Math 96:
 Homework 1

Fall 2023

This homework is due in class on Friday, October 6th. Please complete at least one problem below.

1993 B1: Find the smallest positive integer n such that for every integer m with $0<m<1993$, there exists an integer k for which

$$
\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}
$$

1968 A4: Given n points on the sphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}$, demonstrate that the sum of the squares of the distances between them does not exceed n^{2}.

1963 A2: Let $\{f(n)\}$ be a strictly increasing sequence of positive integers such that $f(2)=2$ and $f(m n)=f(m) f(n)$ for every relatively prime pair of positive integers m and n (the greatest common divisor of m and n is equal to 1). Prove that $f(n)=n$ for every positive integer n.
1963 B3: Find every twice-differentiable real-valued function f with domain the set of all real numbers and satisfying the functional equation

$$
(f(x))^{2}-(f(y))^{2}=f(x+y) f(x-y)
$$

for all real numbers x and y.

