonicity of t, which says (a v b) ∧ (c v d) ⇒ (a t c) v (b t d), all we need to
show now is that for any ck′ ∈ X , we have:

α({lastState(step(t)) | P (t, ck′)}) v callerToCallee (n,mi(in(n)[0])(ck′)) (6.13)

We therefore pick a ck′ ∈ X and prove (6.13). We instantiate (6.7) with ck′ to get:

α({lastState(step(t)) | t ∈ mic(in(n)[0]) ∧ matchesContour (t, ck′)}) v
callerToCallee (n,mi(in(n)[0])(ck′))

(6.14)

64



Since P (t, ck′) ⇒ [t ∈ mic(in(n)[0]) ∧ matchesContour(t, ck′)}], we get:

{lastState(step(t)) | P (t, ck′)} ⊆ {lastState(step(t)) | t ∈ mic(in(n)[0])∧matchesContour (t, ck′)}

which by the monotonicity of α gives:

α({lastState(step(t)) | P (t, ck′)}) v α({lastState(step(t)) | t ∈ mic(in(n)[0])∧matchesContour (t, ck′)})

which combined with (6.14) and transitivity of v gives:

α({lastState(step(t)) | P (t, ck′)}) v mi(in(n)[0])(ck′)

This completes the proof of (6.13), which is what we needed to prove.

• Case where stmtAt(n) 6= [Call . . .]

We want to show αi(Fic(n,mic)[k]) vi Fi(n,mi)[k] for k ∈ [1..l], where l is the length of out(n).

Let f1 = αi(Fic(n,mic)[k]) and f2 = Fi(n,mi)[k]. We must show ∀ ck ∈ CK . f1(ck) v f2(ck). Pick
ck ∈ CK , and show f1(ck) v f2(ck).

Using the definition of αi and Fic, we get:

f1(ck) = α({lastState(t) | matchesContour (t, ck) ∧ edge(lastMachineConfig (t)) = out(n)[k] ∧
∃ t′ ∈ Trace , i ∈ Natural . [t′ ∈ mic(in(n)[i]) ∧ t′ → t]})

(6.15)

Using the definition of Fi, we get:

f2(ck) = F (n, [d1, . . . , dj ])[k] where di = mi(in(n)[i])(ck) for i ∈ [1..j] (6.16)

From the soundness of F , we know:

∀(n, cs, ds) ∈ Node ×D∗
c ×D∗ .

α(cs) v ds⇒ α(Fc(n, cs)) v F (n, ds)
(6.17)

Let cs , [c1, . . . , cj ] where ci = {lastState(t) | t ∈ mic(in(n)[i]) ∧ matchesContour(t, ck)} for i ∈ [1..j]

Let ds , [d1, . . . , dj ] where di = mi(in(n)[i](ck) for i ∈ [1..j]

We have:

αi(mic) vi mi

⇒ ∀i ∈ [1..j] . αi(mic(in(n)[i])) vi mi(in(n)[i])
⇒ ∀i ∈ [1..j] . αi(mic(in(n)[i]))(ck) vi mi(in(n)[i])(ck)
⇒ ∀i ∈ [1..j] . αi(mic(in(n)[i]))(ck) vi di (defn of di)
⇒ ∀i ∈ [1..j] . α({lastState(t) | t ∈ mic(in(n)[i]) ∧ matchesContour (t, ck)}) v di (defn of αi)
⇒ ∀i ∈ [1..j] . α(ci) v di (defn of ci)
⇒ α(cs) v ds (defn of cs and ds)
⇒ α(Fc(n, cs)) v F (n, ds) (using (6.17))
⇒ α(Fc(n, cs)[k]) v F (n, ds)[k]
⇒ α(Fc(n, cs)[k]) v f2(ck) (using (6.16))

65



Because of transitivity of v, to show f1(ck) v f2(ck), we now only need to show:

f1(ck) v α(Fc(n, cs)[k]) (6.18)

From equation (6.15), we have:

f1(ck) = α(X)
where X = {lastState(t) | matchesContour (t, ck) ∧ edge(lastMachineConfig (t)) = out(n)[k] ∧

∃ t′ ∈ Trace, i ∈ Natural . [t′ ∈ mic(in(n)[i]) ∧ t′ → t]})

Using the definition of Fc from equation (2.1), we get:

α(Fc(n, cs)[k]) = α(Y )

where Y = {η | ∃ η′ ∈ State, i ∈ Natural . [η′ ∈ cs[i] ∧ i, η′
n
↪→ k, η]})

Thus (6.18) reduces to α(X) v α(Y ), which by the monotonicity of α, reduces to showing that X vc Y ,
or X ⊆ Y .

So we assume η ∈ X , and show η ∈ Y .

Because η ∈ X , we know that there exists t ∈ Trace, t′ ∈ Trace and i ∈ Natural such that:

η = lastState(t) (6.19)

matchesContour(t, ck) ∧ (6.20)

edge(lastMachineConfig (t)) = out(n)[k] ∧ (6.21)

t′ ∈ mic(in(n)[i]) ∧ (6.22)

t′ → t (6.23)

To show that η ∈ Y , we need to show:

∃ η′ ∈ State, i′ ∈ Natural . [η′ ∈ cs[i′] ∧ i′, η′
n
↪→ k, η] (6.24)

The claim is that η′ = lastState(t′) and i′ = i make the existential (6.24) valid. To show this we need
to show:

lastState(t′) ∈ cs[i] ∧ (6.25)

i, lastState(t′)
n
↪→ k, η (6.26)

Because of (6.19), (6.26) is equivalent to i, lastState(t′)
n
↪→ k, lastState(t).

Because stmtAt(n) is not a call, this is equivalent to i, lastState(t′)
n
→ k, lastState(t), which follows

from (6.21), (6.22) and (6.23).

To show (6.25), we recall that from the definition of cs, we have:

66



cs[i] = {lastState(t) | t ∈ mic(in(n)[i]) ∧ matchesContour (t, ck)}

Thus to show (6.25), we just need to show:

t′ ∈ mic(in(n)[i]) ∧ (6.27)

matchesContour(t′, ck) (6.28)

We know (6.27) from (6.22).

When t′ steps to t, it cannot be executing a call because stmtAt(n) 6= [Call . . .]. There-
fore currentCall(t′) = currentCall(t). Using lemma 11 with t1 = t and t2 = t′, we get
matchesContour(t, ck) = matchesContour (t′, ck). Since we know matchesContour (t, ck) from (6.20),
we get matchesContour (t′, ck), which shows (6.28).

�

67



Bibliography

[1] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proceedings of the Fourth ACM Symposium
on Principles of Programming Languages, pages 238–252, Los Angeles CA, January 1977.

[2] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In Proceedings of
the Sixth ACM Symposium on Principles of Programming Languages, pages 269–282, San Antonio TX,
January 1979.

[3] Sorin Lerner, David Grove, and Craig Chambers. Composing dataflow analyses and transformations. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland OR, January 2002.

[4] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automatically proving the correctness
of program analyses and transformations via local rules. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Long Beach OR, January 2005.

68



Appendix A

Rhodium code

We present here all of our Rhodium code. This code is copy-and-pasted from our current Rhodium file.
The following code has been checked for soundness automatically using our automated soundness checking
strategy.

