
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Spam Value Chain: Defensive Intervention Analysis

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Andreas Pitsillidis

Committee in charge:

Professor Stefan Savage, Chair
Professor Geoffrey M. Voelker, Co-Chair
Professor Bill Lin
Professor Ramesh Rao
Professor Lawrence K. Saul

2013

Copyright

Andreas Pitsillidis, 2013

All rights reserved.

The dissertation of Andreas Pitsillidis is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2013

iii

DEDICATION

To Dimitris, Despo and Sophia.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Contributions . 3
1.2 Organization . 5

Chapter 2 Background and Related Work 7
2.1 E-mail Spam Feeds . 8
2.2 Spamming Botnets . 10
2.3 Current Anti-spam Approaches 12
2.4 Spam Value Chain . 13

2.4.1 How Modern Spam Works 14
2.4.2 Pharmacy Express: An Example 18

Chapter 3 Meet the Data . 20
3.1 Collecting Spam-Advertised URLs 22

3.1.1 Types of Spam Domain Sources 23
3.1.2 False Positives . 26

3.2 Crawler Data . 27
3.2.1 Content Clustering and Tagging 30

Chapter 4 Taster’s Choice: A Comparative Analysis of Spam Feeds . . . 36
4.1 Introduction . 36
4.2 Data and Methodology 38
4.3 Analysis . 39

4.3.1 Purity . 40
4.3.2 Coverage . 45
4.3.3 Proportionality 56

v

4.3.4 Timing . 59
4.4 Summary . 65

Chapter 5 Botnet Judo: Fighting Spam with Itself 69
5.1 Introduction . 69
5.2 Template-based Spam . 71
5.3 The Signature Generator 75

5.3.1 Template Inference 75
5.3.2 Leveraging Domain Knowledge 79
5.3.3 Signature Update 80
5.3.4 Execution Time 83

5.4 Evaluation . 83
5.4.1 Signature Safety Testing Methodology 84
5.4.2 Single Template Inference 85
5.4.3 Multiple Template Inference 88
5.4.4 Real-world Deployment 94
5.4.5 False Positives . 98
5.4.6 Response Time 100
5.4.7 Other Content-Based Approaches 102

5.5 Discussion . 103
5.6 Summary . 106

Chapter 6 Click Trajectories: End-to-End Analysis of the Spam Value
Chain . 108
6.1 Introduction . 108
6.2 Analysis . 109

6.2.1 Click Support . 110
6.2.2 Intervention analysis 114

6.3 Summary . 117

Chapter 7 Conclusion . 118
7.1 Future Directions . 119
7.2 Final Thoughts . 120

Bibliography . 121

vi

LIST OF FIGURES

Figure 2.1: Infrastructure involved in a single URL’s value chain, including
advertisement, click support and realization steps. 18

Figure 3.1: Our data collection and processing workflow. 21

Figure 4.1: Relationship between the total number of domains contributed
by each feed and the number of domains exclusive to each. . . 47

Figure 4.2: Pairwise feed domain intersection, shown for live (top) and
tagged domains (bottom). 49

Figure 4.3: Feed volume coverage shown for live (top) and tagged domains
(bottom). 50

Figure 4.4: Pairwise feed similarity with respect to covered affiliate programs. 53
Figure 4.5: Pairwise feed similarity with respect to covered RX-Promotion

affiliate identifiers. 53
Figure 4.6: RX-Promotion affiliate coverage of each feed weighted by each

affiliate’s 2010 revenue. 56
Figure 4.7: Pairwise variational distance of tagged domains frequency

across all feeds. Shading is inverted (larger values are darker). . 58
Figure 4.8: Pairwise Kendall rank correlation coefficient of tagged domain

frequency across all feed pairs. 60
Figure 4.9: Relative first appearance time of domains in each feed. Cam-

paign start time calculated from all feeds except Bot. Solid lines
are medians; boxes range from the 25th to the 75th percentile. . 61

Figure 4.10: Relative first appearance time of domains in each feed. Cam-
paign start time calculated from MX honeypot and honey ac-
count feeds only. Solid lines are medians; boxes range from the
25th to the 75th percentile. 62

Figure 4.11: Distribution of differences between the last appearance of a do-
main in a particular and the domain campaign end calculated
from an aggregate of the same five feeds. Solid lines are medi-
ans; boxes range from the 25th to the 75th percentile. 64

Figure 4.12: Distribution of differences between domain lifetime estimated
using each feed and the domain campaign duration computed
from an aggregate of those same five feeds. Solid lines are me-
dians; boxes range from the 25th to the 75th percentile. 65

vii

Figure 5.1: Fragment of a template from the Storm template corpus, to-
gether with a typical instantiation, and the regular expression
produced by the template inference algorithm from 1,000 in-
stances. The subject line and body were captured as dictionar-
ies (complete dictionaries omitted to save space). This signature
was generated without any prior knowledge of the underlying
template. 72

Figure 5.2: Automatic template inference makes it possible to deploy tem-
plate signatures as soon as they appear “in the wild:” bots (¶)
running in a contained environment generate spam processed
by the Judo system (·); signatures (¸) are generated in real
time and disseminated to mail filtering appliances (¹). 74

Figure 5.3: Template inference algorithm example showing excerpts from
template-based spam messages, the invariant text and macros
inferred from the spam, and the resulting regular expression
signature. 76

Figure 5.4: The second chance mechanism allows the updating of signa-
tures: when a new message fails to match an existing signature
(¶), it is checked again only against the anchor nodes (·); if a
match is found, the signature is updated accordingly (¸). . . . 81

Figure 5.5: Classification effectiveness on Mega-D and Rustock spam gen-
erated by a single bot, as a function of the testing message
sequence. Experiment parameters: k = 100, d = 0 (that is,
100 training messages to generate each new signature, and im-
mediate classification of test messages rather than post facto). . 91

Figure 5.6: Classification effectiveness on Pushdo, and Srizbi spam gener-
ated by a single bot, as a function of the testing message se-
quence. Experiment parameters: k = 100, d = 0 (that is,
100 training messages to generate each new signature, and im-
mediate classification of test messages rather than post facto). . 92

Figure 5.7: Classification effectiveness on Xarvester and Rustock spam with
multiple bots: one bot was used to generate training data for
the Judo system and the remaining bots to generate the testing
data (1 other for Xarvester, 3 others for Rustock). Experiment
parameters: k = 100, d = 0 (that is, 100 training messages
to generate each new signature, and immediate classification of
test messages rather than post facto). 97

Figure 5.8: Fragment of a template generated for the Mega-D botnet on
August 26, 2009. Only the subject and body are displayed with
full dictionaries, exactly as they were captured. Recall that
templates are inferred from only the output of bots, without
any access to the C&C channel and without any information
regarding the underlying mechanisms used. 101

viii

Figure 6.1: Sharing of network infrastructure among affiliate programs.
Only a small number of registrars host domains for many af-
filiate programs, and similarly only a small number of ASes
host name and Web servers for many programs. (Note y-axis is
log scale.) . 111

Figure 6.2: Distribution of infrastructure among affiliate programs. Only
a small percentage of programs distribute their registered do-
main, name server, and Web server infrastructure among many
registrars and ASes, respectively. 113

Figure 6.3: Takedown effectiveness when considering domain registrars
(left) and DNS/Web hosters (right). 115

ix

LIST OF TABLES

Table 3.1: Feeds of spam-advertised URLs used in this dissertation. We
collected feed data from August 1, 2010 through October 31, 2010. 22

Table 3.2: Summary results of URL crawling. We crawl the registered do-
mains used by over 98% of the URLs received. 29

Table 3.3: Breakdown of clustering and tagging results. 31
Table 3.4: Breakdown of the pharmaceutical, software, and replica affiliate

programs advertising in our URL feeds. 35

Table 4.1: Summary of spam domain sources (feeds) used in this chapter.
The first column gives the feed mnemonic used throughout. . . . 39

Table 4.2: Positive and negative indicators of feed purity. See Section 4.3.1
for discussion. 41

Table 4.3: Feed domain coverage showing total number of distinct domains
(Total column) and number of domains exclusive to a feed (Excl.
column). 45

Table 5.1: Legitimate mail corpora used to assess signature safety through-
out the evaluation. 84

Table 5.2: False negative rates for spam generated from Storm templates
as a function of the training buffer size k. Rows report statistics
over templates. The stock spam table also shows the number
of templates s for which a signature was generated (for self-
propagation and pharmaceutical templates, a signature was gen-
erated for every template); in cases where a signature was not
generated, every instance in the test set was counted as a false
negative. At k = 1000, the false positive rate for all signatures
was zero. 86

Table 5.3: Cumulative false negative rate as a function of training buffer
size k and classification delay d for spam generated by a single
bot instance. The “Sigs” column shows the number of signatures
generated during the experiment (500,000 training and 500,000
testing messages). All signatures produced zero false positives
with the only exception being the signatures for Rustock. 89

Table 5.4: Number of training and testing messages used in the real-world
deployment experiment. 95

Table 5.5: Cumulative false negative rate as a function of training buffer size
k and classification delay d for spam generated by a multiple bot
instances, one generating the training spam and the others the
testing spam. The “Sig” column shows the number of signatures
generated during the experiment. Signatures generated in this
experiment produced no false positives on our corpora. 95

x

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, Professors Stefan

Savage and Geoffrey M. Voelker. They are the primary reason that I decided to

start this amazing journey in graduate school, and I am thankful to them for giving

me the opportunity to do so. Their career achievements speak for themselves in

regards to their quality as researchers. After working with them for the past six

years though, I am even more amazed by their personalities, and I consider myself

extremely lucky that I had the chance to have this experience.

I would also like to thank Kirill Levchenko for his invaluable help and

guidance over all these years. His feedback helped shape up a lot of my work and

in addition to my advisors, he is definitely one of the reasons I have made it this

far. Additionally, there is a long list of collaborators I would like to thank for all

their assistance: Chris Kanich, Damon McCoy, Neha Chachra, Tristan Halvorson,

He ’Lonnie’ Liu, Vern Paxson, Christian Kreibich, Chris Grier, Nick Weaver, Mark

Felegyhzi, and Brandon Enright.

I also have a long list of current students and UCSD alumni I would like

to thank; here they are in alphabetical order: Alvin AuYoung, Bhanu Vattikonda,

Christos Kozanitis, Danny Huang, David Wang, Diwaker Gupta, Feng Lu, Justin

Ma, Marti Motoyama, Michael Vrable, Patrick Verkaik, Peng Huang, Petros Mol,

Qing Zhang, Ryan Braud, Yang Liu.

