
Grading Guide for the Notes for Lab 2
Guidelines
Joint notes for each lab should contain all the information you need in order to write your lab report. Some tips:

● Good software engineering. Only make minimum changes to fix defects. Do not change things that are not defects. Write
clear code: Be consistent in following fixed conventions for indentation etc.

● Copy and paste. The idea is to record what you see and what you do. Copy and paste input, output, changes to the code, and
so on. Err on the side of including data rather than discarding it, but if you get many compiler errors at once, it is sensible to
copy only the one you set to work on immediately, then compile again and repeat. Copy and paste old and new lines of code;
writing just line numbers is not clear enough.

● Include input files. When you create an input file to test your program, include the contents in your notes. This can be done
simply by running cat on the file and copying and pasting the entire command and output.

● Record as you go. Don't wait until you've fixed a bug to start recording detail. Record what you do and observe as it
happens, whether it is what you expect or not.

● Don't write too much. Write summaries for observations you cannot copy and paste, such as "after 10 seconds the program
still didn't terminate." Also write brief notes for clarity, especially to explain code changes, but these need not be complete
sentences. Too much writing will slow you down, and it is important to finish the lab before 7pm, ideally much sooner.

● Include enough test cases. Make your own additional test cases. When you think you have finished debugging the
program, re-run all your test cases to demonstrate that the program meets the specification.

● Include your final code. For short programs this can be helpful; but programs that are long or made up of many files should
be kept separate from your notes. We will let you know when you do not need to include the final code.

● Be understandable. The reader must be able to follow what you did easily. Graders will take points off for lack of clarity.
Use standard English, as opposed to colloquial language like "TOTAL FAIL!!!"

Grading Rubric (maximum 15 points)

Category Characteristics of excellent notes
(+5)

Characteristics of acceptable notes
(+3)

Characteristics of notes that need
improvement (+1)

Detail A. Includes raw input and
output.

B. Clearly indicates code
changes.

C. Includes test file
contents.

D. English writing mistakes.
E. Some steps are described

ambiguously or
inaccurately.

F. Describes most steps
ambiguously and/or
inaccurately

G. Not enough detail to get
a general sense of what
happened.

Completeness H. Includes all steps,
working and not.

I. Includes sufficient test
cases.

J. Includes final code.
K. Maintains chronological

order.

L. Includes most steps, but
not all.

M. Shows some test cases.
N. Includes final code.
O. Maintains chronological

order.

P. Omits many steps.
Q. Does not include test cases.
R. Omits final code.
S. Does not maintain

chronological order.

Correctness T. Fixed all bugs. U. Missing or incorrectly
fixed one bug.

V. Missing or incorrectly fixed
two or more bugs

CSE 15L, Fall 2011
UCSD

