
Analyzing the Crossdomain Policies of Flash Applications

Dongseok Jang
UC San Diego

d1jang@cs.ucsd.edu

Aishwarya Venkataraman
UC San Diego

avenkata@cs.ucsd.edu

G. Michael Sawka
Topix

sawka@cs.stanford.edu

Hovav Shacham
UC San Diego

hovav@cs.ucsd.edu

Abstract
Adobe Flash is a rich Internet application platform. Flash
applications are often deployed to the Web; The Flash
Player plugin is installed on a large fraction of all Web-
connected PCs. Flash provides a mechanism by which sites
can opt in to more expressive information sharing regimes
than the same-origin policy for JavaScript allows. A site
that wishes to share its content can host a crossdomain
policy file, crossdomain.xml, which lists sites authorized
to access the sharing site’s content, or even a wildcard
to allow all access. Because browsers will typically attach
cookies to crossdomain URL requests made by the Flash
Player plugin, a site that publishes a crossdomain policy
effectively opts out from some of the confidentiality guar-
antees of the same-origin policy. In some cases, a mis-
configured, overly permissive crossdomain policy can ex-
pose a site to attacks such as information disclosure or
CSRF.

In 2008, Jeremiah Grossman surveyed the crossdomain
policies of the Alexa Top 500 sites and the sites of the
Fortune 500, and found that 7% hosted crossdomain pol-
icy files allowing unrestricted access. In this paper, we re-
peat Grossman’s survey on a larger corpus of sites: the Alexa
global Top 50,000 sites. In addition, we use an instrumented
Firefox to survey the actual crossdomain requests issued by
Flash content hosted on the front pages of the Alexa global
Top 50,000 sites. Our survey provides new data about the
use of Flash crossdomain policies on popular sites. For ex-
ample, we find that approximately 6.0% of the surveyed sites
allow unrestricted crossdomain access, including 12 sites
in the Alexa Top 100, and that, at a minimum, 6.7% of
crossdomain requests made by Flash applications we ob-
served were denied by the target site’s crossdomain pol-
icy.

Our findings suggest that Flash’s crossdomain policy
mechanism may be liable to misconfiguration in practice.
We propose some techniques for mitigating the security
problems that might arise from such misconfiguration.

1. Introduction
The same-origin policy. The same-origin policy [12] is at
the heart of the browser security model. Without the same-
origin policy’s confidentiality and integrity guarantees, the
Web applications running within a user’s browser could in-
terfere with each other. A malicious site a user visits could
interact with other sites using that user’s credentials, for ex-
ample reading a user’s online bank statements or issuing
money transfers from his account.

Technically, the same-origin policy segregates Web re-
sources by origin (hostname, protocol, and port tuple), al-
lowing mutually distrusting applications to run in a user’s
browser. The isolation provided by the same-origin policy is
not absolute: an application running in one domain can im-
port a library from another domain (using the script tag)
or export data to another domain (by including it in a GET
or POST request). However, an application cannot read the
response returned by the target of such data export, since this
would allow cross-site request forgery attacks [6].

To enable mashups and other sophisticated Web 2.0 ap-
plications, browsers have implemented other ways for sites
to cooperate beyond the limits of the same-origin policy.
Client-side frame communication, like postMessage is one
way [7]. Another is server-side configuration that allows
sites to opt out of (some of) the isolation provided by the
same-origin policy.

Flash crossdomain policy files. There are cases in which
an application hosted on a.com wishes to access content
hosted on b.com in a manner that would be ruled out by
the same-origin policy. Crossdomain access policies allow
the b.com server to opt in to this access. The client (e.g.,
the browser or the Flash plugin) downloads a policy from
the b.com server, and allows the access if this policy au-
thorizes crossdomain access from a.com. Flash, Java, and
HTML5 all provide such mechanisms. The potentially harm-
ful unintended interaction of these mechanisms with Web in-
frastructure has already been noted [11]. In this paper, we

study the intended behavior of one of these mechanisms
as deployed in the wild: Flash’s crossdomain policy file,
crossdomain.xml.

The Flash Player plugin is installed in a large fraction of
all Web-connected PCs. Flash SWF files are often used as
video containers, but can also encode rich application behav-
ior using ActionScript, Flash’s ECMAScript-derived script-
ing language.1 For example, Flash applications can use the
URLLoader class to make HTTP requests and read the con-
tent returned. By default, such requests must obey the same-
origin policy, but servers can choose to allow more access
through a crossdomain policy [4]. Flash crossdomain pol-
icy is encoded in an XML file named crossdomain.xml,
hosted in a server’s root directory (and, in certain cases, also
in other files in subdirectories). The “allow-access-from”
element is used to specify domains from which crossdomain
requests are allowed; one such choice is “*”, meaning that
all requests are allowed.

Crucially, a user’s cookies are usually attached to crosso-
rigin HTTP requests that are made through ActionScript and
authorized by crossdomain policy. More specifically, when
a Flash application hosted at a.com makes an authorized
crossorigin request to b.com by means of an ActionScript
class like URLLoader, the Flash Player plugin requests the
resource from the browser using an NPAPI call. The browser
then uses its URL-fetching infrastructure to retrieve the
b.com resource on behalf of Flash Player. Commonly used
browsers attach any applicable cookies in their cookie file
to the b.com request. This is the documented, expected be-
havior [1], and allows crossorigin requests to be associated
with a session established earlier and identified by a cookie.
What’s more, this behavior comes about because of the way
that browsers handle URL-requesting NPAPI calls, not be-
cause of choices made by the Flash Player plugin itself.

Nonetheless, allowing crossdomain access to a site that
uses cookies for authentication may leak sensitive user data
and may defeat token-based crosssite request forgery de-
fenses. (This observation was already made at least as early
as 2006, Shiflett and Couvreur [19, 8], and is not a contribu-
tion of our paper.) When b.com allows Flash crossdomain
access from a.com, it gives up the confidentiality guaran-
tees of the same-origin policy with respect to a.com. This
is a problem if a.com is malicious (or compromised by at-
tacks such as cross-site scripting): a.com will host a Flash
application that makes crossdomain requests and will trick
logged-in b.com users into rendering this file in their Flash-
equipped browser. Note that this attack is possible even if
b.com is never legitimately accessed through Flash, and
hosts a permissive policy file by accident or as a holdover
from previous usage.

Even more seriously, when b.com allows Flash crossdo-
main access from “*”, it gives up the confidentiality guar-

1 See http://www.adobe.com/devnet/actionscript/references.

html for ActionScript documentation.

antees of the same-origin policy altogether. Adobe warns
that this “is a dangerous practice, and you should only grant
access to ‘*’ if you are certain that the scope of the policy
file does not host any access-controlled, personalized, or pri-
vate data” [4, Section 1.3.3.1]. From a security standpoint,
allowing access from “*” is appropriate for specialized do-
mains that act as content repositories (such as YouTube’s
*.ytimg.com), but not for other domains. But real-world
configuration of crossdomain policy files may not reflect se-
curity best practices.

Our contribution. We perform a large-scale empirical
study of crossdomain policy files in use by popular Web-
sites. We retrieved the crossdomain.xml files of each of
the Alexa global Top 50,000 domains (except where forbid-
den by robots.txt).2 In addition, we used a modified Fire-
fox browser to observe the actual crossdomain requests is-
sued by Flash applications hosted on the front pages of Alexa
Top 50,000 domains.