I would also like to thank my thesis committee members Bill Lin, Ramesh

Rao, and Lawrence K. Saul for their valuable feedback and support during the

course of my dissertation.

Finally, I would like to thank my family.

Chapters 1, 2, 3, 4, in part, are a reprint of the material as it appears

in Proceedings of the ACM Internet Measurement Conference 2012. Pitsillidis,

Andreas; Kanich, Chris; Voelker, Geoffrey M.; Levchenko, Kirill; Savage, Stefan.

The dissertation author was the primary investigator and author of this paper.

Chapters 1, 2, 5, in part, are a reprint of the material as it appears in

Proceedings of the Network and Distributed System Security Symposium 2010.

xi

Pitsillidis, Andreas; Levchenko, Kirill; Kreibich, Christian; Kanich, Chris; Voelker,

Geoffrey M.; Paxson, Vern; Weaver, Nicholas; Savage, Stefan. The dissertation

author was the primary investigator and author of this paper.

Chapters 1, 2, 3, 6, in part, are a reprint of the material as it appears in

Proceedings of the IEEE Symposium on Security and Privacy 2011. Levchenko,

Kirill; Pitsillidis, Andreas; Chachra, Neha; Enright, Brandon; Felegyhzi, Mark;

Grier, Chris; Halvorson, Tristan; Kanich, Chris; Kreibich, Christian; Liu, He;

McCoy, Damon; Weaver, Nicholas; Paxson, Vern; Voelker, Geoffrey M.; Savage,

Stefan. The dissertation author was one of the primary investigators and authors

of this paper.

xii

VITA

2007 Bachelor of Science in Computer Science
University of Cyprus, Nicosia, Cyprus

2010 Master of Science in Computer Science
University of California, San Diego, California, USA

2013 Doctor of Philosophy in Computer Science
University of California, San Diego, California, USA

PUBLICATIONS

Andreas Pitsillidis, Chris Kanich, Geoffrey M. Voelker, Kirill Levchenko, and Ste-
fan Savage. “Taster’s Choice: A Comparative Analysis of Spam Feeds.” In Pro-
ceedings of the ACM Internet Measurement Conference, Boston, Massachusetts,
USA, November 2012.

Andreas Pitsillidis, Kirill Levchenko, Christian Kreibich, Chris Kanich, Geoffrey
M. Voelker, Vern Paxson, Nicholas Weaver, and Stefan Savage. “Botnet Judo:
Fighting Spam with Itself.” In Proceedings of the Network and Distributed System
Security Symposium, San Diego, California, USA, February 2010.

Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Mark Fel-
egyhzi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich, He Liu,
Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker, and Stefan
Savage. “Click Trajectories: End-to-End Analysis of the Spam Value Chain.” In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California,
USA, May 2011.

Damon McCoy, Andreas Pitsillidis, Grant Jordan, Nicholas Weaver, Christian
Kreibich, Brian Krebs, Geoffrey M. Voelker, Stefan Savage, and Kirill Levchenko.
“PharmaLeaks: Understanding the Business of Online Pharmaceutical Affiliate
Programs.” In Proceedings of the USENIX Security Symposium, Bellevue, Wash-
ington, USA, August 2012.

Andreas Pitsillidis, Yinglian Xie, Fang Yu, Martin Abadi, Geoffrey M. Voelker,
and Stefan Savage. “How to Tell an Airport from a Home: Techniques and Ap-
plications.” In Proceedings of the 9th ACM Workshop on Hot Topics in Networks,
Monterey, California, USA, October 2010.

Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich,
Kirill Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa, An-
dreas Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian

xiii

Rossow, Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker.
“Manufacturing Compromise: The Emergence of Exploit-as-a-Service.” In Pro-
ceedings of the ACM Conference on Computer and Communications Security,
Raleigh, North Carolina, USA, October 2012.

xiv

ABSTRACT OF THE DISSERTATION

Spam Value Chain: Defensive Intervention Analysis

by

Andreas Pitsillidis

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Stefan Savage, Chair
Professor Geoffrey M. Voelker, Co-Chair

Much of computer security research today engages a hypothetical adversary:

one whose aims and methods are either arbitrary or driven by some pre-supposed

model of behavior. However, in many cases, the scope, motivation and technical

evolution of actual attacks can be quite different and leads to a model where

our research frequently trails the ”truth on the ground”. At the same time, our

present ability to gather, process and analyze data concerning Internet activity is

unmatched and thus there are tremendous opportunities in advancing a regime of

”data-driven security”, wherein our understanding of the adversary, of vulnerable

users and of the efficacy of our current defenses and interventions can be placed

on a strong empirical footing.

xv

The spam problem is a primary example where the abundance of available

data, enables a data-focused approach for studying it. Also known as unsolicited

bulk e-mail, spam is perhaps the only Internet security phenomenon that leaves no

one untouched, and has been continuously growing since the first reported com-

plaint in 1978. Spam is essentially an advertising business which is very complex,

with a lot of moving parts, and very specialized, with multiple parties involved. In

this dissertation, I focus on the infrastructure and parties of the spam ecosystem

responsible for monetization, which I define as the spam value chain. I focus on

both advertising and click support, the two primary components of the spam value

chain, analyze them, and identify the most effective places for intervention.

Our results demonstrate that good understanding of the problem at hand

is essential for identifying how to efficiently address it. In this dissertation, I look

into the spam ecosystem from the perspective of the attackers, in order to get a

solid understanding of how they operate, and propose effective defenses at both the

advertising and click support components of the spam value chain. I also present

various limitations that come with spam feeds. Such datasets have an important

role, as they are the basis of most spam-related studies. My work serves as a

preliminary motivation to further refine our understanding of these limitations as

a research community.

xvi

Chapter 1

Introduction

Since the first reported complaint in 1978, spam has been a major nuisance

for the computer security community. The problem has continuously grown over

the years, and its scale is nowadays enormous. Industry estimates suggest that

spammers send well over 100 billion e-mails each day, and commercial anti-spam

efforts comprise a market today with over $1B in annual revenue. Such anti-spam

efforts have focused primarily on filtering, which aims at keeping spam messages

away from users. At the same time, due to the plethora of spam data resources that

are available, e-mail spam has also been the focus of a wide variety of measurement

studies.

At its surface, the spam problem appears to be a simple concept: spammers

bombard users with e-mails, and defenders are assigned with the task of blocking

the delivery of such messages. In reality though, e-mail spam is an incredibly

complex problem. On one hand, due to constant advancements in anti-spam ef-

forts, great sophistication is required on behalf of spammers to successfully deliver

their messages to users. On the other hand, spam has always primarily been an

advertising medium. As such, it ultimately shares the underlying business model

of advertising, and includes all relevant essential elements: advertising material

distribution, site design, hosting, order handling, payment processing, etc. While

a few years ago it was possible for a single person to handle all aspects of this busi-

ness, today’s complex requirements incur the need for more specialized handling.

Thus today’s spam ecosystem is complex, with a lot of moving and specialized

1

2

parts, and multiple parties involved. We define all the infrastructure and parties

involved in the spam ecosystem, as the spam value chain.

The forefront of the spam value chain is advertising. In this case, advertising

is the sending of spam e-mails to users, in an effort to attract potential customers.

It is usually the case that a larger advertising campaign directly translates to higher

revenue. This, in combination with the fact that e-mail costs so little to send, has

driven spam sending to the enormous daily volume numbers we see today. Due to

the fact that spam is so plentiful, it is tempting to dive right into the problem, and

focus on the technical challenges of spam filtering. For problems that employ an

enormous scale, such as this one, we often make the assumption as a community

that whatever data is currently available to us, is sufficient for drawing conclusions

about the global problem. We are unaware though of any systematic attempt to

verify this assumption, prior to this research. Given the importance of input data

in measurement studies, we begin our work with exploring whether commonly used

spam data sources, can be representative and unbiased enough for making such

extrapolations. We document significant variations across different feeds, and show

how these variations can affect reported results.

With a good understanding of the problem and the accompanying data,

we then shift our focus to the first level of the spam value chain: “advertising”.

Like in any advertising business, so long as the revenue driven by spam campaigns

exceeds the cost, spam remains a profitable enterprise. Thus the goal of any

defensive intervention at this level is e-mail filtering, and ultimately stopping users

from visiting spam-advertised Web sites. The regime under which spam filtering

works is reactive to your opponent’s next move: receivers install filters to block

spam, and spammers in turn modify their messages to evade them. In virtually

any similar domain (e.g. anti-virus), maximizing the time advantage is crucial for

success. With our work, we advocate shrinking the window between the time new

spam gets sent, and the time it can be identified and blocked by the receiver. We

do so by changing the vantage point from which we fight spam, and by focusing

on a specific class of e-mails: botnet spam. In particular, it is well documented

than the majority of spam e-mails nowadays is sent by just a handful of distributed

3

botnets. We take advantage of this fact by collecting the spam output of botnet

hosts running in a controlled environment, and we use this data for building a

system that allows the fast creation of efficient mail filters. We demonstrate this

approach on mail traces from a range of modern botnets, and show that we can

automatically filter such spam precisely and with virtually no false positives.

Finally, moving further down the spam value chain, we encounter the “click

support” level. With this term, we refer to the infrastructure and mechanisms

implicated when a user clicks on a spam-advertised link. Despite filtering defenses,

it is unavoidable that there will be cases where we will fail to detect specific spam

messages. Such messages will end up getting delivered to users, thus have a much

higher chance of resulting in a visit. It is also possible for miscreants to attract

clicks through means other than spam e-mail, which are outside the scope of this

work. Once a click occurs, the job of the spammer is to have the user redirected to

the Web site of interest. Although this may seem simple, in practice it is a chal-

lenging task, due to the wide array of defensive mechanisms deployed today. Thus

multiple moving specialized parts need to be involved, and these are described in

more detail in Section 2.4.1. With our work we quantify the full set of resources

employed, with the focus on network resources. We also characterize the relative

prospects for defensive interventions at each link in the spam value chain. Our

intervention analysis is evaluated in terms of two factors: their overhead to imple-

ment and their business impact on the spam value chain. We show that the spam

value chain, does not offer any major bottlenecks at the network level. Coinciden-

tally, this is where most industry efforts are focused nowadays. With this in mind,

we suggest exploring alternative non-technical means of intervention that can offer

a greater potential for success.