-- Some global declarations using simple naming conventions

-- (X,Y,Z,I,J,A,B are vars, C’s are contants, etc.), so that we don’t

-- have to declare variables on each rule.

decl X:Var, Y:Var, C:Const, C1:Const, C2:Const, C3:Const, L1:Label, L2:Label,

A:Var, B:Var, P:Fun, Z:Var, E:NonCallExpr, E1:NonCallExpr,

E2:NonCallExpr, E3:NonCallExpr, S:Stmt, Ed:Edge,

OP:BinaryOp, I:Var, J:Var, L:Loc, HS:HeapSummary, HS1:HeapSummary,

HS2:HeapSummary, N:CFGNode, BE:BaseExpr, BE1:BaseExpr, BE2:BaseExpr in

-------------------------------------------------------------------------

--

-- stmt fact

--

-------------------------------------------------------------------------

define node fact stmt(S:Stmt) = eq(S, currStmt)

-------------------------------------------------------------------------

--

-- syntacticDef

--

-------------------------------------------------------------------------

define node fact syntacticDef(Z:Var) =

case currStmt of

[skip] => false

[decl X] => eq(Z,X)

[decl X[I]] => eq(Z,X)

[if X goto L1 else L2] => false

[if C goto L1 else L2] => false

69



[X := C] => eq(Z,X)

[X := Y] => eq(Z,X)

[*X := Y] => false

[X := *Y] => eq(Z,X)

[X := &Y] => eq(Z,X)

[X := new] => eq(Z,X)

[X := A ‘OP B] => eq(Z,X)

[X := A ‘OP C] => eq(Z,X)

[X := C ‘OP B] => eq(Z,X)

[X := C1 ‘OP C2] => eq(Z,X)

[X := P(Y)] => eq(Z,X)

[X := new [I]] => eq(Z,X)

[X := A[I]] => eq(Z,X)

[X := *(A[I])] => eq(Z,X)

[*(A[I]) := X] => false

[*(A[I]) := C] => false

[X := (&A)[I]] => eq(Z,X)

[X := *((&A)[I])] => eq(Z,X)

[*((&A)[I]) := X] => false

[*((&A)[I]) := C] => false

[return X] => false

endcase

-------------------------------------------------------------------------

--

-- syntacticDefConserv

-- This defines a version of syntacticDef that is conservative for

-- assignment of an array element’s value to a variable. This

-- conservative definition is used only in one rule for

-- equalsTimes. That rule terminates with the conservative version

-- but not with the less conservative version.

--

-------------------------------------------------------------------------

define node fact syntacticDefConserv(Z:Var) =

case currStmt of

[skip] => false

[decl X] => eq(Z,X)

[decl X[I]] => eq(Z,X)

[if X goto L1 else L2] => false

[if C goto L1 else L2] => false

[X := C] => eq(Z,X)

[X := Y] => eq(Z,X)

[*X := Y] => false

[X := *Y] => eq(Z,X)

[X := &Y] => eq(Z,X)

[X := new] => eq(Z,X)

[X := A ‘OP B] => eq(Z,X)

[X := A ‘OP C] => eq(Z,X)

[X := C ‘OP B] => eq(Z,X)

[X := C1 ‘OP C2] => eq(Z,X)

[X := P(Y)] => eq(Z,X)

70



[X := new [I]] => eq(Z,X)

[X := A[I]] => eq(Z,X)

[X := *(A[I])] => true

[*(A[I]) := X] => false

[*(A[I]) := C] => false

[X := (&A)[I]] => eq(Z,X)

[X := *((&A)[I])] => eq(Z,X)

[*((&A)[I]) := X] => false

[*((&A)[I]) := C] => false

[return X] => false

endcase

-------------------------------------------------------------------------

--

-- syntacticUse

--

-------------------------------------------------------------------------

define node fact syntacticUse(Z:Var) =

case currStmt of

[skip] => false

[decl X] => false

[decl X[I]] => false

[if X goto L1 else L2] => eq(Z,X)

[if C goto L1 else L2] => false

[X := C] => false

[X := Y] => eq(Z,Y)

[*X := Y] => eq(Z,Y) || eq(Z,X)

[X := *Y] => eq(Z,Y)

[X := &Y] => eq(Z,Y)

[X := new] => false

[X := A ‘OP B] => eq(Z,A) || eq(Z,B)

[X := A ‘OP C] => eq(Z,A)

[X := C ‘OP B] => eq(Z,B)

[X := C1 ‘OP C2] => false

[X := P(Y)] => eq(Z,Y)

[X := new [I]] => eq(Z,I)

[X := A[I]] => eq(Z,I) || eq(Z,A)

[X := *(A[I])] => eq(Z,I) || eq(Z,A)

[*(A[I]) := X] => eq(Z,A) || eq(Z,I) || eq(Z,X)

[*(A[I]) := C] => eq(Z,A) || eq(Z,I)

[X := (&A)[I]] => eq(Z,I) || eq(Z,A)

[X := *((&A)[I])] => eq(Z,I) || eq(Z,A)

[*((&A)[I]) := X] => eq(Z,A) || eq(Z,I) || eq(Z,X)

[*((&A)[I]) := C] => eq(Z,A) || eq(Z,I)

[return X] => eq(Z,X)

endcase

-------------------------------------------------------------------------

--

-- syntacticUnchanged

--

71



-------------------------------------------------------------------------

define node fact syntacticUnchanged(E:NonCallExpr) =

case E of

[Z] => !syntacticDef(Z)@currNode

[&Z] => !syntacticDef(Z)@currNode

[C] => true

[C1 ‘OP C2] => true

[X ‘OP Y] => !syntacticDef(X)@currNode && !syntacticDef(Y)@currNode

[X ‘OP C] => !syntacticDef(X)@currNode

[C ‘OP X] => !syntacticDef(X)@currNode

[*Z] => !syntacticDef(Z)@currNode

[*(A[I])] => !syntacticDef(A)@currNode && !syntacticDef(I)@currNode

[A[I]] => !syntacticDef(A)@currNode && !syntacticDef(I)@currNode

[*((&A)[I])] => !syntacticDef(A)@currNode && !syntacticDef(I)@currNode

[(&A)[I]] => !syntacticDef(A)@currNode && !syntacticDef(I)@currNode

endcase

-------------------------------------------------------------------------

--

-- mayDef

--

-------------------------------------------------------------------------

define node fact mayDef(Z:Var) =

case currStmt of

[skip] => syntacticDef(Z)@currNode

[decl X] => syntacticDef(Z)@currNode

[decl X[I]] => syntacticDef(Z)@currNode

[if X goto L1 else L2] => syntacticDef(Z)@currNode

[if C goto L1 else L2] => syntacticDef(Z)@currNode

[X := C] => syntacticDef(Z)@currNode

[X := Y] => syntacticDef(Z)@currNode

[*X := Y] => syntacticDef(Z)@currNode ||

mayPointTo(X,Z)@cfg_in

[X := *Y] => syntacticDef(Z)@currNode

[X := &Y] => syntacticDef(Z)@currNode

[X := new] => syntacticDef(Z)@currNode

[X := A ‘OP B] => syntacticDef(Z)@currNode

[X := A ‘OP C] => syntacticDef(Z)@currNode

[X := C ‘OP B] => syntacticDef(Z)@currNode

[X := C1 ‘OP C2] => syntacticDef(Z)@currNode

[X := P(Y)] => true --syntacticDef(Z)@currNode ||

--!isNotTainted(Z)@cfg_in

[X := new [I]] => syntacticDef(Z)@currNode

[X := A[I]] => syntacticDef(Z)@currNode

[X := *(A[I])] => syntacticDef(Z)@currNode

[*(A[I]) := X] => syntacticDef(Z)@currNode

[*(A[I]) := C] => syntacticDef(Z)@currNode

[X := (&A)[I]] => syntacticDef(Z)@currNode

[X := *((&A)[I])] => syntacticDef(Z)@currNode

72



[*((&A)[I]) := X] => syntacticDef(Z)@currNode

[*((&A)[I]) := C] => syntacticDef(Z)@currNode

[return X] => syntacticDef(Z)@currNode

endcase

-------------------------------------------------------------------------

--

-- mayDefConserv

-- This defines a version of mayDef that is conservative

-- because it uses the conservative definition of syntacticDef.