Speaking formally, our first measurement allows us to
construct a portion of the “can-read” graph, in which vertices
are origins and a directed edge from b.com to a.com means
that b.com’s policy file grants crossdomain access to a.com;
and our second measurement allows us to approximate the
related “does-read” graph, in which a directed edge indicates
a crossdomain access that occurs in practice. (In the absence
of crossdomain access policies, both graphs would have
no edges.) Nodes with high out-degree in the first graph
could be attacked by many sites (in particular, sites allowing
“*” access correspond to nodes with effectively infinite out-
degree); nodes with high in-degree, if compromised, could
be used to attack many sites. And differences between the
two graphs are evidence of policy files that are either overly
permissive or overly restrictive.

Our major result is that approximately 17% of sites in the
Alexa Top 50,000 host a crossdomain.xml policy. Fully
36% of these (i.e., 6.0% of all 50,000 sites) allow “*” access.
This includes many sites that are not pure content reposito-
ries of the sort envisioned for a “*” access policy.

We show that the risk of private information disclo-
sure is not merely theoretical: we find sites with a “*” ac-
cess policy that actually do use cookies for authentica-
tion and that maintain private information for logged-in
users. As one concrete example, scribd.com (#234 on
the Alexa list) discloses information about logged-in users
at http://www.scribd.com/info, and www.scribd.com
hosts a “*” crossdomain access policy. It is thus likely that
attackers could use Flash crossdomain access to learn sensi-
tive information about Scribd’s users.

In addition, we find domains that are allowed to read 100
or more other domains; these typically host advertising or
content services, and have access to some high-profile sites;
for example, *.brightcove.com is allowed by the sites of

2 Here and elsewhere in this paper we use the Alexa list as of January 29th,
2011

http://www.adobe.com/devnet/actionscript/references.html
http://www.adobe.com/devnet/actionscript/references.html

<cross-domain-policy>

<allow-access-from domain="sub.secret.com" />

<allow-access-from domain="safe.com" />

</cross-domain-policy>

Figure 1. An example crossdomain.xml file.

the New York Times and ESPN, as well as 171 other sites in
the top 50,000.

Related work. Shortly after first noting the possibility
of Flash-based crossdomain CSRF, Chris Shiflett noted
the possibility of a “witch hunt” of sites with permissive
crossdomain access policies [18], and pointed to a site,
crossdomainxml.org (now offline), that tracked the use
of crossdomain policies in popular sites.

That same month (October, 2006), Jeremiah Grossman
surveyed the use crossdomain policies in the Alexa Top 100
sites and Fortune 500 company sites [9]. He found that 6%
of the Alexa Top 100 and 2% of the Fortune 500 com-
pany sites allowed “*” access. In May, 2008, Grossman re-
peated his survey, extending it to the Alexa Top 500 and For-
tune 500 [10]. Grossman’s second survey found that 7% of
these sites (combined) allowed “*” access. Our study con-
firms Grossman’s findings, showing that, three years later,
10% of the Alexa Top 500 sites allow “*” access.

Simultaneously with our survey, Kontaxis et al. [14] sur-
veyed crossdomain policies for Flash and Microsoft’s Sil-
verlight on the Alexa global Top 100,000 sites, as well as
the Fortune 500 company sites, and 500 top sites for each
of several countries. They find that approximately 7% of the
Top 100,000 sites host a “*” policy, and also describe dif-
ferences in crossdomain policy use between countries and
depending on site rank.

Like the survey of Kontaxis et al., ours covers a much
larger set of sites than Grossman’s surveys. Though we
gather much the same data as Kontaxis et al., our analysis
focuses on other features; in addition, we use a modified
browser to study actual crossdomain policy requests issued
by Flash applications.

Threat model. Except where we state otherwise, we as-
sume the standard Web attacker threat model [7]. A Web
attacker has a domain from which she can serve HTTP and
HTTPS traffic (with a valid SSL certificate), and to which
she can drive traffic, for example through ads or spam. A
few of our attacks require the attacker to be able to upload
certain kinds of content to otherwise-trusted servers. The at-
tacker might have an account on a blogging service, for ex-
ample.

Lessons. We draw two broader lessons from our experi-
mental study. First, it is dangerous for a single file, if mis-
configured, to have a drastic effect on the security of a site —
even a site that does not itself rely on Flash for functional-
ity. Accidental misconfiguration may go undetected by ev-

0:<cross-domain-policy>

1: <allow-access-from domain="*.secret.com" />

2: <allow-access-from domain="0.0.0.0" />

3: <allow-access-from domain="safe.com"

secure="false"/>

4:</cross-domain-policy>

Figure 2. An example crossdomain.xml file with various
ways of naming domains.

eryone but attackers. Second, whitelist access control mech-
anisms like crossdomain.xml will tend towards overper-
missive configurations in practice, enabling functionality at
the (invisible) expense of security. This is not a new lesson;
writing in 2000, Zwicky, Cooper, and Chapman [22, p. 508]
describe a similar problem with the X Windowing System’s
xhost mechanism:

Users tend to forget to preauthorize the host before
starting the clients, which are then refused access.
After this happens a few times, many users disable
the control altogether. For example, they issue an
xhost + command to allow connections from any
and all hosts in the name of convenience (so they can
easily run programs on remote systems), without giv-
ing any thought to the security implications of their
actions.

Another such mechanism is the rhosts file that controls
access in the r* suite of protocols; misconfigured rhosts

files were used in 1988 by the Morris worm as a propagation
vector [17]. Compared to xhost and rhosts, misconfigured
crossdomain.xml files have the additional disadvantages
of, first, affecting not just the site’s administrators but its
users, and, second, being easily discoverable, as we have
shown in our survey.

Ethics. In both our survey of crossdomain policy files and
of Flash applications, we respected sites’ robots.txt poli-
cies, and attempted to avoid placing unnecessary load on the
sites. We confirmed that cookies are attached to Flash cross-
domain requests by modern browsers using only servers un-
der our control. We did not make any crossdomain requests
to any of the sites in our survey or otherwise attempt to probe
any vulnerabilities.

Prior to publication, we discussed our results with Adobe.
Where feasible, we also hope to alert sites that host overly
permissive crossdomain policy files, though this is difficult
given the number of affected sites.