1.1 Contributions

In this dissertation, we focus on the spam problem through a regime of

“data-driven security”. We first study the available data to us as researchers, and

identify the accompanying characteristics and limitations. Absent this knowledge,

4

we show that drawing accurate conclusions about the global spam problem can

be challenging. Although it is often the case that as researchers, we tend to

focus primarily on the technical challenges of a problem, we demonstrate that

there is great value in first gaining a deeper understanding of the problem, before

attempting to tackle it. We then focus on botnet spam, which we identify as the

most popular class of spam e-mail, and we develop a spam filtering system that

aims to improve the response time of current approaches. We also evaluate different

defensive intervention strategies for disrupting the spam value chain. We do so by

first doing a holistic analysis of the surrounding ecosystem, and by then examining

both the impact of these interventions, and their cost to implement. We posit

that this analysis can greatly benefit future decision-making in regards to more

efficiently nullifying the spam problem. The contributions of this dissertation are

as follows:

• We evaluate how different spam data sources differ in content, by comparing

the contents of ten distinct contemporaneous feeds of spam-advertised do-

main names. We document significant variations based on how such feeds are

collected and show how these variations can produce differences in findings

as a result. This is in contrast to today’s normal approach followed by most

studies, where despite the broad range of data available, a single “spam feed”

is used as the sole data source. Based on our findings, we summarize some

best practices for future spam measurement studies.

• We describe a system for better spam filtering, and we demonstrate our ap-

proach on mail traces from a range of modern botnets. We show that we can

automatically filter such spam precisely and with virtually no false positives.

Unlike more traditional approaches that view this problem from the receiver’s

point of view, we instead exploit the vantage point of the spammer. By in-

stantiating and monitoring botnet hosts in a controlled environment, we are

able to collect new spam as it is created, and consequently infer the under-

lying structure of these messages, which in turn enables efficiently blocking

any subsequent similar messages.

5

• We present a holistic analysis that quantifies the full set of resources employed

to monetize spam e-mail, with a focus on network resources. Using extensive

measurements of three months of diverse spam data, and broad crawling of

naming and hosting infrastructures, we analyze these network resources in

terms of their volume. We relate these resources to the organizations who

administer them and then use this data to characterize the relative prospects

for defensive interventions at each link in the spam value chain. Ultimately,

our works shows that targeting the spam problem at the network level is

an enormous challenge. We demonstrate that our current approach to the

problem as a community is infeasible, and we suggest exploring alternative

non-technical means of intervention that can offer a greater potential for

success.

Our analysis allows us to gain a deeper understanding of the spam problem,

and enables defenders to identify how to better invest their often limited resources,

for targeting it.

1.2 Organization

The remainder of this dissertation is organized in the following manner.

Chapter 2 provides background material on spam analysis and filtering, as

well as on the spam ecosystem and related components.

Chapter 3 provides an overview of the datasets used, and describes in de-

tail the methodology for crawling the naming and hosting infrastructure of three

months of diverse spam data. We utilize the findings of this extensive measurement

effort throughout the rest of the dissertation.

Chapter 4 explores the suitability of various spam data sources for different

types of analyses. We analyze the contents of numerous such spam feeds, and

document significant variations based on how they are collected. We show how

these variations can produce differences in findings as a result, and suggest some

general guidelines and good practices for related studies.

6

Chapter 5 describes a system for better filtering spam, by exploiting the

vantage point of the spammer. By instantiating and monitoring botnet hosts in

a controlled environment, we are able to monitor new spam as it is created, and

consequently infer the underlying template used to generate polymorphic e-mail

messages. We demonstrate this approach on mail traces from a range of modern

botnets and show that we can automatically filter such spam precisely and with

virtually no false positives.

Chapter 6 explores the full set of network resources employed to mone-

tize spam e-mail. We relate these resources to the organizations who administer

them and then use this data to characterize the relative prospects for defensive

interventions at each link in the spam value chain.

Finally, Chapter 7 summarizes our work. Additionally, we discuss several

future research directions in this space.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings

of the ACM Internet Measurement Conference 2012. Pitsillidis, Andreas; Kanich,

Chris; Voelker, Geoffrey M.; Levchenko, Kirill; Savage, Stefan. The dissertation

author was the primary investigator and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings

of the Network and Distributed System Security Symposium 2010. Pitsillidis,

Andreas; Levchenko, Kirill; Kreibich, Christian; Kanich, Chris; Voelker, Geoffrey

M.; Paxson, Vern; Weaver, Nicholas; Savage, Stefan. The dissertation author was

the primary investigator and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in Proceed-

ings of the IEEE Symposium on Security and Privacy 2011. Levchenko, Kirill;

Pitsillidis, Andreas; Chachra, Neha; Enright, Brandon; Felegyhzi, Mark; Grier,

Chris; Halvorson, Tristan; Kanich, Chris; Kreibich, Christian; Liu, He; McCoy,

Damon; Weaver, Nicholas; Paxson, Vern; Voelker, Geoffrey M.; Savage, Stefan.

The dissertation author was one of the primary investigators and authors of this

paper.

Chapter 2

Background and Related Work

In Chapter 1 we defined spam as an advertising medium that involves mul-

tiple specialized parties. In this section, we provide background context on the

problem and the surrounding ecosystem. At a high-level, we can view the prob-

lem of e-mail spam as the constant struggle between spammers on one hand, and

anti-spam defenses on the other. The goal of spammers is to get e-mails delivered

to users by evading existing defenses. Numerous techniques can be employed for

doing so, that can differ in both their volume and sophistication, depending on the

exact goals of the attacker. On the other hand, defenders need to be able to ac-

commodate all different types of threats in their systems, with often contradicting

goals and properties, and they also need to quickly adapt to any newly introduced

threats. This need of being reactive to your opponent’s next move is often found

in computer security; a prominent example of this is the anti-virus industry. In

such domains, the defenders must rely on up-to-date empirical data for developing

and evaluating their systems.

Similarly, e-mail spam feeds play a crucial role when working on this prob-

lem, and a lot of effort goes into collecting such feeds. Due to the many different

strategies employed by spammers though, and also because of various limitations

that can arise during collection, working with spam feeds is in itself a compli-

cated problem. In Section 2.1, we discuss this issue and the challenges involved by

taking into consideration a wide array of feeds obtained from both academia and

industry. We then focus specifically on one such feed type: botnet spam. This

7

8

spam vector is considered to be today’s primary source of e-mail spam in terms

of volume, and in Section 2.2 we describe botnets in more detail. After gaining a

good understanding of inputs to spam defenses and studies, the next focus is spam

filtering, and in particular methods with which we can stop e-mail messages from

being delivered to users. This technique has traditionally been considered to be

the primary approach for attacking the spam problem. In Section 2.3, we briefly

survey currently employed approaches for filtering spam.

Successfully delivering e-mail to users is only a partial win for the spam-

mers, though. As we have emphasized numerous times, spam has always primarily

been an advertising medium. As such, the majority of spam e-mail messages sent

nowadays contain links that redirect users to a Web site for purchasing advertised

goods. Thus equally important is the handling of all required steps involved after

a user clicks on a spam-advertised URL, since a successful sale is what ultimately

generates revenue for the attackers. Multiple components are involved in this pro-

cess though: site design, hosting, order handling and payment processing are all

essential pieces of this chain. In Section 2.4 we present an overview of this so-called

“spam value chain”. We do so by providing a high-level overview of how modern

spam operates nowadays, which parties it involves, and how these different parties

are connected.

2.1 E-mail Spam Feeds

E-mail spam is perhaps the only Internet security phenomenon that leaves

no one untouched. Everybody gets spam. Both this visibility and the plentiful

nature of spam have naturally conspired to support a vast range of empirical

measurement studies. Some of these have focused on how to best filter spam [7,

11, 16], others on the botnets used to deliver spam [31, 95], and others on the

goals of spam, whether used as a vector for phishing [60], malware [33, 54] or,

most commonly, advertising [45].

These few examples only scratch the surface, but importantly this work is

collectively not only diverse in its analyses aims, but also in the range of data

9

sources used to drive those same conclusions. Among the spam sources included

in such studies are the authors’ own spam e-mail [7, 99], static spam corpora

of varied provenance (e.g., Enron, TREC2005, CEAS2008) [24, 62, 77, 92, 99],

open mail proxies or relays [23, 67, 68], botnet output [31], abandoned e-mail

domains [6, 35], collections of abandoned e-mail accounts [90], spam automatically

filtered at a university mail server [10, 70, 79, 91], spam-fed URL blacklists [56],

spam identified by humans in a large Web-mail system [95, 98], spam e-mail filtered

by a small mail service provider [73], spam e-mail filtered by a modest ISP [13]

and distributed collections of honeypot e-mail accounts [85].

These data sources can vary considerably in volume — some may collect

millions of spam messages per day, while others may gather several orders of mag-

nitude fewer. Intuitively, it seems as though a larger data feed is likely to provide

better coverage of the spam ecosystem (although, as we will show in Chapter 4,

this intuition is misleading). However, an equally important concern is how dif-

ferences in the manner by which spam is collected and reported may impact the

kind of spam that is found.

To understand how this may be, it is worth first reflecting on the operational

differences in spamming strategies. A spammer must both obtain an address list

of targets and arrange for e-mail delivery. Each of these functions can be pursued

in different ways, optimized for different strategies. For example, some spam-

mers compile or obtain enormous “low-quality” address lists [38] (e.g., based on

brute force address generation, harvesting of Web sites, etc.), many of which may

not even be valid, while others purchase higher quality address lists that target

a more precise market (e.g., customers who have purchased from an online phar-

macy before). Similarly, some spam campaigns are “loud” and use large botnets

to distribute billions of messages (with an understanding that the vast majority

will be filtered [33]) while other campaigns are smaller and quieter, focusing on

“deliverability” by evading spam filters.

These differences in spammer operations in turn can interact with differ-

ences in collection methodology. For example, spam collected via MX honeypots

(accepting all SMTP connections to a quiescent domain) will likely contain broadly

10

targeted spam campaigns and few false positives, while e-mail manually tagged by

human recipients (e.g., by clicking on a “this is spam” button in the mail client)

may self-select for “high quality” spam that evades existing automated filters, but

also may include legal, non-bulk commercial mail that is simply unwanted by the

recipient.

