Math 96:
 Homework 5

Fall 2023

This homework is due in class on Friday, November 3rd. Please complete at least one problem below.

1953 B2: Let $a_{0}, a_{1}, \ldots, a_{n}$ be real numbers and let $f(x)=a_{0}+a_{1} x+\ldots+x_{n} x^{n}$. Suppose that, for every integer $i, f(i)$ is an integer. Prove that $n!a_{k}$ is an integer for each k.

1948 A5: Let x_{1}, \ldots, x_{n} denote the nth roots of unity, evaluate

$$
\prod\left(x_{i}-x_{j}\right)^{2} \quad(i<j)
$$

2003 B1: Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y) ?
$$

1958 February A1: If $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers satisfying

$$
\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0
$$

show that the equation $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=0$ has at least one real root.