2. Flash Crossdomain Policies
Cross-domain policies. Flash’s crossdomain policy was
introduced in version 7 of Flash Player. Its goal was to har-
monize Flash’s default access policy with the JavaScript
same-origin policy while allowing sites to opt for more
expressive access policies, including the default policy in

... 010000001010101010101

0100000010101010101010101

0100000010101010101011011

1010001010101010101010110

evil.com User secret.com

1

2

3

4

5

POST /login.php

HTTP/1.1 200 OK

Set-Cookie: SID= qqem7fe612e

GET /bad.swf

GET /crossdomain.xml

Cookie: SID= qqem7fe612e

... <cross-domain-policy>

<allow-access-from domain="*"/>

</cross-domain-policy>

GET /info.php

Cookie: SID= qqem7fe612e

...CONFIDENTIAL_DATAGET /?CONFIDENTIAL_DATA

HTTP/1.1 200 OK

Figure 3. Example attack exploiting overly permissive crossdomain policy. 1: User logs into secret.com. 2: Later, the user
is tricked to retrieve and execute a malicious Flash application embedded in a Web page on evil.com. 3: The Flash appli-
cation on evil.com attempts to read data from http://secret.com/info.php. Flash Player fetch the crossdomain.xml
policy file of secret.com to check whether secret.com allows for crossdomain requests from evil.com. Since the fetched
crossdomain.xml file specifies unrestricted crossdomain policy, Flash Player allows the Flash application to issue the cross-
domain request. 4: The Flash application on evil.com issues the crossdomain request to http://secret.com/info.php to
which the browser attach the user’s active session cookie. The requested Web page, http://secret.com/info.php, renders
content containing the user’s confidential information based on the provided session cookie, and the content is sent back to the
Flash application. 5: The malicious Flash application sends the confidential data back to evil.com

previous versions of Flash Player [5]. In prior versions,
Flash Player enforced a variant of the JavaScript same-
origin policy under which a Flash application on a subdo-
main could read data from its parent domain. For example, a
Flash application residing on sub.a.com could read a Web
page residing on a.com. By contrast, JavaScript considers
sub.a.com and a.com to be distinct domains.

Versions of Flash Player beginning with Flash Player 7
enforce the same origin separation as JavaScript. For back-
wards compatibility with Flash applications reliant on the
old behavior, and to allow for more expressive crossdomain
access policies, Flash Player 7 allowed sites to define cus-
tom crossdomain policies. When a Flash application tries to
read data from another domain, the Flash Player consults

the crossdomain.xml file on the domain. This XML file
specifies what crossdomain access is allowed; Flash Player
allows the access only if it is consistent with policy. With
crossdomain.xml files, Flash applications can communi-
cate between domains by explicitly specifying crossdomain
policies, and can maintain backward compatibility by allow-
ing access from subdomains.

Figure 1 shows an example crossdomain.xml resid-
ing on the imaginary Website secret.com. The policy
file authorizes two types of crossdomain access, from
sub.secret.com and from safe.com. The first rule might
be in support of legacy Flash applications expecting the ac-
cess policy from Flash Player 6; the second might allow ac-
cess from a trusted affiliate. The crossdomain.xml file in

Figure 2 illustrates a variety of possible rules. When spec-
ifying a rule, one can use a wildcard character (line 1) and
even an IP address to name a domain (line 2). Moreover, a
site served over HTTPS can allow crossdomain access by
Flash applications served over HTTP by using a “secure”
attribute set to the value “false” (line 3).

Attack vectors. Websites might be open to serious attacks
if they host overly permissive crossdomain policy files.
If b.com allows crossdomain access from a.com, then a
malicious Flash application hosted on a.com can mount
information-disclosure attacks on b.com’s users, by caus-
ing those users’ browsers to make requests for pages on
b.com that include sensitive information and exfiltrating that
information. Figure 3 shows a concrete example. Consider
a Website, secret.com, that hosts a crossdomain.xml

file stating that evil.com is allowed to make crossdomain
requests to secret.com. Suppose there is a Web page,
http://secret.com/info.php, contains confidential in-
formation and hence is only accessible to a user with a valid
login session identified by the user’s cookie value. If the
attacker can trick a user logged in to secret.com to visit
evil.com, she can serve to that user a malicious Flash ap-
plication that uses Flash’s facilities to read the contents of
http://secret.com/info.php. Flash Player will allow
this query, since it is authorized by secret.com’s cross-
domain policy, and the browser will fulfill it, attaching the
user’s secret.com cookies to the HTTP request. The con-
tents of the sensitive page will be disclosed to the malicious
Flash application, which can send it to the attacker’s server.

One kind of sensitive information that could be disclosed
by this mechanism is the CSRF tokens intended to prevent
cross-site request forgery attacks [6]; such an attack would
allow the malicious Flash application to manipulate the state
of the user’s session on secret.com. This possibility was
noted in 2006 by Shiflett and Couvreur [19, 8].

If an intranet Web server hosts an overly permissive
crossdomain policy file, an attacker who convinces someone
within that intranet to visit her site can use a Flash applica-
tion to exfiltrate data from the intranet server. This is similar
to DNS rebinding attacks [13]. Unlike the attacks considered
above, this attack on intranet servers does not depend on the
fact that current browsers attach cookies to crossdomain re-
quests made by Flash applications.

3. Crossdomain Policies on Popular Websites
To understand the Flash crossdomain policies that are de-
ployed in the wild, we carried out a survey of the (top-level)
crossdomain policy files published on 50,000 high-traffic
sites.

To undertake our crawl, we used a machine with a
3.20GHz Pentium 4 processor, running the Ubuntu 10.04.2
(“Lucid Lynx”) distribution of Linux. The crawl started on
March 23, 2011 and was completed on March 25, 2011, tak-
ing 42 hours overall.

Rank Site Description HTTP

9 qq.com Chinese news -
47 youku.com Chinese video -
48 tudou.com Chinese video -
51 xvideos.com adult -
61 pornhub.com adult -
65 about.com online resource -
68 zedo.com advertising -
77 youporn.com adult Y
81 ifeng.com Chinese news -
87 imageshack.us media hosting -
88 rapidshare.com file sharing Y
99 ehow.com Q&A -

115 cpxinteractive.com advertisement Y
139 ku6.com Chinese news -
153 56.com news -
169 imgur.com image sharing -
179 reference.com online learning -
184 liveinternet.ru news -
191 bild.de news -
192 onet.pl Polish news -
193 archive.org web archive -
220 foxnews.com news -
229 yfrog.com image sharing -
234 scribd.com online reading Y
239 kaskus.us forum -
244 seesaa.net Japanese blog -
246 adultfriendfinder.com adult -
249 soufun.com housing -
252 hardsextube.com adult -
253 metacafe.com video sharing -
272 people.com.cn news -
274 odesk.com job search -
289 slideshare.net sharing -
303 keezmovies.com entertainment -
315 ign.com entertainment -
339 verycd.com entertainment -
356 mashable.com social media -
367 7k7k.com entertainment -
371 mercadolivre.com.br shopping -
385 bigpoint.com online gaming -
389 ero-advertising.com advertisement -
419 imagebam.com image hosting -
436 slutload.com adult -
455 tradedoubler.com marketing -
469 cntv.cn entertainment -
472 vancl.com shopping -
480 mynet.com Turkish news -
482 wunderground.com weather -
484 bloomberg.com financial news -
486 tnaflix.com adult -

Table 1. Top 50 sites hosting “*” crossdomain policies.

Surveyed sites. In order to evaluate the nature of cross-
domain policies used in the wild, we collected top-
level crossdomain.xml files from the Alexa global
Top 50,000 Websites as of January 29th, 2011. Each
Alexa top-site entry specifies a domain; for example,
google.com and facebook.com are the two top sites. For
each Alexa entry “example.com” we queried the server
“http://example.com:80/”. An equally valid choice for

Figure 4. Crossdomain policy on www.scribd.com (Upper left), the content of a user’s information page (Lower left), and
the screenshot of the page (Right).

host, “www.example.com”, might give different results, but
we do not have data to compare. This is a limitation of our
survey. Our crawler did follow any HTTP redirects from
example.com to www.example.com, however. Consider-
ing “www.example.com” would not have helped if a site’s
important content is hosted on another subdomain, e.g.,
“cdn.example.com”. We did not attempt to make HTTPS
connections in addition to HTTP connections. Nor did we
attempt to gather sub-path policy files in addition to the root-
level policy file.