--

-------------------------------------------------------------------------

define node fact mayDefConserv(Z:Var) =

case currStmt of

[skip] => syntacticDefConserv(Z)@currNode

[decl X] => syntacticDefConserv(Z)@currNode

[decl X[I]] => syntacticDefConserv(Z)@currNode

[if X goto L1 else L2] => syntacticDefConserv(Z)@currNode

[if C goto L1 else L2] => syntacticDefConserv(Z)@currNode

[X := C] => syntacticDefConserv(Z)@currNode

[X := Y] => syntacticDefConserv(Z)@currNode

[*X := Y] => syntacticDefConserv(Z)@currNode ||

mayPointTo(X,Z)@cfg_in

[X := *Y] => syntacticDefConserv(Z)@currNode

[X := &Y] => syntacticDefConserv(Z)@currNode

[X := new] => syntacticDefConserv(Z)@currNode

[X := A ‘OP B] => syntacticDefConserv(Z)@currNode

[X := A ‘OP C] => syntacticDefConserv(Z)@currNode

[X := C ‘OP B] => syntacticDefConserv(Z)@currNode

[X := C1 ‘OP C2] => syntacticDefConserv(Z)@currNode

[X := P(Y)] => true --syntacticDef(Z)@currNode ||

--!isNotTainted(Z)@cfg_in

[X := new [I]] => syntacticDefConserv(Z)@currNode

[X := A[I]] => syntacticDefConserv(Z)@currNode

[X := *(A[I])] => syntacticDefConserv(Z)@currNode

[*(A[I]) := X] => syntacticDefConserv(Z)@currNode

[*(A[I]) := C] => syntacticDefConserv(Z)@currNode

[X := (&A)[I]] => syntacticDefConserv(Z)@currNode

[X := *((&A)[I])] => syntacticDefConserv(Z)@currNode

[*((&A)[I]) := X] => syntacticDefConserv(Z)@currNode

[*((&A)[I]) := C] => syntacticDefConserv(Z)@currNode

[return X] => syntacticDefConserv(Z)@currNode

endcase

-------------------------------------------------------------------------

--

-- mayUse

--

-------------------------------------------------------------------------

73



define node fact mayUse(Z:Var) =

case currStmt of

[skip] => syntacticUse(Z)@currNode

[decl X] => syntacticUse(Z)@currNode

[decl X[I]] => syntacticUse(Z)@currNode

[if X goto L1 else L2] => syntacticUse(Z)@currNode

[if C goto L1 else L2] => syntacticUse(Z)@currNode

[X := C] => syntacticUse(Z)@currNode

[X := Y] => syntacticUse(Z)@currNode

[*X := Y] => syntacticUse(Z)@currNode

[X := *Y] => syntacticUse(Z)@currNode

|| mayPointTo(Y,Z)@cfg_in

[X := &Y] => syntacticUse(Z)@currNode

[X := new] => syntacticUse(Z)@currNode

[X := A ‘OP B] => syntacticUse(Z)@currNode

[X := A ‘OP C] => syntacticUse(Z)@currNode

[X := C ‘OP B] => syntacticUse(Z)@currNode

[X := C1 ‘OP C2] => syntacticUse(Z)@currNode

[X := P(Y)] => true

[X := new [I]] => true

[X := A[I]] => true

[X := *(A[I])] => true

[*(A[I]) := X] => true

[*(A[I]) := C] => true

[X := (&A)[I]] => true

[X := *((&A)[I])] => true

[*((&A)[I]) := X] => true

[*((&A)[I]) := C] => true

[return X] => syntacticUse(Z)@currNode

endcase

-------------------------------------------------------------------------

--

-- unchanged

--

-------------------------------------------------------------------------

define node fact unchanged(E:NonCallExpr) =

case E of

[Z] => !mayDef(Z)@currNode

[&Z] => !mayDef(Z)@currNode

[C] => true

[C1 ‘OP C2] => true

[X ‘OP Y] => !mayDef(X)@currNode && !mayDef(Y)@currNode

[X ‘OP C] => !mayDef(X)@currNode

[C ‘OP X] => !mayDef(X)@currNode

[*Z] =>

case currStmt of

[skip] => !mayDef(Z)@currNode

[decl X] => !mayDef(Z)@currNode

[decl X[I]] => !mayDef(Z)@currNode

[if X goto L1 else L2] => !mayDef(Z)@currNode

74



[if C goto L1 else L2] => !mayDef(Z)@currNode

[X := C] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := Y] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[*X := Y] => false

[X := *Y] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := &Y] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := new] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := A ‘OP B] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := A ‘OP C] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := C ‘OP B] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := C1 ‘OP C2] => !mayDef(Z)@currNode &&

dnpHeapSummary(Z,X)@cfg_in

[X := P(Y)] => false

[X := new [I]] => false

[X := A[I]] => false

[X := *(A[I])] => false

[*(A[I]) := X] => false

[*(A[I]) := C] => false

[X := (&A)[I]] => false

[X := *((&A)[I])] => false

[*((&A)[I]) := X] => false

[*((&A)[I]) := C] => false

[return X] => !mayDef(Z)@currNode

endcase

[A[I]] => false

[*(A[I])] => false

[(&A)[I]] => false

[*((&A)[I])] => false

endcase

-------------------------------------------------------------------------

--

-- unchangedConserv

-- This defines a version of unchanged that is conservative

-- because is uses the conservative definition of mayDef.

--

-------------------------------------------------------------------------

define node fact unchangedConserv(E:NonCallExpr) =

case E of

[Z] => !mayDefConserv(Z)@currNode

[&Z] => !mayDefConserv(Z)@currNode

[C] => true

75



[C1 ‘OP C2] => true

[X ‘OP Y] => !mayDefConserv(X)@currNode &&

!mayDefConserv(Y)@currNode

[X ‘OP C] => !mayDefConserv(X)@currNode

[C ‘OP X] => !mayDefConserv(X)@currNode

[*Z] =>

case currStmt of

[skip] => !mayDefConserv(Z)@currNode

[decl X] => !mayDefConserv(Z)@currNode

[decl X[I]] => !mayDefConserv(Z)@currNode

[if X goto L1 else L2] => !mayDefConserv(Z)@currNode

[if C goto L1 else L2] => !mayDefConserv(Z)@currNode

[X := C] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := Y] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[*X := Y] => false

[X := *Y] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := &Y] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := new] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := A ‘OP B] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := A ‘OP C] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := C ‘OP B] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := C1 ‘OP C2] => !mayDefConserv(Z)@currNode &&

doesNotPointTo(Z,X)@cfg_in

[X := P(Y)] => false

[X := new [I]] => false

[X := A[I]] => false

[X := *(A[I])] => false

[*(A[I]) := X] => false

[*(A[I]) := C] => false

[X := (&A)[I]] => false

[X := *((&A)[I])] => false

[*((&A)[I]) := X] => false

[*((&A)[I]) := C] => false

[return X] => !mayDefConserv(Z)@currNode

endcase

[A[I]] => false

[*(A[I])] => false

[(&A)[I]] => false

[*((&A)[I])] => false

endcase

-------------------------------------------------------------------------

--

76



-- addrTaken

--

-------------------------------------------------------------------------

define node fact addrTaken(Z:Var) =

case currStmt of

[skip] => false

[decl X] => false

[decl X[I]] => false

[if X goto L1 else L2] => false

[if C goto L1 else L2] => false

[X := C] => false

[X := Y] => false

[*X := Y] => false

[X := *Y] => false

[X := &Y] => eq(Z,Y)

[X := new] => false

[X := A ‘OP B] => false

[X := A ‘OP C] => false

[X := C ‘OP B] => false

[X := C1 ‘OP C2] => false

[X := P(Y)] => false

[X := new [I]] => false

-- This may be able to be made less conservative

[X := A[I]] => true

[X := *(A[I])] => false

[*(A[I]) := X] => false

[*(A[I]) := C] => false

-- This may be able to be made less conservative

[X := (&A)[I]] => true

[X := *((&A)[I])] => false

[*((&A)[I]) := X] => false

[*((&A)[I]) := C] => false

[return X] => false

endcase

-------------------------------------------------------------------------

--

-- isNotTainted analysis

--

-------------------------------------------------------------------------

-- We stopped using this analysis

-- define edge fact isNotTainted(X:Var)

-- -- The meaning says that for any location L, the result of

-- -- evaluating *L (using evalLocDeref, which is a primitive, much

-- -- like evalExpr) is not equal to &X. In other words, no store

-- -- location points to X.