In addition to properties of how spam data is collected, how the data is

reported can also introduce additional limitations. For example, some data feeds

may include the full contents of e-mail messages, but many providers are unwilling

to do so due to privacy concerns. Instead, some may redact some of the address

information, while, even more commonly, others will only provide information

about the spam-advertised URLs contained with a message. Even within URL-

only feeds there can be considerable differences. Some data providers may include

full spam-advertised URLs, while others scrub the data to only provide the fully-

qualified domain name (particularly for non-honeypot data, due to concern about

side-effects from crawling such data). Sometimes data is reported in raw form,

with a data record for each and every spam message, but in other cases providers

aggregate and summarize. For example, some providers will de-duplicate identi-

cally advertised domains within a given time window, and domain-based blacklists

may only provide a single record for each such advertised domain.

Taken together, all of these differences suggest that different kinds of data

feeds may be more or less useful for answering particular kinds of questions. It

is the purpose of our work in Chapter 4 to put this hypothesis on an empirical

footing.

2.2 Spamming Botnets

One prominent data feed type is botnet spam. Since roughly 2004, bot-

based spam distribution has emerged as the platform of choice for large-scale

spam campaigns. Conceptually, spam botnets are quite simple—the spammer

generates spam and then arranges to send it through thousands of compromised

hosts, thereby laundering any singular origin that could be blacklisted. However,

11

an additional complexity is that spammers also need to generate content that is

sufficiently polymorphic so that at least some of it will evade existing content fil-

ters. To describe this polymorphism, while ensuring that the underlying “messag-

ing” is consistent, spammers have developed template-based systems. While origi-

nal template-based spam generation from such templates was centralized, modern

spammers now broadcast templates to individual bot hosts that in turn generate

and send distinct message instances.

The template-based spamming engine of the Storm botnet has previously

been described in [37], while Stern analyzed that of the Srizbi botnet [81] and first

observed the opportunity for filtering techniques that “exploit the regularity of

template-generated messages.” In Chapter 5 we describe Judo, a spam filtering

system that is a practical realization of this insight.

Closest to Judo is the Botlab system of John et al. [31]. Their system,

contemporaneously built, also executes bots in a virtual machine environment

and extracts the outbound spam e-mail messages. Indeed, Chapter 5 builds on

their preliminary successes (and their data, which the authors have also graciously

shared), which included using exact-matching of witnessed URL strings as a filter

for future botnet spam. Our system is a generalization in that we do not assume

the existence of any particular static feature (URL or otherwise), but focus on

inferring the underlying template used by each botnet and from this generating

comprehensive and precise regular expressions.

The system of Göbel et al. [20] uses a similar approach. Their system

generates signatures by analyzing spam messages collected from compromised hosts

as well. However, the Judo template inference algorithm, described in detail in

Chapter 5, supports key additional elements, such as dictionaries, which make it

significantly more expressive.

The AutoRE system of Xie et al. clusters spam messages into campaigns

using heuristics about how embedded URLs are obfuscated [95]. This effort has

algorithmic similarities to our system, as it too generates regular expressions over

spam strings, but focuses on a single feature of spam e-mail (URLs). By contrast to

these efforts, Judo is distinguished both by its generality (for example, generating

12

signatures for images spam or spam with “tinyurl” links for which URLs are not

discriminatory) and by its design for on-line real-time use.

2.3 Current Anti-spam Approaches

Broadly speaking, anti-spam technologies deployed today fall into two cat-

egories: content-based and sender-based. Content-based approaches are the oldest

and perhaps best known, focusing on filtering unwanted e-mail based on features of

the message body and headers that are either anomalous (e.g., date is in the future)

or consistent with undesirable messages (e.g., includes words like Rolex or Viagra).

Early systems were simple heuristics configured manually, but these evolved into

systems based on supervised learning approaches that use labeled examples of spam

and non-spam to train a classifier using well-known techniques such as Bayesian

inference [59, 75] and Support Vector Machines [16, 96]. These techniques can be

highly effective (see Cormack and Lynam for an empirical comparison [14]) but are

also subject to adversarial chaff and poisoning attacks [28, 49], and require great

care to avoid false positives as spammers become more sophisticated at disguising

their mail as legitimate.

Another class of content-based filtering approaches involves blacklisting the

URLs advertised in spam [1, 3, 4, 95]. Because URL signatures are simple and

require no complex training, they are more easily integrated into a closed-loop

system: for example, in one study of spam sent by the Storm botnet, domains

observed in templates were on average subsequently found on a URL blacklist

only 18 minutes afterwards [38]. Unfortunately, URL-based systems also require

comprehensive, up-to-date whitelists to avoid poisoning. They are also generally

rigid in blocking all appearances of the URL regardless of context, and, of course,

they do nothing for spam not containing a URL (e.g., stock schemes, image-based

spam, and some types of phishing). The system we describe in Chapter 5 provides

a fast, closed-loop response, while generating a more selective signature based on

the URL (if present) and text of the spam instances.

13

Sender-based systems focus on the means by which spam is delivered. The

assumption is that any Internet address that sends unsolicited messages is highly

likely to repeat this act, and unlikely to send legitimate, desired communication.

Thus, using a range of spam oracles, ranging from e-mail honeypots to user com-

plaints, these systems track the IP addresses of Internet hosts being used to send

spam. Individual mail servers can then validate incoming e-mail by querying the

database (typically via DNS) to see if the transmitting host is a known spam

source [32, 57]. Blacklists dealt very effectively with open e-mail relays and proxies,

and forced spammers to move to botnet-based spam distribution, in which many

thousands of compromised hosts under central control relay or generate spam on

behalf of a single spammer [71]. As the number of hosts grows, this both reduces

blacklist freshness and places scalability burdens on blacklist operators.

A related approach is sender reputation filtering, conceptually related to

Internet address blacklisting. These schemes attempt to provide stronger ties be-

tween the nominal and true sender of e-mail messages in order to allow records of

individual domains’ communications to be employed to filter spam based on past

behavior. Thus, using authentication systems such as SPF [94] or DomainKeys [44]

(or heuristics such as greylisting [30]), a mapping can be made between the e-mail’s

originating domain (e.g., foo.com) and the mail servers authorized to send on be-

half of these addresses. Having bound these together, mail receivers can then track

the reputation for each sending domain (i.e., how much legitimate mail and how

much spam each sends) and build filtering policies accordingly [84].

In practice, these techniques are used in combination, with their precise

formulation and mixture tuned to new spam trends and “outbreaks” (e.g., image

spam). We view Judo as a new component in this arsenal.

2.4 Spam Value Chain

As an advertising medium, spam ultimately shares the underlying business

model of all advertising. So long as the revenue driven by spam campaigns exceeds

their cost, spam remains a profitable enterprise. This glib description belies the

14

complexity of the modern spam business. While a decade ago spammers might

have handled virtually all aspects of the business including e-mail distribution, site

design, hosting, payment processing, fulfillment, and customer service [58], today’s

spam business involves a range of players and service providers. In this section,

we review the broad elements in the spam value chain, the ways in which these

components have adapted to adversarial pressure from the anti-spam community,

and the prior research on applied e-crime economics that informs our work in

Chapter 3 and Chapter 6.

2.4.1 How Modern Spam Works

While the user experience of spam revolves principally around the e-mail

received, these constitute just one part of a larger value chain that we classify into

three distinct stages: advertising, click support, and realization. Our discussion

here reflects the modern understanding of the degree to which specialization and

affiliate programs dominate the use of spam to sell products. To this end, we

draw upon and expand the narrative of the “Behind Online Pharma” project [9],

which documents the experience of a group of investigative journalists in exploring

the market structure for online illegal pharmaceuticals, and Samosseiko’s recent

overview [76] of affiliate programs.

Advertising. Advertising constitutes all activities focused on reaching po-

tential customers and enticing them into clicking on a particular URL. In this

dissertation we focus on the e-mail spam vector, but the same business model oc-

curs for a range of advertising vectors, including blog spam [63], Twitter spam [21],

search engine optimization [88], and sponsored advertising [41, 42]. The delivery of

e-mail spam has evolved considerably over the years, largely in response to increas-

ingly complex defensive countermeasures. In particular, large-scale efforts to shut

down open SMTP proxies and the introduction of well-distributed IP blacklist-

ing of spam senders have pushed spammers to using more sophisticated delivery

vehicles. These include botnets [22, 31, 95], Webmail spam [18], and IP prefix

hijacking [72]. Moreover, the market for spam services has stratified over time;

15

for example, today it is common for botnet operators to rent their services to

spammers on a contract basis [64].

The advertising side of the spam ecosystem has by far seen the most study,

no doubt because it reflects the part of spam that users directly experience. Thus,

a broad and ongoing literature examines filtering spam e-mail based on a variety

of content features (as discussed in Chapter 5 and in [7, 29, 96]). Similarly, the

network characteristics of spam senders have seen extensive study for characterizing

botnet membership [97], identifying prefix hijacking [72], classifying domains and

URLs [25, 51, 70, 93, 95], and evaluating blacklists [79, 80]. Finally, we note that

most commercial anti-spam offerings focus exclusively on the delivery aspect of

spam. In spite of this attention, spam continues to be delivered and thus our

dissertation focuses strictly on the remaining two stages of the spam monetization

pipeline.

Click support. Having delivered their advertisement, a spammer depends

on some fraction of the recipients to respond, usually by clicking on an embedded

URL and thus directing their browser to a Web site of interest. While this process

seems simple, in practice a spammer must orchestrate a great many moving parts

and maintain them against pressure from defenders.

Redirection sites. Some spammers directly advertise a URL such that, once

the recipient’s browser resolves the domain and fetches the content from it, these

steps constitute the fullness of the promoted Web site. However, a variety of

defensive measures—including URL and domain blacklisting, as well as site take-

downs by ISPs and domain takedowns by registrars—have spurred more elabo-

rate steps. Thus, many spammers advertise URLs that, when visited, redirect

to additional URLs [6, 35]. Redirection strategies primarily fall into two cate-

gories: those for which a legitimate third party inadvertently controls the DNS

name resource for the redirection site (e.g., free hosting, URL shorteners, or com-

promised Web sites), and those for which the spammers themselves, or perhaps

parties working on their behalf, manage the DNS name resources (e.g., a “throw-

away” domain such as minesweet.ru redirecting to a more persistent domain such

as greatjoywatches.com).