Policy file crawler. We implemented a Python program
that automatically crawls crossdomain.xml files on these
Websites. The crawler first examines the robots.txt file
that specifies these sites’ robots exclusion policy; it pro-
ceeds to request crossdomain.xml only if robots.txt

allows it. We did not examine crossdomain.xml files on
1,049 sites out of the 50,000 on the Alexa list because of
robots.txt restrictions, leaving 48,951 sites to survey. We
do not know whether these sites host crossdomain policy
files. (Unlike us, of course, an attacker would not be deterred
by robots.txt.)

Websites with crossdomain policy files. We found 8,264
Websites hosting crossdomain.xml files. This is 16.88%
of the 48,951 sites for which we attempted to retrieve policy
files. Out of the 8,264 Websites having crossdomain.xml

files 7,686 specified “allow-access-from” rules and
1,241 specified “allow-http-request-headers-from”
rules.

Websites with unrestricted policy. Out of 8,264 Websites
with crossdomain.xml files, we found that 2,993 Websites
allow unrestricted crossdomain requests from any domain by
describing permitted domains as a wildcard (“*”). Table 1
shows the top 50 ranked Websites among these sites. The

columns in the tables are as follows: “Rank” is the Website’s
Alexa rank; “Site” is exactly the name of the domain from
which crossdomain.xml is collected through the HTTP
protocol; “HTTP” is whether the policy allows a Flash ap-
plication served via HTTP from another domain to access
the site served in HTTPS: “Y” indicates that it is allowed
and “-” indicates that it is disallowed.

Publishing an unrestricted policy is potentially
dangerous when Web pages containing users’ pri-
vate information are hosted under the same domain.
For example, on http://www.scribd.com (which
hosts the same unrestricted-access crossdomain policy
as does http://scribd.com), the page http://

www.scribd.com/info presents a logged-in user’s
name, location, and occupation. Since Scribd allows
crossdomain Flash requests from any other domain, a
user who encounters a malicious Flash application while
logged in to Scribd is potentially subject to an informa-
tion disclosure attack of the sort described at the end
of Section 2. Figure 4 shows the unrestricted crossdo-
main policy of http://www.scribd.com, the content of
http://www.scribd.com/info when a user is logged in,
for a sample user account we created. (We stress that we
have not attempted to make crossdomain requests to Scribd.
There may be server configuration of which we are unaware
that defeats the potential attack described above.)

Sites granted access in many crossdomain.xml files.
We found that a number of domains are allowed to access
from many other Websites through Flash crossdomain re-
quests. Table 2 shows the ten domains most frequently listed
in crossdomain.xml files on the Alexa Top 50,000 sites.
Flash applications on the domains in Table 2 can read data
from many other Websites. The sites in this table may thus

Domain Description Sites and Count

*.brightcove.com advertisement espn.go.com, nytimes.com, weather.com, guardian.co.uk, wsj.com+ 188
*.cooliris.com content cnet.com, download.com, wsj.com, reuters.com, t-online.de + 140
*.doubleclick.net advertisement cnn.com, espn.go.com, doubleclick.com, wsj.com, livingsocial.com+ 138
*.2mdn.net advertisement cnn.com, espn.go.com, doubleclick.com, wsj.com, livingsocial.com+ 110
localhost - kooora.com, justin.tv, enet.com.cn, nhl.com, yellowpages.com+ 100
*.facebook.com social espn.go, nba.com, tripadvisor.com, usatoday.com, miniclip.com+ 61
*.doubleclick.com advertisement espn.go.com, wsj.com ,livingsocial.com, associatedcontent.com+ 54
*.aol.com content aol.com, cnn.com wsj.com, engadget.com, people.com+ 52
*.floq.jp entertainment msn.com, ameblo.jp, ameba.jp, livedoor.biz, yaplog.jp, sony.jp+ 47
*.livedoor.com content livedoor.com, livedoor.biz, 2chblog.jp, alfalfalfa.com, ldblog.jp+ 44

Table 2. Domains that are allowed to issue crossdomain requests as mentioned in crossdomain.xml. “Count” stands for
number of Websites that allow these domains to read data from them.

Rank Site Domains Allowed and Count

31948 orange.co.il *.alarab.net, *.karemmatar.com, *.ispot.co.il+ 414
31773 shootq.com *.2ndsunphoto.com, *.32, *.mintandsage.com, *.altf.com+ 291
11482 bestcoolmobile.com 6060.com.ua, 60in60.com.ua 60v60.com.ua, adultinlove.com+ 290
27781 viamichelin.com *.serving-sys.com, a69.g.akamai.net, eyeblasterwiz.com, www.mcdonalds.com+ 279
12086 warriordash.com *.ac, *.as, *.ai, *.bf+ 260

5021 hooverwebdesign.com eliomstudio.com, www.taboosf.com, sytrex.com+ 217
34277 qantas.com.au *.yahoo.com, *.stuff.co.nz, *.weather.com.au, *.theage.co.au+ 212
13105 nissan.co.jp s-miyagi.co.jp, akita-nissan.co.jp, www.ask-nissan.co.jp, www.n-23.com+ 196
26848 airberlin.com aeroberlin.aero, aero-berlin.net airberlin.be, www.airberlin.at+ 187
12467 badoo.com *.badoo.ae, *.badoo.af *.badoo.ch, *.badoo.by+ 178

Table 3. Sites that allow crossdomain requests from more than 100 other sites. “Domains Allowed and Count” lists a few
domains allowed in crossdomain.xml and gives the number of additional domains elided. The entries are sorted by this
column.

make attractive targets for attackers: Flash content injected
into one of these sites might allow information disclosure or
CSRF bypass attacks on the sites that grant it access.

Sites whose crossdomain.xml files include many entries.
We noticed that some sites host elaborate policies, allowing
crossdomain access from hundreds of other sites. Some sites
hosting elaborate policies are listed in Table 3. In all, we
found 778 sites that allow crossdomain requests from more
than 10 sites. While such policies are certainly no worse
than “*” policies, they may still have risks. For example,
qantas.com.au allows crossdomain access from 216 sites,
one of which is *.blogspot.com. If it were possible for an
attacker with a Blogger account to upload malicious Flash
applications to a blogspot.com blog (and have these appli-
cations served from *.blogspot.com), then Qantas users
who visit this blog might be put at risk. To the best of our
knowledge, Blogger does not currently allow such SWF up-
loads.

The secure attribute The “secure” attribute of the
“allow-access-from” element specifies whether access to
an HTTPS resource should be granted only to Flash appli-
cations served over HTTPS (secure=true, the default) or

also to those served over HTTP (secure=false) [5]. An
HTTPS site setting secure=false for some crossdomain
access opts out of SSL’s confidentiality guarantees relative
to a network attacker. It appears that there is some confusion
about the use of this attribute. For example, we noticed the
following comment in the crossdomain policy file of one site
setting secure=false:

Note: secure=false is confusing, but basically its
[sic] saying to allow SSL connections. Their reason-
ing is something about SSL content being made less
secure somehow. Go look it up if you want to know
more than this.