-- with meaning forall L:Loc . isLoc(L) => neq(evalLocDeref(eta, L),

-- evalExpr(eta, [&X]))

--

-- if stmt([decl X])@currNode

77



-- then isNotTainted(X)@cfg_out

--

-- if isNotTainted(X)@cfg_in && !addrTaken(X)@currNode

-- then isNotTainted(X)@cfg_out

-------------------------------------------------------------------------

--

-- Andersen pointer analysis

--

-------------------------------------------------------------------------

define edge fact doesNotPointTo(X:Var, Y:Var)

with meaning neq(X, [&Y])

if stmt([*A := B])@currNode &&

doesNotPointTo(B, Y)@cfg_in &&

doesNotPointTo(X, Y)@cfg_in

then doesNotPointTo(X, Y)@cfg_out

if doesNotPointTo(X, Y)@cfg_in && !mayDef(X)@currNode

then doesNotPointTo(X, Y)@cfg_out

if stmt([X := &A])@currNode && hasBeenDeclared(Y)@cfg_in && neq(A, Y)

then doesNotPointTo(X, Y)@cfg_out

if stmt([X := BE1 ‘OP BE2])@currNode && hasBeenDeclared(Y)@cfg_in

then doesNotPointTo(X, Y)@cfg_out

if stmt([X := A])@currNode && doesNotPointTo(A, Y)@cfg_in

then doesNotPointTo(X, Y)@cfg_out

if stmt([*A := B])@currNode &&

mustPointTo(A, X)@cfg_in &&

doesNotPointTo(B, Y)@cfg_in

then doesNotPointTo(X, Y)@cfg_out

if stmt([X := *A])@currNode &&

doesNotPointToHeap(A)@cfg_in &&

forall B:Var . !doesNotPointTo(A,B)@cfg_in =>

doesNotPointTo(B,Y)@cfg_in

then doesNotPointTo(X,Y)@cfg_out

define virtual edge fact mayPointTo(X:Var, Y:Var)@Ed = !dnpHeapSummary(X,Y)@Ed

define edge fact mustPointTo(X:Var, Y:Var)

with meaning eq(X, [&Y])

if stmt([X := &Y])@currNode

then mustPointTo(X, Y)@cfg_out

if mustPointTo(X, Y)@cfg_in && !mayDef(X)@currNode

78



then mustPointTo(X, Y)@cfg_out

if stmt([X := A])@currNode && mustPointTo(A,Y)@cfg_in

then mustPointTo(X, Y)@cfg_out

define edge fact hasBeenDeclared(X:Var)

-- This witness says that X is not stuck in the machine state eta,

-- which basically means that X is in the domain of the environment

-- component of eta. The predicate symbol isExprNotStuck is a primitive.

with meaning isExprNotStuck(eta, X)

if stmt([decl X])@currNode

then hasBeenDeclared(X)@cfg_out

if hasBeenDeclared(X)@cfg_in

then hasBeenDeclared(X)@cfg_out

define edge fact doesNotPointToHeap(X:Var)

with meaning exists Y:Var. eq(X, [&Y])

if stmt([X := &Y])@currNode

then doesNotPointToHeap(X)@cfg_out

if doesNotPointToHeap(X)@cfg_in && !mayDef(X)@currNode

then doesNotPointToHeap(X)@cfg_out

-------------------------------------------------------------------------

--

-- Self assignment removal

--

-------------------------------------------------------------------------

if stmt([X := X])@currNode

then transform [skip]

-------------------------------------------------------------------------

--

-- Branch folding

--

-------------------------------------------------------------------------

if stmt([if true goto L1 else L2])@currNode

then transform [if true goto L1 else L1]

if stmt([if false goto L1 else L2])@currNode

then transform [if true goto L2 else L2]

-------------------------------------------------------------------------

--

-- Constant propagation

--

-------------------------------------------------------------------------

79



define node fact baseExprHasConstValue(BE:BaseExpr, C:Const) =

case BE of

[X] => hasConstValue(X, C)@cfg_in

[C1] => eq(C, C1)

endcase

define edge fact hasConstValue(X:Var,C:Const)

with meaning eq(X,C)

if stmt([X := BE])@currNode && baseExprHasConstValue(BE, C)@currNode

then hasConstValue(X,C)@cfg_out

if stmt([X := BE1 ‘OP BE2])@currNode &&

baseExprHasConstValue(BE1,C1)@currNode &&

baseExprHasConstValue(BE2,C2)@currNode &&

eq(C, newConst(applyBinaryOp(OP, getConst(C1), getConst(C2))))

then hasConstValue(X, C)@cfg_out

if hasConstValue(X,C)@cfg_in && !mayDef(X)@currNode

then hasConstValue(X,C)@cfg_out

if stmt([X := Y])@currNode && hasConstValue(Y,C)@cfg_in

then transform [X := C]

if stmt([*(A[I]) := Y])@currNode && hasConstValue(Y,C)@cfg_in

then transform [*(A[I]) := C]

if stmt([X := BE1 ‘OP BE2])@currNode &&

baseExprHasConstValue(BE1, C1)@currNode &&

baseExprHasConstValue(BE2, C2)@currNode &&

eq(C, newConst(applyBinaryOp(OP, getConst(C1), getConst(C2))))

then transform [X := C]

define edge fact hasConstValueArray(A:Var, I:Var, C:Const)

with meaning eq([*(A[I])], C)

if stmt([*(A[I]) := BE])@currNode &&

baseExprHasConstValue(BE,C)@currNode

then hasConstValueArray(A,I,C)@cfg_out

if hasConstValueArray(A,I,C)@cfg_in &&

!mayDefArray(A)@currNode &&

!mayDef(I)@currNode &&

!mayDefArrayElem(A,I)@currNode

then hasConstValueArray(A,I,C)@cfg_out

if stmt([X := *(A[I])])@currNode && hasConstValueArray(A,I,C)@cfg_in

then transform [X := C]

-------------------------------------------------------------------------

--

-- CSE

80



--

-------------------------------------------------------------------------

define edge fact exprAvail(X:Var, E:NonCallExpr)

with meaning eq(X, E) &&

(isConst(evalExpr(eta,X)) || (isLoc(evalExpr(eta,X))))

if stmt([X := E])@currNode && syntacticUnchanged(E)@currNode

then exprAvail(X, E)@cfg_out

if exprAvail(X, E)@cfg_in && !mayDef(X)@currNode && unchanged(E)@currNode

then exprAvail(X, E)@cfg_out

if stmt([X := E])@currNode && exprAvail(Z, E)@cfg_in

then transform [X := Z]

-- Code sinking

if stmt([skip])@currNode && exprAvail(X, E)@cfg_in

then transform [X := E]

-------------------------------------------------------------------------

--

-- Copy prop

--

-------------------------------------------------------------------------

define edge fact varEqual(X:Var, Y:Var)

with meaning eq(X, Y)

if stmt([X := Y])@currNode

then varEqual(X, Y)@cfg_out

if stmt([X := Y])@currNode

then varEqual(Y, X)@cfg_out

if varEqual(X, Y)@cfg_in && !mayDef(X)@currNode && !mayDef(Y)@currNode

then varEqual(X, Y)@cfg_out

if stmt([X := Y])@currNode && varEqual(Y, Z)@cfg_in

then transform [X := Z]

-------------------------------------------------------------------------

--

-- Load removal

--

-------------------------------------------------------------------------

if stmt([X := *Y])@currNode && mustPointTo(Y, Z)@cfg_in

then transform [X := Z]

-------------------------------------------------------------------------

--

81



-- equalsTimes

--

-------------------------------------------------------------------------

define edge fact equalsTimes(X:NonCallExpr, Y:NonCallExpr, Z:NonCallExpr)

with meaning eq(evalExpr(eta, X),

applyBinaryOp(*, evalExpr(eta, Y), evalExpr(eta, Z)))

if stmt([X := I * C])@currNode && neq(X, I)

then equalsTimes(X, I, C)@cfg_out

-- This rule uses the conservative version of unchanged because Simplify

-- does not terminate when the less conservative definition is used.