16

Domains. At some point, a URL click will usually require domain name

resources managed by the spammer or their accomplices. These names necessarily

come via the services of a domain registrar, who arranges for the root-level registry

of the associated top-level domain (TLD) to hold NS records for the associated

registered domain. A spammer may purchase domains directly from a registrar,

but will frequently purchase instead from a domain reseller, from a “domaineer”

who purchases domains in bulk via multiple sources and sells to the underground

trade, or directly from a spam “affiliate program” that makes domains available

to their affiliates as part of their “startup package.”

Interventions at this layer of the spam value chain depend significantly on

the responsiveness of individual registrars and the pressure brought to bear [47].

For example, a recent industry study by LegitScript and KnujOn documents heavy

concentration of spam-advertised pharmacies with domains registered through a

particular set of registrars who appear indifferent to complaints [43].

Name servers. Any registered domain must in turn have supporting name

server infrastructure. Thus spammers must provision this infrastructure either by

hosting DNS name servers themselves, or by contracting with a third party. Since

such resources are vulnerable to takedown requests, a thriving market has arisen

in so-called “bulletproof” hosting services that resist such requests in exchange for

a payment premium [36].

Web servers. The address records provided by the spammer’s name servers

must in turn specify servers that host (or more commonly proxy) Web site content.

As with name servers, spam-advertised Web servers can make use of bulletproof

hosting to resist takedown pressure [8, 83]. Some recent interventions have focused

on effectively shutting down such sites by pressuring their upstream Internet service

providers to deny them transit connectivity [13].

To further complicate such takedowns and to stymie blacklisting ap-

proaches, many spammers further obfuscate the hosting relationship (both for

name servers and Web servers) using fast-flux DNS [26, 66, 69]. In this approach,

domain records have short-lived associations with IP addresses, and the mapping

infrastructure can spread the domain’s presence over a large number of machines

17

(frequently many thousands of compromised hosts that in turn proxy requests back

to the actual content server [12]). Furthermore, recently innovators have begun

packaging this capability to offer it to third parties on a contract basis as a highly

resilient content-hosting service [15].

Stores and Affiliate Programs. Today, spammers operate primarily as ad-

vertisers, rarely handling the back end of the value chain. Such spammers often

work as affiliates of an online store, earning a commission (typically 30–50%) on

the sales they bring in [76]. The affiliate program typically provides the storefront

templates, shopping cart management, analytics support, and even advertising

materials. In addition, the program provides a centralized Web service interface

for affiliates to track visitor conversions and to register for payouts (via online

financial instruments such as WebMoney). Finally, affiliate programs take respon-

sibility for contracting for payment and fulfillment services with outside parties.

Affiliate programs have proven difficult to combat directly—although, when armed

with sufficient legal jurisdiction, law enforcement has successfully shut down some

programs [17].

Realization. Finally, having brought the customer to an advertised site

and convinced them to purchase some product, the seller realizes the latent value

by acquiring the customer’s payment through conventional payment networks, and

in turn fulfilling their product request.

Payment services. To extract value from the broadest possible customer

base, stores try to support standard credit card payments. A credit card transac-

tion involves several parties in addition to the customer and merchant. The details

around payment services are outside the scope of our current work.

Fulfillment. Finally, a store arranges to fulfill an order1 in return for the

customer’s payment. For physical goods such as pharmaceuticals and replica prod-

ucts, this involves acquiring the items and shipping them to the customer. Global

business-to-business Web sites such as Alibaba, ECPlaza, and ECTrade offer con-

nections with a broad variety of vendors selling a range of such goods, including

1In principle, a store could fail to fulfill a customer’s order upon receiving their payment, but
this would both curtail any repeat orders and would lead to chargebacks through the payment
card network, jeopardizing their relationship with payment service providers.

18

Figure 2.1: Infrastructure involved in a single URL’s value chain, including

advertisement, click support and realization steps.

prepackaged drugs—both brand (e.g., Viagra) and off-brand (e.g., sildenafil cit-

rate capsules)—and replica luxury goods (e.g., Rolex watches or Gucci handbags).

Generally, suppliers will offer direct shipping service (“drop shipping”), so affiliate

programs can structure themselves around “just in time” fulfillment and avoid the

overhead and risk of warehousing and shipping the product themselves.2 Fulfill-

ment for virtual goods such as software, music, and videos can proceed directly

via Internet download.

2.4.2 Pharmacy Express: An Example

Figure 2.1 illustrates the spam value chain via a concrete example from the

empirical data collected in Chapter 3. On October 27th, the Grum botnet delivered

an e-mail titled VIAGRA R© Official Site (¶). The body of the message includes

an image of male enhancement pharmaceutical tablets and their associated prices

(shown). The image provides a URL tag and thus when clicked (·) directs the

user’s browser to resolve the associated domain name, medicshopnerx.ru. The

machine providing name service resides in China, while hosting resolves to a ma-

chine in Brazil (¹). The user’s browser initiates an HTTP request to the machine

(º), and receives content that renders the storefront for “Pharmacy Express,” a

2Individual suppliers can differ in product availability, product quality, the ability to manage
the customs process, and deliver goods on a timely basis. Consequently, affiliate programs may
use different suppliers for different products and destinations.

19

brand associated with the Mailien pharmaceutical affiliate program based in Russia

(»).

After selecting an item to purchase and clicking on “Checkout”, the store-

front redirects the user to a payment portal served from payquickonline.com

(this time serving content via an IP address in Turkey), which accepts the user’s

shipping, e-mail contact, and payment information, and provides an order confir-

mation number. Subsequent e-mail confirms the order, provides an EMS tracking

number, and includes a contact e-mail for customer questions. The bank that is-

sued the user’s credit card transfers money to the acquiring bank (¼). Ten days

later the product arrives, blister-packaged, in a cushioned white envelope with

postal markings indicating a supplier named PPW based in Chennai, India as its

originator (½).

Chapter 2, in part, is a reprint of the material as it appears in Proceedings

of the ACM Internet Measurement Conference 2012. Pitsillidis, Andreas; Kanich,

Chris; Voelker, Geoffrey M.; Levchenko, Kirill; Savage, Stefan. The dissertation

author was the primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings

of the Network and Distributed System Security Symposium 2010. Pitsillidis,

Andreas; Levchenko, Kirill; Kreibich, Christian; Kanich, Chris; Voelker, Geoffrey

M.; Paxson, Vern; Weaver, Nicholas; Savage, Stefan. The dissertation author was

the primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceed-

ings of the IEEE Symposium on Security and Privacy 2011. Levchenko, Kirill;

Pitsillidis, Andreas; Chachra, Neha; Enright, Brandon; Felegyhzi, Mark; Grier,

Chris; Halvorson, Tristan; Kanich, Chris; Kreibich, Christian; Liu, He; McCoy,

Damon; Weaver, Nicholas; Paxson, Vern; Voelker, Geoffrey M.; Savage, Stefan.

The dissertation author was one of the primary investigators and authors of this

paper.

Chapter 3

Meet the Data

Throughout this dissertation, we use a wide array of different spam data

feeds. These feeds originate from either our own collection pipeline, or have been

obtained from both academia and industry. In general, we choose to either (a) use

raw spam data or (b) use crawler data, depending on which is the most suitable

option for the given problem. The former case is self-explanatory: we utilize each

feed as is, as input to our algorithms or evaluation methodologies. In such cases,

we describe the exact data sources and methodology we use, in the respective

chapters. Chapter 4 in part and Chapter 5 utilize such data. In the latter case,

we rely on spam feeds that have been processed through our crawler pipeline,

described in this chapter. Here, we are not interested in the actual content of

e-mails or in spam-advertised URLs. We focus instead on the various elements of

the spam value chain, which we extract by using spam data feeds as our input.

Chapter 4 in part and Chapter 6 utilize data from our crawler pipeline.

In this chapter, we document in detail how our crawler pipeline works. The

high-level goal of this pipeline is to identify and quantify the different elements of

the spam value chain, which we have previously described in Section 2.4.1. Fig-

ure 3.1 concisely summarizes our data sources and methods. We start with a variety

of full-message spam feeds, URL feeds, and our own botnet-harvested spam (¶).

Feed parsers extract embedded URLs from the raw feed data for further process-

ing (·). A DNS crawler enumerates various resource record sets of the URL’s

domain, while a farm of Web crawlers visits the URLs and records HTTP-level

20

21

Figure 3.1: Our data collection and processing workflow.

22

Table 3.1: Feeds of spam-advertised URLs used in this dissertation. We collected

feed data from August 1, 2010 through October 31, 2010.

Feed Type Received URLs Unique Domains

Hu Human identified 10,733,231 1,051,211
mx1 MX honeypot 32,548,304 100,631
mx2 MX honeypot 198,871,030 2,127,164
mx3 MX honeypot 12,517,244 67,856
Ac1 Seeded honey accounts 30,991,248 79,040
Ac2 Seeded honey accounts 73,614,895 35,506
Hyb Hybrid 451,603,575 1,315,292
Bot Botnet 158,038,776 13,588,727
Cutwail Botnet 3,267,575 65
Grum Botnet 11,920,449 348
MegaD Botnet 1,221,253 4
Rustock Botnet 141,621,731 13,588,306
Other Botnet 7,768 4

Total 968,918,303 17,813,952

interactions and landing pages (¸). A clustering tool clusters pages by content

similarity (¹). A content tagger labels the content clusters according to the cat-

egory of goods sold, and the associated affiliate programs (º). We then make

targeted purchases from each affiliate program (»), and store the feed data and

distilled and derived metadata in a database for subsequent analysis in Section 6.2.

(Steps º and » are partially manual operations, the others are fully automated.)

From this data, we in turn identify those sites advertising three popular classes of

goods—pharmaceuticals, replica luxury goods and counterfeit software—as well as

their membership in specific affiliate programs around which the overall business

is structured.

The rest of this chapter describes these steps in detail.

3.1 Collecting Spam-Advertised URLs

Our dissertation is driven by a broad range of data sources of varying types,

some of which are provided by third parties, while others we collect ourselves. Since

23

the goal of this dissertation is to decompose the spam ecosystem, it is natural that

our seed data arises from spam e-mail itself. More specifically, we focus on the

URLs embedded within such e-mail, since these are the vectors used to drive

recipient traffic to particular Web sites. To support this goal, we obtained seven

distinct URL feeds from third-party partners (including multiple commercial anti-

spam providers), and harvested URLs from our own botfarm environment.