The “secure” attribute is not relevant for
crossdomain.xml files served over HTTP, like all
the ones we surveyed. Nevertheless, 1,424 crossdomain
policy files we saw featured the “secure” attribute. A list of
the top such sites is presented in Table 4. We did not attempt
to verify that these sites serve the same policy over HTTPS,
or, indeed, that they have HTTPS servers at all.

Port access for socket communication. Flash applications
can communicate using raw TCP socket connections as well
as HTTP. Such connections must be authorized by a socket

Rank Site

4 yahoo.com

23 ebay.com

52 cnn.com

59 mediafire.com

66 espn.go.com

67 ameblo.jp

75 ebay.de

77 youporn.com

80 cnet.com

88 rapidshare.com

Table 4. Websites that grant access to HTTPS documents
from Flash applications served over HTTP, by setting
“secure” for “allow-access-from” to “false”.

policy file on the target machine, served either from a mas-
ter socket policy server (port 843) or from the port being
connected to in response to a “<policy-file-request/>”
XML request [15]. In either case, the retrieved policy must
authorize the connection: Some “allow-access-from” el-
ement in the socket policy must name both the source do-
main (i.e., the domain hosting the Flash application) and, us-
ing the “to-ports” attribute, the target port (i.e., the server
port being connected to).

Policy files served over HTTP (port 80) are not con-
sulted by Flash Player for authorizing socket connections.
Accordingly, the “to-ports” attribute is not relevant for the
crossdomain.xml files we surveyed, which were all served
over HTTP. Nevertheless, 537 crossdomain policy files we
saw had a “to-ports” attribute specified; of these, 326 sites
had “to-ports” set to “*”, the most permissive value. A
list of top sites whose crossdomain.xml files include the
“to-ports” attribute is presented in Table 5. In the absence
of a robots.txt-like mechanism for excluding unwanted
access, we did not attempt to ascertain that these sites actu-
ally host socket servers on the named ports.

Header configurations. Prior to version 9, Flash Player
allowed Flash applications to set arbitrary custom headers
on HTTP requests, except for a short blacklist of dangerous
headers. Beginning with version 9, Flash Player allows sites
to specify what custom headers they are willing to receive
in requests from Flash applications, still subject to a black-
list [3, 2]. The “allow-http-request-headers-from”
element in a site’s crossdomain.xml file specifies the al-
lowed headers. Though it shares the crossdomain.xml file
with “allow-access-from,” the “allow-http-request-
headers-from” mechanism is orthogonal, and governs the
headers that Flash applications can send in requests to the
site rather than whether they can read the site’s response.

The allowed headers we saw in our survey and their
frequency are listed in Table 6. Next to the wildcard “*”,
the most commonly allowed header is “SOAPAction”, used
for Web services. We were able to find the description

Rank Site Allowed Ports

31 mail.ru 80
36 vkontakte.ru 80
66 espn.go.com *
67 ameblo.jp *
88 rapidshare.com 80

123 mixi.jp 80, 8080
171 espncricinfo.com *
179 reference.com *
194 ameba.jp *
246 adultfriendfinder.com *

Table 5. Types of port access allowed in some Websites.

of a public Web service for one site that accepts the
“SOAPAction” header: weather.gov provides SOAP API
access to the National Digital Forecast Database (cf. http:
//www.weather.gov/xml/).

The allow-access-identity element. We did not en-
counter any instances of the “allow-access-identity”
element in our survey. This element, which grants read ac-
cess based on cryptographic identity rather than domain, is
supported by Adobe Acrobat but not by Flash Player.

Sub-path crossdomain policy files. In addition to the root
policy file at /crossdomain.xml, sites can choose to spec-
ify policies that apply to resources within a specific directory
and its subdirectories. For example, a sub-path crossdomain
policy served from /secret/ controls access only to docu-
ments for which /secret/ is a path prefix. Sub-path policy
files allow finer-grained control over crossdomain resource
sharing than a single root policy. Properly deployed, sub-
path policy files reduce a site’s attack surface.

To enable sub-path policy files, a site must specify
an appropriate metapolicy. Metapolicy is specified in the
root policy file, /crossdomain.xml, by means of the
“site-control” element’s “permitted-cross-domain-
policies” attribute. If this attribute is set to “none”, then
no crossdomain rules are allowed, even in the root policy
file. If it is set to “master-only” then rules are allowed in
the root policy file, but nowhere else. When “permitted-
cross-domain-policies” is set to “by-content-type”,
sub-path policy files are allowed if served with a Content-
Type of text/x-cross-domain-policy; when it is set to
“all”, sub-path policy files are allowed if served with a
text or XML Content-Type. As of Flash Player 10, the de-
fault setting for “permitted-crossdomain-policies” is
“master-only”. (Servers can also use an HTTP header to
specify metapolicy.)

Of these options, “all” is the riskiest. An attacker who
has a user account on the server might be able to upload
a file to the server that will be interpreted by Flash as a
sub-path policy file, which would enable crossdomain ac-
cess to resources within the directory to which the file was

http://www.weather.gov/xml/
http://www.weather.gov/xml/

Headers Sites and Count

* twitter.com, ebay.com+ 1078
SOAPAction usa.com, smh.com.au+ 92
Authorization dominos.jp, gillete.com+ 4
X-Requested-With demotyvacija.lt, balsas.lt+ 1
Accept paperlesspost.com, official.fm
i.travelpn.com.edgesuite.net travelocity.com, travelocity.ca
pragma tpu.ro, gustos.ro
none thepetitionsite.com, care2.com
GET svenskfast.se

Content-Type dr.dk

X-Permitted-Cross-Domain-Policies sinematurk.com

X-WSSE multiply.com

http://www.myexperiencephoto.com/ fedex.com

Wanring uefa.com

*.emusic.com emusic.com

Table 6. Types of allowed headers, and some sites whose crossdomain policy allows those headers.

Sub-path Policy Attribute Count

all 896
master-only 706
by-content-type 402
none 38
master_only 1
*.concordia.ca 1

Table 7. Metapolicies and their frequency of occurrence.

uploaded. This threat model does not apply to all sites, of
course. Servers can also thwart such an attack, even as-
suming an “all” metapolicy, by disallowing user uploads
that Flash would accept as crossdomain policy files, or by
applying the “X-Permitted-Cross-Domain-Policies:
none-this-response” header when serving user-up-
loaded content.

The metapolicies specified in the root policy files of the
Alexa Top 50,000 Websites are summarized in Table 7.
The column “Sub-path Policy Attribute” gives the value
of “permitted-cross-domain-policies”. The “site-
control” element is not mandatory and thus was not
present in the crossdomain.xml file of all Websites. We
did not attempt to measure whether servers set metapolicy
using HTTP headers, or whether any sites whose metapolicy
allows sub-path policy files actually publish such files.

Sloppily configured policy files. We encountered some in-
correct or sloppy crossdomain policy files, suggesting that
the site’s developers misread the crossdomain.xml speci-
fication. This state of affairs seems dangerous, given the im-
pact that an incorrect crossdomain policy could have on site
security.