if equalsTimes(E1, E2, C)@cfg_in &&

unchangedConserv(E1)@currNode &&

unchangedConserv(E2)@currNode

then equalsTimes(E1, E2, C)@cfg_out

if stmt([I := I + C1])@currNode && neq(X, I) &&

equalsTimes(X, I, C2)@cfg_in

then equalsTimes(X, [I-C1], C2)@cfg_out

if stmt([X := X + C1])@currNode &&

neq(X, I) && equalsTimes(X, [I-C2], C3)@cfg_in &&

eq(C1, newConst(applyBinaryOp(*, getConst(C2), getConst(C3))))

then equalsTimes(X, I, C3)@cfg_out

-- Simpler version of the above rule, when C2 == 1

-- if stmt([X := X + C])@currNode &&

-- neq(X, I) && equalsTimes(X, [I-1], C)@cfg_in

-- then equalsTimes(X, I, C)@cfg_out

if stmt([X := X + C1])@currNode &&

neq(X, I) && equalsTimes(X, I, C2)@cfg_in

then equalsTimes([X-C1], I, C2)@cfg_out

if stmt([I := I + C1])@currNode &&

neq(X, I) && equalsTimes([X-C2], I, C3)@cfg_in &&

eq(C2, newConst(applyBinaryOp(*, getConst(C1), getConst(C3))))

then equalsTimes(X, I, C3)@cfg_out

-- Simpler version of the above rule, when C1 == 1

-- if stmt([I := I + 1])@currNode &&

-- neq(X, I) && equalsTimes([X-C], I, C)@cfg_in

-- then equalsTimes(X, I, C)@cfg_out

if stmt([Y := I * C])@currNode &&

equalsTimes(X, I, C)@cfg_in

then transform [Y := X]

-------------------------------------------------------------------------

82



--

-- mayDefAllocSiteSummary(N): says if the current statement may define

-- some location in summary N.

--

-------------------------------------------------------------------------

define node fact mayDefAllocSiteSummary(N:CFGNode) =

case currStmt of

[skip] => false

[decl X] => false

[decl X[I]] => false

[if X goto L1 else L2] => false

[if C goto L1 else L2] => false

[X := C] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := Y] => !varNotInAllocSiteSummary(X, N)@cfg_in

[*X := Y] => !dnpHeapSummary(X, N)@cfg_in

[X := *Y] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := &Y] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := new] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := A ‘OP B] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := A ‘OP C] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := C ‘OP B] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := C1 ‘OP C2] => !varNotInAllocSiteSummary(X, N)@cfg_in

[X := P(Y)] => true

[X := new [I]] => true

[X := A[I]] => true

[X := *(A[I])] => true

[*(A[I]) := X] => true

[*(A[I]) := C] => true

[X := (&A)[I]] => true

[X := *((&A)[I])] => true

[*((&A)[I]) := X] => true

[*((&A)[I]) := C] => true

[return X] => false

endcase

-------------------------------------------------------------------------

--

-- The parser for Rhodium does not currently support state extensions

-- or meanings that use state extensions. As a result, state

-- extensions and meanings that use state extensions must be written

-- in the Simplify input language using "prim" blocks. See the

-- following example. It is straightforward to extend the Rhodium

-- parser to support these contructs directly, and generate the

-- Simplify code automatically. We are currently working on this.

--

-------------------------------------------------------------------------

-------------------------------------------------------------------------

-- State extension for heap summaries:

-- partitions: location ==> Node

-------------------------------------------------------------------------

83



prim {

(BG_PUSH (FORALL (P Prg Lhs Rhs)

(IMPLIES (EQ (stmtAt P Prg) (Assgn Lhs Rhs))

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(partitions StateExt)))))))

(BG_PUSH (FORALL (P Prg X)

(IMPLIES (EQ (stmtAt P Prg) (AssgnNew (Var X)))

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(store (partitions StateExt) (alloc Mem) P)))))))

(BG_PUSH (FORALL (P Prg Arr Len)

(IMPLIES (EQ (stmtAt P Prg) (AssgnNewArray (Var Arr) (Var Len)))

(FORALL (Env S Mem Stack StateExt Z)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(AND

(IMPLIES (EQ Z (alloc Mem))

(EQ (select (partitions

(stepStateExt Prg P Env S

Mem Stack StateExt))

Z)

P))

(FORALL (I)

(IMPLIES (AND (>= I 0)

(< I (evalExprNS Env S (Var Len)))

(EQ Z (select (allocN (rest Mem)

(evalExprNS

Env

S

(Var Len)))

I)))

(EQ (select (partitions (stepStateExt Prg P

Env S Mem Stack

StateExt))

Z)

P)))

(IMPLIES (AND (NEQ Z (alloc Mem))

(FORALL (I)

(NOT

(AND (>= I 0)

(< I

(evalExprNS Env S (Var Len)))

(EQ Z (select (allocN

(rest Mem)

(evalExprNS

84



Env

S

(Var Len)))

I))))))

(EQ (select (partitions (stepStateExt Prg P Env S

Mem Stack StateExt))

Z)

(select (partitions StateExt) Z)))))))))

(BG_PUSH (FORALL (P Prg X)

(IMPLIES (EQ (stmtAt P Prg) (VarDecl (Var X)))

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(store (partitions StateExt) (alloc Mem) P)))))))

(BG_PUSH (FORALL (P Prg Arr Len)

(IMPLIES (EQ (stmtAt P Prg) (ArrayDecl (Var Arr) (Var Len)))

(FORALL (Env S Mem Stack StateExt Z)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(AND

(IMPLIES (EQ Z (alloc Mem))

(EQ (select (partitions

(stepStateExt Prg P Env S

Mem Stack StateExt))

Z)

P))

(FORALL (I)

(IMPLIES (AND (>= I 0)

(< I (evalExprNS Env S (Var Len)))

(EQ Z (select (allocN (rest Mem)

(evalExprNS

Env

S

(Var Len)))

I)))

(EQ (select (partitions (stepStateExt Prg P

Env S Mem Stack

StateExt))

Z)

P)))

(IMPLIES (AND (NEQ Z (alloc Mem))

(FORALL (I)

(NOT

(AND (>= I 0)

(< I

(evalExprNS Env S (Var Len)))

(EQ Z (select (allocN

85



(rest Mem)

(evalExprNS

Env

S

(Var Len)))

I))))))

(EQ (select (partitions (stepStateExt Prg P

Env S Mem Stack

StateExt))

Z)

(select (partitions StateExt) Z)))))))))

(BG_PUSH (FORALL (P Prg X FnName Arg)

(IMPLIES (EQ (stmtAt P Prg) (Call (Var X) (Fun FnName) (Var Arg)))

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(partitions StateExt)))))))

(BG_PUSH (FORALL (P Prg)

(IMPLIES (EQ (stmtAt P Prg) Skip)

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(partitions StateExt)))))))

(BG_PUSH (FORALL (P Prg E P1 P2)

(IMPLIES (EQ (stmtAt P Prg) (Branch E P1 P2))

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(partitions StateExt)))))))

(BG_PUSH (FORALL (P Prg X)

(IMPLIES (EQ (stmtAt P Prg) (Return (Var X)))

(FORALL (Env S Mem Stack StateExt)

(IMPLIES (isMachineState Prg P Env S Mem Stack)

(EQ (partitions (stepStateExt Prg P Env S Mem Stack StateExt))

(partitions StateExt)))))))

(BG_PUSH (FORALL (Loc)

(IMPLIES (isLoc Loc)

(isCFGNode (select (partitions StateExtIn) Loc)))))

}

-------------------------------------------------------------------------

--

-- varNotInAllocSiteSummary(X,N): says that variable X is distinct from

-- all locations in summary N.