For this dissertation, we used the data from these feeds from August 1,

2010 through October 31, 2010, which together comprised nearly 1 billion URLs.

Table 3.1 summarizes our feed sources along with the “type” of each feed, the

number of URLs received in the feed during this time period, the number of distinct

registered domains in those URLs, and a concise label (e.g., Ac2) which indicates

the feed type. One feed, Hyb, we identify as a “hybrid.” We do not know the exact

collection methodology it uses, but we believe it is a hybrid of multiple methods

and we label it as such. Also note that the “bot” feeds tend to be focused spam

sources, while the other feeds are spam sinks comprised of a blend of spam from

a variety of sources. Further, individual feeds, particularly those gathered directly

from botnets, can be heavily skewed in their makeup. For example, we received over

11M URLs from the Grum bot, but these only contained 348 distinct registered

domains. Conversely, the 13M distinct domains produced by the Rustock bot are

artifacts of a “blacklist-poisoning” campaign undertaken by the bot operators that

comprised millions of “garbage” domains [89]. Thus, one must be mindful of these

issues when analyzing such feed data in aggregate.

From these feeds we extract and normalize embedded URLs and insert them

into a large multi-terabyte Postgres database. The resulting “feed tables” drive

virtually all subsequent data gathering.

3.1.1 Types of Spam Domain Sources

The spam domain sources used in this dissertation fall into four categories:

botnet-collected, MX honeypots, seeded honey accounts and human identified. In

Chapter 4 we will also introduce a fifth category: blacklists. Each category comes

24

with its own unique characteristics, limitations and tradeoffs that we discuss briefly

here.

Botnet Botnet datasets result from capturing instances of bot software and ex-

ecuting them in a monitored, controlled environment such that the e-mail they

attempt to send is collected instead. Since the e-mail collected is only that sent by

the botnet, such datasets are highly “pure”: they have no false positives under nor-

mal circumstances.1 Moreover, if we assume that all members of a botnet are used

in a homogeneous fashion, then monitoring a single bot is sufficient for identifying

the spamming behavior of the entire botnet. Botnet data is also highly accessible

since a researcher can run an instance of the malware and obtain large amounts of

botnet spam without requiring a relationship with any third-party security, mail

or network provider [31]. Moreover, since many studies have documented that a

small number of botnets are the primary source of spam e-mail messages, in prin-

ciple such datasets should be ideally suited for spam studies [31, 52]. Finally, these

datasets have the advantage of often being high volume, since botnets are usually

very aggressive in their output rate.

MX honeypot MX honeypot spam is the result of configuring the MX record

for a domain to point to an SMTP server that accepts all inbound messages.

Depending on how these domains are obtained and advertised, they may select for

different kinds of spam. For example, a newly registered domain will only capture

spam using address lists created via brute force (i.e., sending mail to popular user

names at every domain with a valid MX). By contrast, MX honeypots built using

abandoned domains or domains that have become quiescent over time may attract a

broader set of e-mail, but also may inadvertently collect legitimate correspondence

arising from the domain’s prior use. In general MX honeypots have low levels of

false positives, but since their accounts are not in active use they will only tend

to capture spam campaigns that are very broadly targeted and hence have high

volume. Since high-volume campaigns are easier to detect, these same campaigns

1However, see Section 4.3.1 for an example of domain poisoning carried out by the Rustock
botnet.

25

are more likely to be rejected by anti-spam filters. Thus, some of the most prevalent

spam in MX-based feeds may not appear frequently in Web mail or enterprise e-

mail inboxes.

Seeded honey accounts Like MX honeypots, seeded honey accounts capture

unsolicited e-mail to accounts whose sole purpose is to receive spam (hence mini-

mizing false positives). However, unlike MX honeypots, honey accounts are created

across a range of e-mail providers, and are not limited to addresses affiliated with

a small number of domains. However, since these e-mail addresses must also be

seeded—distributed across a range of vectors that spammers may use to harvest

e-mail address lists (e.g., such as forums, Web sites and mailing lists)—the “qual-

ity” of a honey account feed is related both to the number of accounts and how

well the accounts are seeded. The greater operational cost of creating and seeding

these accounts means that researchers generally obtain honey account spam feeds

from third parties (frequently commercial anti-spam providers).

Honey accounts also have many of the same limitations as MX-based feeds.

Since the accounts are not active, such feeds are unlikely to capture spam cam-

paigns targeted using social network information (i.e., by friends lists of real e-mail

users) or by mailing lists obtained from compromised machines [37]. Thus, such

feeds mainly include low-quality campaigns that focus on volume and consequently

are more likely to be captured by anti-spam filters.

Human identified These feeds are those in which humans actively nominate e-

mail messages as being examples of spam, typically through a built-in mail client

interface (i.e., a “this is spam” button). Moreover, since it is primarily large Web

mail services that provide such user interfaces, these datasets also typically repre-

sent the application of human-based classification at very large scale (in our case

hundreds of millions of e-mail accounts). For the same reason, human identified

spam feeds are not broadly available and their use is frequently limited to large

Web mail providers or their close external collaborators.

Human identified spam feeds are able to capture “high quality” spam since,

by definition, messages that users were able to manually classify must also have

26

evaded any automated spam filters. As mentioned before, however, such feeds may

underrepresent the high-volume campaigns since they will be pre-filtered before

any human encounters them. Another limitation is that individuals do not have

a uniform definition of what “spam” means and thus human identified spam can

include legitimate commercial e-mail as well (i.e., relating to an existing commercial

relationship with the recipient). Finally, temporal signals in human-identified spam

feeds are distorted because identification occurs at human time scales.

Domain blacklists Domain blacklists are the last category of spam-derived data

we consider and are the most opaque since the method by which they are gathered

is generally not documented publicly.2 In a sense, blacklists are meta-feeds that

can be driven by different combinations of spam source data based on the orga-

nization that maintains them. Among the advantages of such feeds, they tend to

be broadly available (generally for a nominal fee) and, because they are used for

operational purposes, they are professionally maintained. Unlike the other feeds

we have considered, blacklists represent domains in a binary fashion—either a do-

main is on the blacklist at time t or it is not. Consequently, while they are useful

for identifying a range of spam-advertised domains, they are a poor source for

investigating questions such as spam volume.

While these are not the only kinds of spam feeds in use by researchers

(notably omitting automatically filtered spam taken from mail servers, which we

did not pursue in our work due to privacy concerns), they capture some of the

most popular spam sources as well as a range of collection mechanisms.

3.1.2 False Positives

No spam source is pure and all feeds contain false positives. In addition

to feed-specific biases (discussed above), there is a range of other reasons why a

domain name appearing in a spam feed may have little to do with spam.

2However, they are necessarily based on some kind of real-time spam data since their purpose
is to identify spam-advertised domains that can then be used as a dynamic feature in e-mail
filtering algorithms.

27

First, false positives occur when legitimate messages are inadvertently

mixed into the data stream. This mixing can happen for a variety of reasons.

For example, MX domains that are lexically similar to other domains may inad-

vertently receive mail due to sender typos (see Gee and Kim for one analysis of

this behavior [19]). The same thing can occur with honeypot accounts (but this

time due to username typos). We have also experienced MX honeypots receiving

legitimate messages due to a user specifying the domain in a dummy e-mail address

created to satisfy a sign-up requirement for an online service (we have found this

to be particularly an issue with simple domain names such as “test.com”).

The other major source of feed pollution is chaff domains: legitimate do-

mains that are not themselves being advertised but co-occur in spam messages.

In some cases these are purposely inserted to undermine spam filters (a practice

well documented by Xie et al. [95]), in other cases they are simply used to sup-

port the message itself (e.g., image hosting) or are non-referenced organic parts

of the message formatting (e.g., DTD reference domains such as w3.org or mi-

crosoft.com). Finally, to bypass domain-based blacklists some spam messages will

advertise “landing” domains that in turn redirect to the Web site truly being pro-

moted. These landing domains are typically either compromised legitimate Web

sites, free hosting Web services (e.g., Google’s Blogspot, Windows Live domains or

Yahoo’s groups) or Web services that provide some intrinsic redirection capability

(e.g., bit.ly), as described in Chapter 6. We discuss in more detail how these issues

impact our feeds in Section 4.3.1.

3.2 Crawler Data

The URL feed data subsequently drives active crawling measurements that

collect information about both the DNS infrastructure used to name the site being

advertised and the Web hosting infrastructure that serves site content to visitors.

We use distinct crawlers for each set of measurements.

28

DNS Crawler

We developed a DNS crawler to identify the name server infrastructure used

to support spam-advertised domains, and the address records they specify for host-

ing those names. Under normal use of DNS this process would be straightforward,

but in practice it is significantly complicated by fast flux techniques employed to

minimize central points of weakness. Similar to the work of [27], we query servers

repeatedly to enumerate the set of domains collectively used for click support (Sec-

tion 2.4.1).

From each URL, we extract both the fully qualified domain name and the

registered domain suffix (for example, if we see a domain foo.bar.co.uk we will

extract both foo.bar.co.uk as well as bar.co.uk). We ignore URLs with IPv4

addresses (just 0.36% of URLs) or invalidly formatted domain names, as well as

duplicate domains already queried within the last day.

The crawler then performs recursive queries on these domains. It identifies

the domains that resolve successfully and their authoritative domains, and filters

out unregistered domains and domains with unreachable name servers. To prevent

fruitless domain enumeration, it also detects wildcard domains (abc.example.com,

def.example.com, etc.) where all child domains resolve to the same IP address.

In each case, the crawler exhaustively enumerates all A, NS, SOA, CNAME, MX,

and TXT records linked to a particular domain.

The crawler periodically queries new records until it converges on a set of

distinct results. It heuristically determines convergence using standard maximum

likelihood methods to estimate when the probability of observing a new unique

record has become small. For added assurance, after convergence the crawler

continues to query domains daily looking for new records (ultimately timing out

after a week if it discovers none).

Web Crawler

The Web crawler replicates the experience of a user clicking on the URLs

derived from the spam feeds. It captures any application-level redirects (HTML,

JavaScript, Flash), the DNS names and HTTP headers of any intermediate servers

29

Table 3.2: Summary results of URL crawling. We crawl the registered domains

used by over 98% of the URLs received.