A root crossdomain.xml file whose “site-control”
element has the “permitted-cross-domain-policies”

attribute set to “none” must not specify any access policy,
either with “allow-access-from” or with “allow-http-
request-headers-from”. Nevertheless, we found several
sites, such as pixelpipe.com and akihabaranews.com,
that do specify crossdomain access rules in their policy files
despite having “permitted-cross-domain-policies”
set to “none”.

In two examples that almost certainly represent miscon-
figuration, drf.com had the “permitted-cross-domain-
policies” attribute set to “master_only” (with an under-
score instead of hyphen) and another site, concordia.ca,
had this attribute set to “*.concordia.ca”.

Some Websites, such as vimeo.com and care2.com,
have the “domain” attribute of an “allow-access-from”
element and an “allow-http-request-headers-from”
element set to “none”, which actually implies that only the
domain “none” can access the Websites. If the goal was
to disallow crossdomain access, omitting “allow-access-
from” and “allow-http-request-headers-from” ele-
ments altogether would have been a better approach.

An apparently mangled policy file we found was hosted
on rollingout.com; it is shown in Figure 5.

4. Crossdomain Requests Issued by Flash
Applications

We present an empirical study of the crossdomain requests
issued by real Flash applications on popular Websites. Un-
derstanding the nature of crossdomain requests issued by
real Flash applications can be helpful in interpreting the
crossdomain policies published by sites, and in designing re-
alistic defense mechanisms against attacks.

We carried out our study in three steps. First, we mod-
ified the Firefox browser to intercept and log external re-
source requests from the Flash Player plugin running inside
the browser. Second, we ran the modified browser on the

<?xml version="1.0" encoding="UTF-8"?>

<cross-domain-policy>

<allow-access-from domain="<?xml version="1.0" encoding="UTF-8"?>" />

<allow-access-from domain="<cross-domain-policy>" />

<allow-access-from domain="<allow-access-from domain="" />" />

<allow-access-from domain="</cross-domain-policy>" />

</cross-domain-policy>

Figure 5. Crossdomain policy file hosted on rollingout.com

front pages of the Alexa global Top 50,000 Websites and
recorded the crossdomain requests issued by Flash applica-
tions embedded on these pages. Finally, we studied the log
files to obtain statistical data.

Our modified Firefox. We modified the Firefox 3.6
browser to report every Netscape Plugin Application Pro-
gramming Interface (NPAPI) call made by the Flash Player
plugin. Since the Flash Player plugin makes NPAPI calls
whenever it requests to access data through the HTTP or
HTTPS protocols, our modified Firefox can intercept and
log crossdomain requests by Flash applications. Specifi-
cally, Flash Player calls browserside NPAPI interfaces in-
cluding NPN_GetURL and NPN_GetURLNotify for reading
data through the HTTP GET method, and NPN_PostURL and
NPN_PostURLNotify for HTTP POST.

Our modifications to Firefox consisted of 56 lines of log-
ging code placed at the beginning of these NPAPI inter-
face entrypoints. The logging code records the name of the
NPAPI interface called, the URL of the page in which the
calling Flash application is embedded, the URL of the Flash
application itself, and the URL of the document requested.
We did not attempt to evaluate the performance overhead of
our logging code. However, there was no noticeable slow-
down in interactive use.

A limitation of our approach is that it allows us to ob-
serve browser-mediated HTTP requests made by Flash ap-
plications but not raw socket communication. Because only
the browser-mediated requests have cookies attached by the
browser, this is sufficient for our purposes. Studying socket
access by Flash applications is also interesting, but would
require more intrusive sandboxing of Flash Player.

A more serious limitation of our approach is that the
NPAPI calls made by the Flash Player plugin do not have a
one-to-one correspondence with crossdomain requests made
by Flash applications. On the one hand, if access to some
resource is not allowed by a site’s crossdomain policy then
Flash Player, having downloaded the policy, will not proceed
to request that the browser retrieve the disallowed resource.
This means that disallowed crossdomain requests do not
generate NPAPI calls. On the other hand, the Flash platform
includes mechanisms (such as the flash.display.Loader
class) by which Flash applications can load resources to
display without being able to read their contents, much like
HTML’s img tag; Flash Player will request these resources

using the same NPAPI calls as for requests that must comply
with a crossdomain policy.

We deal with the ambiguities above as follows. First, we
consider a request to be crossdomain if Flash Player consults
a crossdomain policy file before making the request. That
is, if a request for a resource at example.com was not pre-
ceded by a request for example.com’s crossdomain.xml
file then the request is not crossdomain. Conversely, if Flash
Player ever requests example.com’s crossdomain.xml

file on behalf of a Flash application, then that application
must have made at least one crossdomain request.

An NPAPI call requesting example.com’s crossdomain
policy file that is not followed by any NPAPI calls request-
ing example.com resources is evidence that the Flash ap-
plication requested one or more resources disallowed by
example.com’s crossdomain policy. An NPAPI call request-
ing example.com’s crossdomain.xml file that is followed
by n NPAPI calls requesting example.com resources, for
n ≥ 1, is evidence that the Flash application made at least
one and at most n crossdomain requests that were allowed
by policy. (Once a crossdomain.xml file is downloaded, it
is cached for subsequent crossdomain requests to the Web-
site.) Together, these observations allow us to compute a
lower bound on the fraction of crossdomain requests made
by Flash applications that were denied by policy.

An alternative way to decide whether a request is cross-
domain is to compare the requested URL to the URLs of the
Flash application and of the page in which it is embedded.
(A Flash application from origin A embedded in a page from
origin B is not thereby endorsed into origin B, so origin A
must also be considered.) We expect that the this approach
and our heuristic approach would give similiar results, but
have not attempted to compare them.

Our corpus of Flash applications. To evaluate the behav-
ior of crossdomain requests issued by Flash applications, we
ran our modified Firefox on the front pages of the Alexa
global Top 50,000 Websites. We automated this visit using
a simple bash script that directs Firefox to visit each page.
The script detects whether the browser has fully loaded a
page by monitoring its network bandwidth usage. Once the
network usage drops under 500 bytes per second, our script
considers the Web page to be fully loaded and proceeds to
the next page. Using the script, we successfully ran our mod-

Ref Count Site

674 i.ytimg.com

601 i2.ytimg.com

580 i4.ytimg.com

578 i3.ytimg.com

550 i1.ytimg.com

407 brightcove.vo.llnwd.net

387 c.brightcove.com

344 images.kontera.com

288 newschool.slideshowpro.com

261 api.dimestore.com

223 b.vimeocdn.com

219 l.player.ooyala.com

195 receive.inplay.tubemogul.com

175 pixel.quantserve.com

169 dc.tremormedia.com

164 log.adap.tv

151 krocms.kro.nl

151 i1.soundcloud.com

148 i.cartoonnetwork.com

147 caw.sv.us.criteo.com

Table 8. Sites most frequently referenced by Flash appli-
cations we observed. “Ref Count” stands for the number of
crossdomain requests targeted for each domain.

ified Firefox on these Websites in a total of about 74 hours
on a fast network at a large university.

