Pseudo-chromosome assembly of large and complex genomes using multiple references Mikhail Kolmogorov¹, Brian Raney², Joel Armstrong², Duncan Odom^{3,4}, Paul Flicek⁵, David Thybert^{5,6}, Benedict Paten² and Son Pham¹ ¹University of California San Diego, USA ²University of California Santa Cruz, USA, ³University of Cambridge, UK, ⁴Wellcome Trust Sanger Institute, UK, ⁵European Bioinformatic Institute, UK, ⁶The Genome Analysis Center, UK #### Abstract - Assembly of mammalian-scale genomes into complete chromosomes is challenging - To address this, we developed Ragout, a referenceassisted assembly tool for large and complex genomes - Using Ragout we assembled two mice genomes (M. Caroli and M. Pahari) with comlicated chromosome-scale rearrangements into sets of high-quality pseudochromosomes - Chromosome coloring comfirms most the rearrangements that Ragout has detected ## Algorithm Overview (a) Raw references and target genome sequences RAGOUT Enlarge your contigs - (b) Nucleotide sequences are decomposed into the permutations of synteny blocks - (c) Phylogenetic tree of the input genomes is reconstructed based on the breakpoints data - (d) Incomplete breakpoint graph reflects adjacencies between synteny blocks - (e) Missing adjacencies are reconstructed by analysing rearrangements - (f) Target fragments are joined into scaffolds with respect to the inferred adjacencies #### Synteny Blocks Synteny blocks help to separate small sequence variations from largescale rearrangements. (a) An alignment between three genomes with complicated sub-structure. (b) A-Bruijn graph representation of the alignment. Small sequence variations correspond to bubbles, while rearrangements form more complicated structures. (c) A bubble is removed during the graph simplification, forming a larger synteny block a_{123} (d) Masking smaller block a_4 allows to make the graph structure even simplier. (e) After removing another bubble, the whole alignment is represented as a large synteny block. (d) A hierarchical representation of a synteny block. ### Incomplete Breakpoint Graph Analysis - Breakpoint graphs reflect adjacencies between synteny blocks in different genomes - If all genomes were complete, the edges of each color will define a perfect matching on the graph - As the target genome is fragmented, some adjacencies of red color are missing - Ragout recovers the missing adjacencies so as to minimize the weighted number of rearrangements between the genomes - These adjacencies are then used to merge the target fragments into scaffolds #### Results - We assembled two genomes from Murinae family: Mus. Caroli and Mus. Pahari using Mus. Musculus and Rattus Norvegicus as references. The assemblies contains 20 and 23 pseudo-chromosomes, respectively with at most 2% of unlocalized sequence. - M. Caroli shows 5% sequence diversity from Mus. Musculus and has the same karyotype (which was confirmed by Ragout). However, we have detected a large inversion in chr17. - M. Pahari has 10% sequence diversity and contain many interchromosomal rearrangements. Ragout has detected four of them, which were also confirmed by chromosome coloring. - Some of the rearrangements remain undetected, as the corresponding breakpoints are missing from the NGS data. However, they could be recovered using the aid of chromosomal maps. #### Availability & Contacts - Ragout is an easy to use package, written in Python/C+. It is freely available at http://fenderglass.github.io/Ragout - Email: fenderglass@gmail.com