86



--

-------------------------------------------------------------------------

define edge fact varNotInAllocSiteSummary(X:Var, N:CFGNode)

with meaning varNotInAllocSiteSummary_meaning_prim(eta, etaExtension, X, N)

-- The meaning is defined using Simplify code.

prim signature varNotInAllocSiteSummary_meaning_prim(State,

StateExtension,

Var,

CFGNode):Bool {

(DEFPRED (varNotInAllocSiteSummary_meaning_prim

Env Store StateExtension X N))

(BG_PUSH (FORALL (X N)

(IMPLIES (AND (isVarName X) (isCFGNode N))

(FORALL (Env Store StateExtension)

(IFF (varNotInAllocSiteSummary_meaning_prim

Env Store StateExtension (Var X) N)

(AND (isExprNotStuck Env Store (Ref (Var X)))

(NEQ (select (partitions StateExtension)

(evalExpr Env Store (Ref (Var X))))

N)))))))

}

if stmt([decl X])@currNode && neq(currNode, N)

then varNotInAllocSiteSummary(X, N)@cfg_out

if varNotInAllocSiteSummary(X, N)@cfg_in

then varNotInAllocSiteSummary(X, N)@cfg_out

-------------------------------------------------------------------------

--

-- Pointer analysis with summaries

--

-------------------------------------------------------------------------

define edge fact dnpHeapSummary(HS1:HeapSummary, HS2:HeapSummary)

with meaning dnpHeapSummary_meaning_prim(eta, etaExtension, HS1, HS2)

-- The meaning is defined using Simplify code.

prim signature dnpHeapSummary_meaning_prim(State,

StateExtension,

HeapSummary,

HeapSummary):Bool {

(DEFPRED (dnpHeapSummary_meaning_prim Env Store StateExtension HS1 HS2))

(BG_PUSH (FORALL (HS1 HS2)

(IMPLIES (AND (isVarExpr HS1) (isVarExpr HS2))

(FORALL (Env Store StateExtension)

87



(IFF (dnpHeapSummary_meaning_prim Env Store StateExtension

HS1 HS2)

(AND (isExprNotStuck Env Store HS1)

(isExprNotStuck Env Store (Ref HS2))

(NEQ (evalExpr Env Store HS1)

(evalExpr Env Store (Ref HS2)))))))))

(BG_PUSH (FORALL (HS1 HS2)

(IMPLIES (AND (isCFGNode HS1) (isVarExpr HS2))

(FORALL (Env Store StateExtension)

(IFF (dnpHeapSummary_meaning_prim Env Store StateExtension

HS1 HS2)

(AND (isExprNotStuck Env Store (Ref HS2))

(FORALL (Loc)

(IMPLIES

(AND (isLoc Loc)

(inStoreDomain Store Loc)

(EQ (select (partitions StateExtension)

Loc)

HS1))

(NEQ (select Store Loc)

(evalExpr Env Store

(Ref HS2)))))))))))

(BG_PUSH (FORALL (HS1 HS2)

(IMPLIES (AND (isVarExpr HS1) (isCFGNode HS2))

(FORALL (Env Store StateExtension)

(IFF (dnpHeapSummary_meaning_prim Env Store StateExtension

HS1 HS2)

(AND (isExprNotStuck Env Store HS1)

(IMPLIES (isLoc (evalExpr Env Store HS1))

(NEQ (select (partitions StateExtension)

(evalExpr Env Store HS1))

HS2))))))))

(BG_PUSH (FORALL (HS1 HS2)

(IMPLIES (AND (isCFGNode HS1) (isCFGNode HS2))

(FORALL (Env Store StateExtension)

(IFF (dnpHeapSummary_meaning_prim Env Store StateExtension

HS1 HS2)

(FORALL (Loc)

(IMPLIES

(AND (isLoc Loc)

(inStoreDomain Store Loc)

(EQ (select (partitions StateExtension)

Loc)

HS1)

(isLoc (select Store Loc)))

(NEQ (select (partitions StateExtension)

(select Store Loc))

HS2))))))))

88



}

-- Introduction rules that don’t depend on any dnpHeapSummary

-- incoming facts

if stmt([X := &A])@currNode && hasBeenDeclared(Y)@cfg_in && neq(A, Y)

then dnpHeapSummary(X, Y)@cfg_out

if stmt([X := &A])@currNode && varNotInAllocSiteSummary(A, N)@cfg_in

then dnpHeapSummary(X, N)@cfg_out

if stmt([X := BE1 ‘OP BE2])@currNode && hasBeenDeclared(Y)@cfg_in

then dnpHeapSummary(X, Y)@cfg_out

if stmt([X := BE1 ‘OP BE2])@currNode

then dnpHeapSummary(X, N)@cfg_out

{ norun }

if stmt([X := new])@currNode && neq(currNode, N)

then dnpHeapSummary(X, N)@cfg_out

if stmt([X := new])@currNode && hasBeenDeclared(Y)@cfg_in

then dnpHeapSummary(X, Y)@cfg_out

-- Preservation rules

if dnpHeapSummary(X, HS)@cfg_in && !mayDef(X)@currNode

then dnpHeapSummary(X, HS)@cfg_out

if dnpHeapSummary(N, HS)@cfg_in && !mayDefAllocSiteSummary(N)@currNode

then dnpHeapSummary(N, HS)@cfg_out

-- Update left-hand side info based on right-hand-side info

if stmt([X := Y])@currNode && dnpHeapSummary(Y, HS)@cfg_in

then dnpHeapSummary(X, HS)@cfg_out

if stmt([*X := Z])@currNode && mustPointTo(X, Y)@cfg_in &&

dnpHeapSummary(Z, HS)@cfg_in

then dnpHeapSummary(Y, HS)@cfg_out

if stmt([X := *Y])@currNode &&

forall HS1:HeapSummary. !dnpHeapSummary(Y, HS1)@cfg_in =>

dnpHeapSummary(HS1, HS2)@cfg_in

then dnpHeapSummary(X, HS2)@cfg_out

-------------------------------------------------------------------------

--

-- Array functionality tests

--

-------------------------------------------------------------------------

--define edge fact arrayAccess(A:Var, I:Var, X:Var)

-- with meaning eq([*(A[I])],X)

89



--

-- -- This shows that after A[I] is assigned to X, the two are equal

-- if stmt([X := *(A[I])])@currNode && neq(X,A) && neq(X,I)

-- then arrayAccess(A,I,X)@cfg_out

--

--

--define edge fact arrayUpdate(A:Var, I:Var, X:Var)

-- with meaning eq([*(A[I])],X)

--

-- -- This shows that after X is assigned to A[I], the two are equal

-- if stmt([*(A[I]) := X])@currNode

-- then arrayUpdate(A,I,X)@cfg_out

--

--define edge fact accessEqual(A:Var, I:Var, X:Var)

-- with meaning eq([*(A[I])],[*(A[X])])

--

-- -- This shows that if A[I] has been assigned a value and X is equal to I,

-- -- then A[I] = A[X]

-- if stmt([*(A[I]) := Y])@currNode && varEqual(I,X)@cfg_in

-- then accessEqual(A,I,X)@cfg_out

-------------------------------------------------------------------------

--

-- arraysUnaliased - gaurantees that two arrays are not aliased

--

-------------------------------------------------------------------------

define edge fact arraysUnaliased(A:Var, B:Var)

with meaning neq(A,B)

-- The first case

if stmt([A := new [I]])@currNode && hasBeenDeclared(B)@cfg_in && neq(A,B)

then arraysUnaliased(A,B)@cfg_out

-- The other first case

if stmt([A := new [I]])@currNode && hasBeenDeclared(B)@cfg_in && neq(A,B)

then arraysUnaliased(B,A)@cfg_out

-- Propagating the fact

if arraysUnaliased(A,B)@cfg_in && !mayDef(A)@currNode &&

!mayDef(B)@currNode && neq(A,B)