Crossdomain request statistics. We found that, out of
50,000 Websites, 8,746 (17.5%) host Flash applications
that communicate through the network. The Flash applica-
tions we examined on these 8,746 Websites issued 102,169
HTTP/HTTPS requests through the NPAPI interface. Here
multiple requests to the same URL are counted as distinct
requests. Out of these 102,169 requests, 21,430 (21.0%) are
crossdomain requests to a Website preceded by a request to
the crossdomain.xml file of the Website. Even though our
survey is limited to Flash applications embedded on the front
pages of the top sites, it shows that crossdomain requests are
frequently used in the wild.

We evaluated what Websites are most frequently refer-
enced from other domains by the Flash applications we stud-
ied. Table 8 lists the 20 Websites that are most frequently ref-
erenced. The “Referred” column lists the number of cross-
domain requests issued to each Website; “Site” is the name
of the Website. Every Website listed in this table was ac-
cessed over HTTP protocol. Most of the Websites refer-
enced from other domains are content distribution services
like *.ytimg.com (for YouTube).

Disallowed crossdomain requests. The Flash applications
we examined issued 10,565 requests to crossdomain.xml

files on Websites in order to consult the crossdomain pol-
icy of the Websites before issuing a real crossdomain re-
quest. The fact that a request to a crossdomain.xml file
of a Website is not followed by a subsequent requests to

the Website implies that originally issued crossdomain re-
quests were disallowed since they violated the policy de-
scribed in the crossdomain.xml file. Out of the 10,565 re-
quests to crossdomain.xml files, 1,545 (14.6%) requests
were not followed by any subsequent requests to their tar-
get Website. Because there can be more than one request per
target site, this 14.6% ratio does not measure the fraction
of disallowed request. Using the heuristics described above,
we can give a lower bound on this fraction. The number of
requests to a crossdomain.xml file not followed by any
further requests to the same domain — 1,545 — is a lower
bound on the number of disallowed crossdomain requests.
The 9,020 other requests to crossdomain.xml files were
followed by a total of 21,430 crossdomain requests to docu-
ments other than the crossdomain.xml file; this is an upper
bound on the number of allowed crossdomain requests. The
fraction of crossdomain requests disallowed is thus at least
1,545/(1,545 + 21,430), or 6.7%. The actual fraction could
be higher, but calculating it would require instrumentation
of Flash Player rather than NPAPI interposition. Regardless,
it appears to be the case that a significant number of cross-
domain requests are disallowed in real Flash applications.

These disallowed crossdomain requests might be caused
by misconfigured crossdomain policy files. It is also possible
that Flash applications originally designed for running on a
specific domain are sometimes used elsewhere without suf-
ficiently careful consideration. Finally, it is possible (though
unlikely) that these requests represent unsuccessful informa-
tion disclosure attacks. Our current tool is unable to deter-
mine whether any of these reasons was responsible for the
disallowed requests we observed. In addition, the nontriv-
ial number of disallowed requests suggests that crossdomain
requests are often unimportant or that error reporting facil-
ities for deployed Flash applications are inadequate, since
otherwise developers would have taken steps to address the
failures.

5. Mitigation
Our survey, described in Section 3 suggests that overly
permissive Flash crossdomain policies are quite common
among popular sites. When governed by an appropriate pol-
icy, crossdomain requests allow for fine-grained information
sharing between sites. And, as we showed in Section 4, Flash
applications in the wild make frequent use of crossdomain
requests. We therefore do not believe that the correct reac-
tion to our findings is to seek to eliminate crossdomain re-
quests. Instead, in this section we consider some mitigations
that might make it more likely that site administrators will
specify safe crossdomain policies, or else might reduce the
harm that arises from any misconfiguration.

Crossdomain policy files should be audited. Most mod-
estly, we suggest that crossdomain policy files should be au-
dited as part of a site’s security audits just as a firewall ruleset
is (and for the same reason). Flash authoring tools should is-

sue warnings when encountering overly permissive policies
(e.g., those that allow “*” access).

Stripped cookies by default. Current browsers will attach
cookies to any requests made by the Flash Player plugin
on behalf of Flash applications. This is what enables the
information disclosure and CSRF attacks discussed in Sec-
tion 2 on sites with overly permissive crossdomain policies.
If browsers were modified so as not to attach cookies to these
requests, Flash applications would be able to access only
public data for which cookie authentication is not required.
(Intranet servers might remain vulnerable.) It is not clear that
such a change is practical, however. Flash developers may
be relying on the current behavior, in which case changing
it will break deployed applications. Moreover, the current
NPAPI interface may not allow browsers to reliably distin-
guish same-origin and crossorigin requests made by Flash
Player; changing this interface would be difficult except per-
haps where the Flash Player plugin is closely integrated with
the browser, as in Google Chrome.

Stripped cookies as an option. As a compromise between
always attaching cookies and stripping them, the crossdo-
main policy file format could be augmented to allow sites
to express whether they would like cookies attached or not.
This approach, like the one described above, has the draw-
back of requiring changes to the NPAPI interface. In addi-
tion, we have shown that administrators tend to install overly
permissive crossdomain policies; given the option, they may
opt to have cookies sent.

A more complicated but perhaps feasible approach would
be to have Flash Player to bypass the browser and make
HTTP and HTTPS requests directly, maintaining its own
cookie file independent of the browser’s. Where necessary,
the browser-side and plugin-side cookies could be associated
through communication between JavaScript, ActionScript,
and the site. This approach would have serious disadvan-
tages. It would require Flash Player to duplicate the browser
HTTP stack; it might exacerbate DNS pinning attacks; and it
would make tying a Flash request to a browser session much
more difficult than now.

Taint tracking for protecting crossdomain content. To
benefit an attacker, sensitive information obtained by means
of a crossdomain request must then be sent over the network
to a server she controls. Suppressing this sort of informa-
tion transfer might mitigate information disclosure attacks,
though it would not prevent CSRF token bypasses.

Dynamic taint tracking [20] is a promising way of con-
trolling the propagation of information. Using taint tracking,
a piece of confidential information is tagged with a special
value called taint, and the taint is carried along with the in-
formation. By blocking tainted values from propagating to
those program points that can leak it, we can protect confi-
dential information.

Flash Player could be modified to apply taint to all val-
ues obtained through crossdomain requests,3 and to refuse
to transmit tainted values over the network (or at least alert
the user, the targeted site, or Adobe). With this approach
current crossdomain.xml files could be used more safely.
However, the modifications required to Flash to support taint
would be substantial, and may cause performance degrada-
tion. Depending on the taint tracking techniques used, false
positive or false negatives may be a problem.

6. Conclusion
We have surveyed the crossdomain policy files on the Alexa
global Top 50,000 sites. Furthermore, we have used a mod-
ified Firefox browser to survey the actual crossdomain re-
quests made by Flash applications hosted on the front pages
of these sites. Our survey provides new data about the use of
Flash crossdomain policies on popular sites, suggesting that
Flash’s crossdomain policy mechanism may be liable to mis-
configuration in practice. Such misconfiguration could lead
to attacks including information disclosure and CSRF token
bypass. We have proposed some techniques for mitigating
the security problems that might arise from such misconfig-
uration.

There are many promising avenues for future work. First,
it would be interesting to repeat our survey on a larger num-
ber of sites; and to consider sub-path crossdomain policy
files as well as root policy files.