Stage Count

Received URLs 968,918,303
Distinct URLs 93,185,779 (9.6%)
Distinct domains 17,813,952
Distinct domains crawled 3,495,627
URLs covered 950,716,776 (98.1%)

and the final server, and the page that is ultimately displayed—represented both

by its DOM tree and as a screenshot from a browser. Although straightforward in

theory, crawling spam URLs presents a number of practical challenges in terms of

scale, robustness, and adversarial conditions.

For this dissertation we crawled nearly 15 million URLs, of which we suc-

cessfully visited and downloaded correct Web content for over 6 million (unreach-

able domains, blacklisting, etc., prevent successful crawling of many pages).3 To

manage this load, we replicate the crawler across a cluster of machines. Each

crawler replica consists of a controller managing over 100 instances of Firefox

3.6.10 running in parallel. The controller connects to a custom Firefox extension

to manage each browser instance, which incorporates the Screengrab! extension [61]

to capture screen shots (used for manual investigations). The controller retrieves

batches of URLs from the database, and assigns URLs to Firefox instances in a

round-robin fashion across a diverse set of IP address ranges.4

Table 3.2 summarizes our crawling efforts. Since there is substantial redun-

dancy in the feeds (e.g., fewer than 10% of the URLs are even unique), crawling

every URL is unnecessary and resource inefficient. Instead, we focus on crawling

URLs that cover the set of registered domains used by all URLs in the feed. Ex-

cept in rare instances, all URLs to a registered domain are for the same affiliate

3By comparison, the spam hosting studies of Anderson et al. and Konte et al. analyzed
150,000 messages per day and 115,000 messages per month respectively [6, 35].

4Among the complexities, scammers are aware that security companies crawl them and black-
list IP addresses they suspect are crawlers. We mitigate this effect by tunneling requests through
proxies running in multiple disparate IP address ranges.

30

program. Thus, the crawler prioritizes URLs with previously unseen registered

domains, ignores any URLs crawled previously, and rate limits crawling URLs

containing the same registered domain—both to deal with feed skew as well as to

prevent the crawler from being blacklisted. For timeliness, the crawler visits URLs

within 30 minutes of appearing in the feeds.

We achieve nearly complete coverage: Over 98% of the URLs received in

the raw feeds use registered domains that we crawl. Note that we obtain this

coverage even though we crawled URLs that account for only 20% of the nearly 18

million distinct registered domains in the feeds. This outcome reflects the inherent

skew in the feed makeup. The vast majority of the remaining 80% of domains we

did not crawl, and the corresponding 2% URLs that use those domains, are from

the domain-poisoning spam sent by the Rustock bot and do not reflect real sites

(Section 3.1).

3.2.1 Content Clustering and Tagging

The crawlers provide low-level information about URLs and domains. In

the next stage of our methodology, we process the crawler output to associate this

information with higher-level spam business activities.

Note that in this dissertation we exclusively focus on businesses selling three

categories of spam-advertised products: pharmaceuticals, replicas, and software.

We chose these categories because they are reportedly among the most popular

goods advertised in spam [50]—an observation borne out in our data as well.5

To classify each Web site, we use content clustering to match sites with

lexically similar content structure, category tagging to label clustered sites with the

category of goods they sell, and program tagging to label clusters with their specific

affiliate program and/or storefront brand. We use a combination of automated and

manual analysis techniques to make clustering and tagging feasible for our large

datasets, while still being able to manageably validate our results.

5We did not consider two other popular categories (pornography and gambling) for institu-
tional and procedural reasons.

31

Table 3.3: Breakdown of clustering and tagging results.

Stage Pharmacy Software Replicas Total

URLs 346,993,046 3,071,828 15,330,404 365,395,278
Domains 54,220 7,252 7,530 69,002
Web clusters 968 51 20 1,039
Programs 30 5 10 45

Table 3.3 summarizes the results of this process. It lists the number of

received URLs with registered domains used by the affiliate programs we study,

the number of registered domains in those URLs, the number of clusters formed

based on the contents of storefront Web pages, and the number of affiliate programs

that we identify from the clusters. As expected, pharmaceutical affiliate programs

dominate the data set, followed by replicas and then software. We identify a total

of 45 affiliate programs for the three categories combined, that are advertised via

69,002 distinct registered domains (contained within 38% of all URLs received in

our feeds). We next describe the clustering and tagging process in more detail.

Content clustering

The first step in our process uses a clustering tool to group together Web

pages that have very similar content. The tool uses the HTML text of the crawled

Web pages as the basis for clustering. For each crawled Web page, it uses a q-

gram similarity approach to generate a fingerprint consisting of a set of multiple

independent hash values over all 4-byte tokens of the HTML text. After the

crawler visits a page, the clustering tool computes the fingerprint of the page

and compares it with the fingerprints representing existing clusters. If the page

fingerprint exceeds a similarity threshold with a cluster fingerprint (equivalent to a

Jaccard index of 0.75), it places the page in the cluster with the greatest similarity.

Otherwise, it instantiates a new cluster with the page as its representative.

32

Category tagging

The clusters group together URLs and domains that map to the same page

content. The next step of category tagging broadly separates these clusters into

those selling goods that we are interested in, and those clusters that do not (e.g.,

domain parking, gambling, etc). We are intentionally conservative in this step,

potentially including clusters that turn out to be false positives to ensure that

we include all clusters that fall into one of our categories (thereby avoiding false

negatives).

We identify interesting clusters using generic keywords found in the page

content, and we label those clusters with category tags—“pharma”, “replica”,

“software”—that correspond to the goods they are selling. The keywords con-

sist of large sets of major brand names (Viagra, Rolex, Microsoft, etc.) as well

as domain-specific terms (herbal, pharmacy, watches, software, etc.) that appear

in the storefront page. These terms are tied to the content being sold by the

storefront site, and are also used for search engine optimization (SEO). Any page

containing a threshold of these terms is tagged with the corresponding keyword.

The remaining URLs do not advertise products that we study and they are left

untagged.

Even with our conservative approach, a concern is that our keyword match-

ing heuristics might have missed a site of interest. Thus, for the remaining un-

tagged clusters, we manually checked for such false negatives, i.e., whether there

were clusters of storefront pages selling one of the three goods that should have

a category tag, but did not. We examined the pages in the largest 675 untagged

clusters (in terms of number of pages) as well as 1,000 randomly selected untagged

clusters, which together correspond to 39% of the URLs we crawled. We did not

find any clusters with storefronts that we missed.6

6The lack of false negatives is not too surprising. Missing storefronts would have no textual
terms in their page content that relate to what they are selling (incidentally also preventing the
use of SEO); this situation could occur if the storefront page were composed entirely of images,
but such sites are rare.

33

Program tagging

At this point, we focus entirely on clusters tagged with one of our three

categories, and identify sets of distinct clusters that belong to the same affiliate

program. In particular, we label clusters with specific program tags to associate

them either with a certain affiliate program (e.g., EvaPharmacy—which in turn has

many distinct storefront brands) or, when we cannot mechanically categorize the

underlying program structure, with an individual storefront “brand” (e.g., Prestige

Replicas). From insight gained by browsing underground forum discussions, exam-

ining the raw HTML for common implementation artifacts, and making product

purchases, we found that some sets of the these brands are actually operated by

the same affiliate program.

In total, we assigned program tags to 30 pharmaceutical, 5 software, and

10 replica programs that dominated the URLs in our feeds. Table 3.4 enumerates

these affiliate programs and brands, showing the number of distinct registered

domains used by those programs, and the number of URLs that use those domains.

We also show two aggregate programs, Mailien and ZedCash, whose storefront

brands we associated manually based on evidence gathered on underground Web

forums (later validated via the purchasing process).7 The “feed volume” shows the

distribution of the affiliate programs as observed in each of the spam “sink” feeds

(the feeds not from bots), roughly approximating the distribution that might be

observed by users receiving spam.8

To assign these affiliate program tags to clusters, we manually crafted sets

of regular expressions that match the page contents of program storefronts. For

some programs, we defined expressions that capture the structural nature of the

software engine used by all storefronts for a program (e.g., almost all EvaPhar-

macy sites contained unique hosting conventions). For other programs, we defined

expressions that capture the operational modes used by programs that used mul-

7Note, ZedCash is unique among programs as it has storefront brands for each of the herbal,
pharmaceutical and replica product categories.

8We remove botnet feeds from such volume calculations because their skewed domain mix
would bias the results unfairly towards the programs they advertise.

34

tiple storefront templates (e.g., GlavMed).9 For others, we created expressions for

individual storefront brands (e.g., one for Diamond Replicas, another for Prestige

Replicas, etc.), focusing on the top remaining clusters in terms of number of pages.

Altogether, we assigned program tags to clusters comprising 86% of the pages that

had category tags.

We manually validated the results of assigning these specific program tags

as well. For every cluster with a program tag, we inspected the ten most and least

common page DOMs contained in that cluster, and validated that our expressions

had assigned them their correct program tags. Although not exhaustive, examining

the most and least common pages validates the pages comprising both the “mass”

and “tail” of the page distribution in the cluster.

Not all clusters with a category tag (“pharma”) had a specific program

tag (“EvaPharmacy”). Some clusters with category tags were false positives (they

happened to have category keywords in the page, but were not storefronts selling

category goods), or they were small clusters corresponding to storefronts with tiny

spam footprints. We inspected the largest 675 of these clusters and verified that

none of them contained pages that should have been tagged as a particular program

in our analysis.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings

of the ACM Internet Measurement Conference 2012. Pitsillidis, Andreas; Kanich,

Chris; Voelker, Geoffrey M.; Levchenko, Kirill; Savage, Stefan. The dissertation

author was the primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in Proceed-

ings of the IEEE Symposium on Security and Privacy 2011. Levchenko, Kirill;

Pitsillidis, Andreas; Chachra, Neha; Enright, Brandon; Felegyhzi, Mark; Grier,

Chris; Halvorson, Tristan; Kanich, Chris; Kreibich, Christian; Liu, He; McCoy,

Damon; Weaver, Nicholas; Paxson, Vern; Voelker, Geoffrey M.; Savage, Stefan.

The dissertation author was one of the primary investigators and authors of this

paper.

9We obtained the full source code for all GlavMed and RX–Promotion sites, which aided
creating and validating expressions to match their templates.

35

Table 3.4: Breakdown of the pharmaceutical, software, and replica affiliate pro-

grams advertising in our URL feeds.