then arraysUnaliased(A,B)@cfg_out

-------------------------------------------------------------------------

--

-- mayDefArray - present when a statement may change the contents of

-- array Z

--

-------------------------------------------------------------------------

90



define node fact mayDefArray(Z:Var) =

case currStmt of

[skip] => mayDef(Z)@currNode

[decl X] => mayDef(Z)@currNode

[decl X[I]] => mayDef(Z)@currNode

[if X goto L1 else L2] => mayDef(Z)@currNode

[if C1 goto L1 else L2] => mayDef(Z)@currNode

[X := C1] => mayDef(Z)@currNode

[X := Y] => mayDef(Z)@currNode

[*X := Y] => mayDef(Z)@currNode

|| !arraysUnaliased(Z,X)@cfg_in

[X := *Y] => mayDef(Z)@currNode

|| !arraysUnaliased(Z,Y)@cfg_in

[X := &Y] => mayDef(Z)@currNode

[X := new] => mayDef(Z)@currNode

[X := A ‘OP B] => mayDef(Z)@currNode

[X := A ‘OP C1] => mayDef(Z)@currNode

[X := C1 ‘OP B] => mayDef(Z)@currNode

[X := C1 ‘OP C2] => mayDef(Z)@currNode

[X := P(Y)] => mayDef(Z)@currNode

|| mayUse(Z)@currNode

[X := new [I]] => mayDef(Z)@currNode

[X := A[I]] => mayDef(Z)@currNode

[X := *(A[I])] => mayDef(Z)@currNode

[*(A[I]) := X] => !arraysUnaliased(A,Z)@cfg_in

[*(A[I]) := C1] => !arraysUnaliased(A,Z)@cfg_in

[X := (&A)[I]] => mayDef(Z)@currNode

[X := *((&A)[I])] => mayDef(Z)@currNode

[*((&A)[I]) := X] => false

[*((&A)[I]) := C1] => false

[return X] => mayDef(Z)@currNode

endcase

-------------------------------------------------------------------------

--

-- mayDefArrayElem

--

-------------------------------------------------------------------------

define node fact mayDefArrayElem(Z:Var, J:Var) =

case currStmt of

[skip] => false

[decl X] => false

[decl X[I]] => false

[if X goto L1 else L2] => false

[if C1 goto L1 else L2] => false

[X := C1] => false

[X := Y] => false

[*X := Y] => true

[X := *Y] => false

[X := &Y] => false

91



[X := new] => false

[X := A ‘OP B] => false

[X := A ‘OP C1] => false

[X := C1 ‘OP B] => false

[X := C1 ‘OP C2] => false

[X := P(Y)] => true

[X := new [I]] => false

[X := A[I]] => false

[X := *(A[I])] => false

[*(A[I]) := X] => true

[*(A[I]) := C1] => true

[X := (&A)[I]] => false

[X := *((&A)[I])] => false

[*((&A)[I]) := X] => true

[*((&A)[I]) := C1] => true

[return X] => true

endcase

-------------------------------------------------------------------------

--

-- equalsPlus - shows that X is equal to Y + Z

--

-------------------------------------------------------------------------

define edge fact equalsPlus(X:NonCallExpr, Y:NonCallExpr, Z:NonCallExpr)

with meaning eq(evalExpr(eta, X),

applyBinaryOp(+, evalExpr(eta, Y), evalExpr(eta, Z)))

if stmt([X := I + C])@currNode && neq(X, I)

then equalsPlus(X, I, C)@cfg_out

if equalsPlus(E1, E2, C)@cfg_in &&

unchanged(E1)@currNode &&

unchanged(E2)@currNode

then equalsPlus(E1, E2, C)@cfg_out

-------------------------------------------------------------------------

--

-- varEqualArray - shows that X equals A[I]

--

-------------------------------------------------------------------------

define edge fact varEqualArray(X:Var, A:Var, I:Var)

with meaning eq(X, [*(A[I])])

-- The initial creation of the fact

if stmt([X := *(A[I])])@currNode && neq(X,A) && neq(X,I)

then varEqualArray(X,A,I)@cfg_out

-- The other initial creation of the fact

92



if stmt([*(A[I]) := X])@currNode && neq(X,A) && neq(X,I)

then varEqualArray(X,A,I)@cfg_out

-- Propagating the fact

if varEqualArray(X,A,I)@cfg_in &&

!mayDefArray(A)@currNode &&

!mayDef(I)@currNode &&

!mayDef(X)@currNode && !mayDefArrayElem(A,I)@currNode

then varEqualArray(X,A,I)@cfg_out

-- The vital case for our transformation

if stmt([Y := I + BE])@currNode && varEqualArray(X,A,J)@cfg_in

&& equalsPlus(J,I,BE)@cfg_in && !mayDef(X)@currNode

&& !mayDefArray(A)@currNode && unchanged(BE)@currNode

then varEqualArray(X,A,Y)@cfg_out

-- This case is now covered by the previous case

-- if stmt([I := I + C])@currNode && varEqualArray(X,A,J)@cfg_in &&

-- equalsPlus(J,I,C)@cfg_in && neq(X,I)

-- then varEqualArray(X,A,I)@cfg_out

-- This is the important transformation

if stmt([X := *(A[I])])@currNode && varEqualArray(Y,A,J)@cfg_in &&

(varEqual(I,J)@cfg_in || eq(I,J))

then transform [X := Y]

if stmt([X := *(A[I])])@currNode && varEqualArray(X,A,J)@cfg_in &&

(varEqual(I,J)@cfg_in || eq(I,J))

then transform [skip]

-------------------------------------------------------------------------

--

-- isInt

--

-------------------------------------------------------------------------

define edge fact isInt(X:Var)

with meaning exists C:Const . eq(evalExpr(eta,X),evalExpr(eta,C))

if stmt([X := BE1 ‘OP BE2])@currNode

&& baseExprHasConstValue(BE1, C)@currNode

&& baseExprHasConstValue(BE2, C)@currNode

then isInt(X)@cfg_out

if isInt(X)@cfg_in && !mayDef(X)@currNode

then isInt(X)@cfg_out

define node fact baseExprIsInt(BE:BaseExpr) =

case BE of

[X] => isInt(X)@cfg_in

93



[C] => true

endcase

-------------------------------------------------------------------------

--

-- isTrue

--

-------------------------------------------------------------------------

define edge fact isTrue(B:Var)

with meaning eq(evalExpr(eta,[B]), evalExpr(eta, [true]))

if stmt([B := X <= BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& leq(X,BE)@cfg_in

then isTrue(B)@cfg_out

if stmt([B := X >= BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& geq(X,BE)@cfg_in

then isTrue(B)@cfg_out

if stmt([B := X < BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& lt(X,BE)@cfg_in

then isTrue(B)@cfg_out

if stmt([B := X > BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& gt(X,BE)@cfg_in

then isTrue(B)@cfg_out

if isTrue(B)@cfg_in && !mayDef(B)@currNode

then isTrue(B)@cfg_out

-------------------------------------------------------------------------

--

-- isFalse

--

-------------------------------------------------------------------------

define edge fact isFalse(B:Var)

with meaning eq(evalExpr(eta,[B]), evalExpr(eta, [false]))

if stmt([B := X < BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& geq(X,BE)@cfg_in

then isFalse(B)@cfg_out

if stmt([B := X > BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& leq(X,BE)@cfg_in

then isFalse(B)@cfg_out

if stmt([B := X <= BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& gt(X,BE)@cfg_in

94



then isFalse(B)@cfg_out

if stmt([B := X >= BE])@currNode && neq(X,B) && unchanged(BE)@currNode

&& lt(X,BE)@cfg_in

then isFalse(B)@cfg_out

if isFalse(B)@cfg_in && !mayDef(B)@currNode

then isFalse(B)@cfg_out

-------------------------------------------------------------------------

--

-- lt & gt

--

-------------------------------------------------------------------------

define edge fact lt(E1:NonCallExpr, E2:NonCallExpr)

with meaning eq([E1 < E2], [true])

define edge fact gt(E1:NonCallExpr, E2:NonCallExpr)

with meaning eq([E1 > E2], [true])

if hasConstValue(X,C1)@cfg_in && hasConstValue(Y,C2)@cfg_in

&& !mayDef(X)@currNode && !mayDef(Y)@currNode

&& eq(applyBinaryOp(<, getConst(C1), getConst(C2)),

getConst([true]))

then lt(X,C2)@cfg_out && gt(Y, C1)@cfg_out &&

lt(X,Y)@cfg_out && gt(Y,X)@cfg_out &&

lt(C1,Y)@cfg_out && gt(C2,X)@cfg_out

if stmt([X := Y])@currNode && neq(X,Y) && lt(Y,BE)@cfg_in

&& unchanged(BE)@currNode

then lt(X,BE)@cfg_out && gt(BE,X)@cfg_out

if lt(X,BE)@cfg_in && !mayDef(X)@currNode && unchanged(BE)@currNode

then lt(X,BE)@cfg_out && gt(BE,X)@cfg_out

if stmt([X := Y])@currNode && neq(X,Y) && gt(Y,BE)@cfg_in

&& unchanged(BE)@currNode

then gt(X,BE)@cfg_out && lt(BE,X)@cfg_out

if gt(X,BE)@cfg_in && !mayDef(X)@currNode && unchanged(BE)@currNode

then gt(X,BE)@cfg_out && lt(BE,X)@cfg_out

-------------------------------------------------------------------------

--

-- Currently, the checker can only handle single input single output

-- nodes. For multiple inputs or multiples outputs, as a temporary

-- solution, we expand the cases by hand. See the leq and geq facts

-- below for some examples. Here is the general strategy for

-- generating the cases by hand.