Second, it would be worthwhile to determine whether
overly permissive configuration on specific sites in fact leads
to exploitable vulnerabilities (and to do so automatically,
rather than by manual inspection). It is possible that such
vulnerabilities would have repercussions beyond the sites
hosting the crossdomain policy. For example, some sites in
our survey having “*” access policies support “Login with
Facebook” authentication. To the extent that such sites re-
flect Facebook data for logged-in users, that data would po-
tentially be at risk. More generally, as one of our anonymous
reviewers asks, what is the interaction between crossdomain
access and redirect-based federated identity systems?

Third, more extensive instrumentation of Firefox or Flash
Player would allow for greater insight into the reasons that
Flash applications make crossdomain requests, why so many
appear to be disallowed by policy, and whether stripping
cookies from crossdomain requests would break deployed
applications.

Fourth, studies of other crossdomain policy mechanisms,
such as the W3C’s CORS [21] proposal, may be illuminat-
ing.

To facilitate future work, we hope to make our code and
data available to other researchers.

3 Tainting all values obtained by crossdomain requests may lead to over-
tainting, but there is no reason to believe that developers will be able to
specify which portions of their sites are sensitive and should be tainted.

Acknowledgments
We thank Peleus Uhley for his detailed feedback on the pa-
per; Collin Jackson and Eric Rescorla for helpful discus-
sions; and the W2SP reviewers for their comments.

This material is based upon work supported by the Na-
tional Science Foundation under Grants No. CNS-0831532
and CNS-0964702, and by the MURI program under
AFOSR Grant No. FA9550-08-1-0352.

References
[1] L. Adamski. Cross-domain policy file usage recommen-

dations for Flash Player, Mar. 2007. Online: http:

//www.adobe.com/devnet/flashplayer/articles/

cross_domain_policy.html.

[2] Adobe Systems. TechNote kb403185: Arbitrary headers are
not sent from Flash Player to a remote domain, Mar. 2008.
Online: http://kb2.adobe.com/cps/403/kb403185.
html.

[3] Adobe Systems. TechNote kb403030: Actionscript error
when an HTTP send action contains certain headers (Flash
Player), Feb. 2009. Online: http://kb2.adobe.com/cps/
403/kb403030.html.

[4] Adobe Systems. Cross-domain policy file specification,
version 2.0, Aug. 2010. Online: http://www.adobe.com/
devnet/articles/crossdomain_policy_file_spec.

html.

[5] Adobe Systems. TechNote 14213: Cross-domain policy for
Flash, Sept. 2010. Online: http://kb2.adobe.com/cps/
142/tn_14213.html.

[6] A. Barth, C. Jackson, and J. Mitchell. Robust defenses for
cross-site request forgery. In P. Syverson and S. Jha, editors,
Proceedings of CCS 2008, pages 75–88. ACM Press, Oct.
2008.

[7] A. Barth, C. Jackson, and J. Mitchell. Securing frame
communication in browsers. Communications of the ACM,
52(6):83–91, June 2009.

[8] J. Couvreur. Crossdomain.xml security warning, Sept.
2006. Online: http://blog.monstuff.com/archives/
000302.html.

[9] J. Grossman. Crossdomain.xml statistics, Oct. 2006. Online:
http://jeremiahgrossman.blogspot.com/2006/10/

crossdomainxml-statistics.html.

[10] J. Grossman. Crossdomain.xml invites cross-

site mayhem, May 2008. Online: http:

//jeremiahgrossman.blogspot.com/2008/05/

crossdomainxml-invites-cross-site.html.

[11] L.-S. Huang, E. Chen, A. Barth, E. Rescorla, and C. Jackson.
Talking to yourself for fun and profit. In H. J. Wang, editor,
Proceedings of W2SP 2011. IEEE Computer Society, May
2011.

[12] C. Jackson and A. Barth. Beware of finer-grained origins. In
L. Koved and D. S. Wallach, editors, Proceedings of W2SP
2008. IEEE Computer Society, May 2008.

[13] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting browsers from DNS rebinding attacks. In
S. De Capitani di Vimercati and P. Syverson, editors,
Proceedings of CCS 2007, pages 421–31. ACM Press, Oct.
2007.

[14] G. Kontaxis, D. Antoniades, I. Polakis, and E. P. Markatos.
An empirical study on the security of cross-domain policies
in rich Internet applications. In E. Kirda and S. Hand, editors,
Proceedings of EuroSec 2011. ACM Press, Apr. 2011.

[15] D. Meketa. Policy file changes in Flash Player 9 and Flash
Player 10, Oct. 2008. Online: http://www.adobe.com/
devnet/flashplayer/articles/fplayer9_security.

html.

[16] National Weather Service. SOAP Web service, Jan. 2011.
Online: http://www.weather.gov/xml/.

[17] J. A. Rochlis and M. W. Eichin. With microscope and tweez-
ers: the worm from MIT’s perspective. Communications of
the ACM, 32(6):689–98, June 1989.

[18] C. Shiflett. The crossdomain.xml witch hunt, Oct.
2006. Online: http://shiflett.org/blog/2006/oct/
the-crossdomain.xml-witch-hunt.

[19] C. Shiflett. The dangers of cross-domain
ajax with Flash, Sept. 2006. Online:
http://shiflett.org/blog/2006/sep/

the-dangers-of-cross-domain-ajax-with-flash.

[20] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking. In
ASPLOS, pages 85–96, 2004.

[21] A. van Kesteren. Cross-origin resource sharing. Online:
http://www.w3.org/TR/cors/, July 2010.

[22] E. Zwicky, S. Cooper, and D. B. Chapman. Building Internet
firewalls. O’Reilly, 2nd edition, 2000.

http://www.adobe.com/devnet/flashplayer/articles/cross_domain_policy.html
http://www.adobe.com/devnet/flashplayer/articles/cross_domain_policy.html
http://www.adobe.com/devnet/flashplayer/articles/cross_domain_policy.html
http://kb2.adobe.com/cps/403/kb403185.html
http://kb2.adobe.com/cps/403/kb403185.html
http://kb2.adobe.com/cps/403/kb403030.html
http://kb2.adobe.com/cps/403/kb403030.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://blog.monstuff.com/archives/000302.html
http://blog.monstuff.com/archives/000302.html
http://jeremiahgrossman.blogspot.com/2006/10/crossdomainxml-statistics.html
http://jeremiahgrossman.blogspot.com/2006/10/crossdomainxml-statistics.html
http://jeremiahgrossman.blogspot.com/2008/05/crossdomainxml-invites-cross-site.html
http://jeremiahgrossman.blogspot.com/2008/05/crossdomainxml-invites-cross-site.html
http://jeremiahgrossman.blogspot.com/2008/05/crossdomainxml-invites-cross-site.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html
http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html
http://www.weather.gov/xml/
http://shiflett.org/blog/2006/oct/the-crossdomain.xml-witch-hunt
http://shiflett.org/blog/2006/oct/the-crossdomain.xml-witch-hunt
http://shiflett.org/blog/2006/sep/the-dangers-of-cross-domain-ajax-with-flash
http://shiflett.org/blog/2006/sep/the-dangers-of-cross-domain-ajax-with-flash
http://www.w3.org/TR/cors/

	Introduction
	Flash Crossdomain Policies
	Crossdomain Policies on Popular Websites
	Crossdomain Requests Issued by Flash Applications
	Mitigation
	Conclusion