--

95



-- There are only two nodes that have multiple input or output edges:

-- merge nodes and if nodes.

--

-- * Merge nodes:

--

-- To check:

--

-- if stmt([merge])@currNode && F(...)@cfg_in[0] && G(...)@cfg_in[1]

-- then H(...)@cfg_out

--

-- We by hand write:

--

-- if stmt([skip])@currNode && F(...)@cfg_in

-- then H(...)@cfg_out

--

-- if stmt([skip])@currNode && H(...)@cfg_in

-- then G(...)@cfg_out

--

-- * If nodes:

--

-- To check:

--

-- if stmt([if B goto L1 else L2])@currNode && psi

-- then F(...)@cfg_out[0]

--

-- We by hand write:

--

-- if stmt([if B goto L1 else L2])@currNode && psi && isFalse(B)

-- then F(...)@cfg_out

--

-- To check:

--

-- if stmt([if B goto L1 else L2])@currNode && psi

-- then F(...)@cfg_out[1]

--

-- We by hand write:

--

-- if stmt([if B goto L1 else L2])@currNode && psi && isTrue(B)

-- then F(...)@cfg_out

--

-------------------------------------------------------------------------

-------------------------------------------------------------------------

--

-- leq & geq. These two facts implement the inRange analysis. We split

-- the inRange fact into leq & geq for more flexibility. The following

-- analysis also handles symbolic ranges.

--

-------------------------------------------------------------------------

decl lo:Const, hi:Const, C1:Const, C2:Const, C3:Const, C4:Const, C:Const in

96



define edge fact leq(E1:NonCallExpr, E2:NonCallExpr)

with meaning eq([E1 <= E2], [true])

define edge fact geq(E1:NonCallExpr, E2:NonCallExpr)

with meaning eq([E1 >= E2], [true])

if stmt([X := BE])@currNode

&& baseExprIsInt(BE)@currNode

then leq(X, BE)@cfg_out && geq(X, BE)@cfg_out

if leq(X,BE)@cfg_in && !mayDef(X)@currNode && unchanged(BE)@currNode

then leq(X,BE)@cfg_out

if geq(X,BE)@cfg_in && !mayDef(X)@currNode && unchanged(BE)@currNode

then geq(X,BE)@cfg_out

-- The following two cases correspong to the merge:

if stmt([skip])@currNode

&& geq(X,C1)@cfg_in && leq(X,C2)@cfg_in

then geq(X, newConst(min(getConst(C1), getConst(C3))))@cfg_out &&

leq(X, newConst(max(getConst(C2), getConst(C4))))@cfg_out

if stmt([skip])@currNode

&& geq(X,C3)@cfg_in && leq(X,C4)@cfg_in

then geq(X, newConst(min(getConst(C1), getConst(C3))))@cfg_out &&

leq(X, newConst(max(getConst(C2), getConst(C4))))@cfg_out

if stmt([X := BE1 + BE2])@currNode

&& geq(BE1,C1)@cfg_in && leq(BE1,C2)@cfg_in

&& geq(BE2,C3)@cfg_in && leq(BE2,C4)@cfg_in

then geq(X, newConst(applyBinaryOp(+, getConst(C1), getConst(C3))))@cfg_out

&& leq(X, newConst(applyBinaryOp(+, getConst(C2), getConst(C4))))@cfg_out

-- The following cases are used to extract information from branches.

if stmt([if B goto L1 else L2])@currNode && equalsLess(B,X,C)@cfg_in

&& isTrue(B)@cfg_in

&& leq(X,C2)@cfg_in

then leq(X, newConst(min(applyBinaryOp(-,getConst(C),getConst([1])),

getConst(C2))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsLess(B,X,C)@cfg_in

&& isFalse(B)@cfg_in

&& geq(X,C1)@cfg_in

then geq(X, newConst(max(getConst(C), getConst(C1))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsLessEq(B,X,C)@cfg_in

&& isTrue(B)@cfg_in

&& leq(X,C2)@cfg_in

then leq(X, newConst(min(getConst(C), getConst(C2))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsLessEq(B,X,C)@cfg_in

97



&& isFalse(B)@cfg_in

&& geq(X,C1)@cfg_in

then geq(X, newConst(max(applyBinaryOp(+,getConst(C),getConst([1])),

getConst(C1))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsGreater(B,X,C)@cfg_in

&& isTrue(B)@cfg_in

&& geq(X,C1)@cfg_in

then geq(X, newConst(max(applyBinaryOp(+,getConst(C),getConst([1])),

getConst(C1))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsGreater(B,X,C)@cfg_in

&& isFalse(B)@cfg_in

&& leq(X,C2)@cfg_in

then leq(X, newConst(min(getConst(C), getConst(C2))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsGreaterEq(B,X,C)@cfg_in

&& isTrue(B)@cfg_in

&& geq(X,C1)@cfg_in

then geq(X, newConst(max(getConst(C), getConst(C1))))@cfg_out

if stmt([if B goto L1 else L2])@currNode && equalsGreaterEq(B,X,C)@cfg_in

&& isFalse(B)@cfg_in

&& leq(X,C2)@cfg_in

then leq(X, newConst(min(applyBinaryOp(-,getConst(C),getConst([1])),

getConst(C2))))@cfg_out

end

-------------------------------------------------------------------------

--

-- equalsLess analysis

--

-------------------------------------------------------------------------

define edge fact equalsLess(B:Var, E1:NonCallExpr, E2:NonCallExpr)

with meaning eq(B, [E1 < E2])

if stmt([B := BE1 < BE2])@currNode && unchanged(BE1)@currNode &&

unchanged(BE2)@currNode

then equalsLess(B,BE1,BE2)@cfg_out

if equalsLess(B,BE1,BE2)@cfg_in

&& !mayDef(B)@currNode && unchanged(BE1)@currNode

&& unchanged(BE2)@currNode

then equalsLess(B,BE1,BE2)@cfg_out

-------------------------------------------------------------------------

--

-- equalsLessEq analysis

--

98



-------------------------------------------------------------------------

define edge fact equalsLessEq(B:Var, E1:NonCallExpr, E2:NonCallExpr)

with meaning eq(B, [E1 <= E2])

if stmt([B := BE1 <= BE2])@currNode && unchanged(BE1)@currNode &&

unchanged(BE2)@currNode

then equalsLessEq(B,BE1,BE2)@cfg_out

if equalsLessEq(B,BE1,BE2)@cfg_in

&& !mayDef(B)@currNode && unchanged(BE1)@currNode

&& unchanged(BE2)@currNode

then equalsLessEq(B,BE1,BE2)@cfg_out

-------------------------------------------------------------------------

--

-- equalsGreater analysis

--

-------------------------------------------------------------------------

define edge fact equalsGreater(B:Var, E1:NonCallExpr, E2:NonCallExpr)

with meaning eq(B, [E1 > E2])

if stmt([B := BE1 > BE2])@currNode && unchanged(BE1)@currNode &&

unchanged(BE2)@currNode

then equalsGreater(B,BE1,BE2)@cfg_out

if equalsGreater(B,BE1,BE2)@cfg_in

&& !mayDef(B)@currNode && unchanged(BE1)@currNode

&& unchanged(BE2)@currNode

then equalsGreater(B,BE1,BE2)@cfg_out

-------------------------------------------------------------------------

--

-- equalsGreaterEq analysis

--

-------------------------------------------------------------------------

define edge fact equalsGreaterEq(B:Var, E1:NonCallExpr, E2:NonCallExpr)

with meaning eq(B, [E1 >= E2])

if stmt([B := BE1 >= BE2])@currNode && unchanged(BE1)@currNode &&

unchanged(BE2)@currNode

then equalsGreaterEq(B,BE1,BE2)@cfg_out

if equalsGreaterEq(B,BE1,BE2)@cfg_in

&& !mayDef(B)@currNode && unchanged(BE1)@currNode

&& unchanged(BE2)@currNode

then equalsGreaterEq(B,BE1,BE2)@cfg_out

99



end

100