Affiliate Distinct Received Feed
Program Domains URLs Volume

RxPrm RX–Promotion 10,585 160,521,810 24.92%
Mailn Mailien 14,444 69,961,207 23.49%
PhEx Pharmacy Express 14,381 69,959,629 23.48%
EDEx ED Express 63 1,578 0.01%

ZCashPh ZedCash (Pharma) 6,976 42,282,943 14.54%
DrMax Dr. Maxman 5,641 32,184,860 10.95%
Grow Viagrow 382 5,210,668 1.68%
USHC US HealthCare 167 3,196,538 1.31%
MaxGm MaxGentleman 672 1,144,703 0.41%
VgREX VigREX 39 426,873 0.14%
Stud Stud Extreme 42 68,907 0.03%
ManXt ManXtenz 33 50,394 0.02%

GlvMd GlavMed 2,933 28,313,136 10.32%
OLPh Online Pharmacy 2,894 17,226,271 5.16%
Eva EvaPharmacy 11,281 12,795,646 8.7%
WldPh World Pharmacy 691 10,412,850 3.55%
PHOL PH Online 101 2,971,368 0.96%
Aptke Swiss Apotheke 117 1,586,456 0.55%
HrbGr HerbalGrowth 17 265,131 0.09%
RxPnr RX Partners 449 229,257 0.21%
Stmul Stimul-cash 50 157,537 0.07%
Maxx MAXX Extend 23 104,201 0.04%
DrgRev DrugRevenue 122 51,637 0.04%
UltPh Ultimate Pharmacy 12 44,126 0.02%
Green Greenline 1,766 25,021 0.36%
Vrlty Virility 9 23,528 0.01%
RxRev RX Rev Share 299 9,696 0.04%
Medi MediTrust 24 6,156 0.01%
ClFr Club-first 1,270 3,310 0.07%
CanPh Canadian Pharmacy 133 1,392 0.03%
RxCsh RXCash 22 287 <0.01%
Staln Stallion 2 80 <0.01%

Total 54,220 346,993,046 93.18%

Royal Royal Software 572 2,291,571 0.79%
EuSft EuroSoft 1,161 694,810 0.48%
ASR Auth. Soft. Resellers 4,117 65,918 0.61%
OEM OEM Soft Store 1,367 19,436 0.24%
SftSl Soft Sales 35 93 <0.01%

Total 7,252 3,071,828 2.12%

ZCashR ZedCash (Replica) 6,984 13,243,513 4.56%
UltRp Ultimate Replica 5,017 10,451,198 3.55%
Dstn Distinction Replica 127 1,249,886 0.37%
Exqst Exquisite Replicas 128 620,642 0.22%
DmdRp Diamond Replicas 1,307 506,486 0.27%
Prge Prestige Replicas 101 382,964 0.1%
OneRp One Replica 77 20,313 0.02%
Luxry Luxury Replica 25 8,279 0.01%
AffAc Aff. Accessories 187 3,669 0.02%
SwsRp Swiss Rep. & Co. 15 76 <0.01%

WchSh WatchShop 546 2,086,891 0.17%
Total 7,530 15,330,404 4.73%

Grand Total 69,002 365,395,278 100%

Chapter 4

Taster’s Choice: A Comparative

Analysis of Spam Feeds

E-mail spam feeds are considered an invaluable tool for studying the spam

problem. On one hand, they often serve as the basis of measurement studies, which

in turn help to strengthen our understanding of the problem. On the other hand,

they are used for both developing and evaluating algorithms that aim to stop spam.

By better understanding the available data, and by extension the adversary, we

greatly enhance our ability to address the challenges involved. In this chapter, we

focus on the analysis of spam feeds.

4.1 Introduction

It is rare in the measurement of Internet-scale phenomena that one is able

to make comprehensive observations. Indeed, much of our community is by nature

opportunistic: we try to extract the most value from the data that is available.

However, implicit in such research is the assumption that the available data is

sufficient to reach conclusions about the phenomena at scale. Unfortunately, this

is not always the case and some datasets are too small or too biased to be used for

all purposes. A common security measurement domain where this issue appears is

e-mail spam.

36

37

On the one hand e-mail spam is plentiful—everyone gets it—and thus is

deceptively easy to gather. At the same time, the scale of the e-mail spam problem

is enormous. Industry estimates (admittedly based on unknown methodology)

suggest that spammers sent well over 100 billion e-mails each day in 2010 [39].

If true, then even a spam corpus consisting of 100,000 messages per day would

constitute only one ten thousandth of one percent of what occurred globally. Thus,

except for researchers at the very largest e-mail providers, we are all forced to

make extrapolations by many orders of magnitude when generalizing from available

spam data sources. Further, in making these extrapolations, we must assume both

that our limited samples are sufficiently unbiased to capture the general behavior

faithfully and that the behavior is large enough to be resolved via our measurements

(concretely, that spam is dominated by small collections of large players and not

vice versa). However, we are unaware of any systematic attempt to date to examine

these assumptions and how they relate to commonly used data sources.

To explore these questions, we compare contemporaneous spam data from

ten different data feeds, both academic and commercial, gathered using a broad

range of different collection methodologies. To address differences in content, we

focus on the Internet domain names advertised by spam messages in such feeds,

using them as a key to identify like messages. Using this corpus, corresponding to

over a billion messages distributed over three months, we characterize the relation-

ships between its constituent data sources. In particular, we explore four questions

about “feed quality”: purity (how much of a given feed is actually spam?), coverage

(what fraction of spam is captured in any particular feed?), timing (can a feed can

be used to determine the start and end of a spam campaign?) and proportionality

(can one use a single feed to accurately estimate the relative volume of different

campaigns?).

Overall, we find that there are significant differences across distinct spam

feeds and that these differences can frequently defy intuition. For example, our

lowest-volume data source (comprising just over 10 million samples) captures more

spam-advertised domain names than all other feeds combined (even though these

other feeds contain two orders of magnitude more samples). Moreover, we find

38

that these differences in turn translate into analysis limitations; not all feeds are

good for answering all questions. In the remainder of this chapter, we place this

problem in context, describe our data sources and analysis, and summarize some

best practices for future spam measurement studies.

4.2 Data and Methodology

In this chapter we compare ten distinct sources of spam data (which we

call feeds), listed in Table 4.1. For this study, in addition to the feeds introduced

earlier in Chapter 3, we also include two additional blacklist feeds (dbl and uribl)

which we receive by subscription. Furthermore we combine all the botnet data into

a single feed.

These feeds range in their level of detail from full e-mail content to only

domain names of URLs in messages. Comparisons between them are by necessity

limited to the lowest common denominator, namely domain names. In the remain-

der of this chapter we treat each feed as a source of spam-advertised domains,

regardless of any additional information available.

By comparing feeds at the granularity of domain names, we are implicitly

restricting ourselves to spam containing URLs, that is, spam that is a Web-oriented

advertisement in nature, at the exclusion of some less common classes of spam (e.g.,

malware distribution or advance fee fraud). Fortunately, such advertising spam is

the dominant class of spam today.1

Up to this point, we have been using the term “domain” very informally.

Before going further, however, let us say more precisely what we mean: a registered

domain—in this chapter, simply a domain—is the part of a fully-qualified domain

name that its owner registered with the registrar. For the most common top-level

domains, such as com, biz, and edu, this is simply the second-level domain (e.g.,

“ucsd.edu”). All domain names at or below the level of registered domain (e.g.,

“cs.ucsd.edu”) are administered by the registrant, while all domain names above

(e.g., “edu”) are administered by the registry. Blacklisting generally operates at

1One recent industry report [87] places Web-oriented advertising spam for pharmaceuticals at
over 93% of all total spam volume.

39

Table 4.1: Summary of spam domain sources (feeds) used in this chapter. The

first column gives the feed mnemonic used throughout.

Feed Type Received URLs Unique Domains

Hu Human identified 10,733,231 1,051,211
mx1 MX honeypot 32,548,304 100,631
mx2 MX honeypot 198,871,030 2,127,164
mx3 MX honeypot 12,517,244 67,856
Ac1 Seeded honey accounts 30,991,248 79,040
Ac2 Seeded honey accounts 73,614,895 35,506
Hyb Hybrid 451,603,575 1,315,292
Bot Botnet 158,038,776 13,588,727

uribl Blacklist n/a 144,758
dbl Blacklist n/a 413,392

the level of registered domains, because a spammer can create an arbitrary number

of names under the registered domain name to frustrate fine-grained blacklisting

below the level of registered domains.

With the exception of the two blacklists, we collected and processed the

feeds used in this chapter in the context of our crawling effort, described in Chap-

ter 3. Because we obtained the blacklist feeds after the completion of that work,

we could not systematically crawl all of their domains. Thus the blacklist entries

listed in the table only include the subset that also occurred in one of the eight

base feeds. While this bias leads us to undercount the domains in each feed (thus

underrepresenting their diversity), this effect is likely to be small. The dbl feed

contained 13,175 additional domains that did not occur in any of our other base

feeds (roughly 3% of its feed volume) while the uribl feed contained only 3,752

such domains (2.5% of its feed volume).

4.3 Analysis

We set out to better understand the differences among sources of spam

domains available to the researcher or practitioner. The value of a spam domain

feed, whether used in a production system for filtering mail or in a measurement

40

study, ultimately lies in how well it captures the characteristics of spam. In this

chapter we consider four qualities: purity, coverage, proportionality, and timing.

Purity is a measure of how much of a feed is actually spam domains, rather

than benign or non-existent domains.

Coverage measures how much spam is captured by a feed. That is, if one

were to use the feed as an oracle for classifying spam, coverage would measure how

much spam is correctly classified by the oracle.

Proportionality is how accurately a feed captures not only the domains

appearing in spam, but also their relative frequency. If one were tasked with

identifying the top 10 most spammed domains, for example, proportionality would

be the metric of interest.

Timing is a measure of how accurately the feed represents the period

during which a domain appears in spam. Most often with timing we care about

how quickly a domain appears in the feed after it appears in spam in the wild.

Unfortunately, all of the measures above presuppose the existence of an ulti-

mate “ground truth,” a platonic absolute against which all feeds can be compared.

Sadly, we have no such feed: barring the challenges of even defining what such a

feed would contain, the practical difficulty of capturing all spam (however defined)

is immense. We can still gain useful insight, however, by comparing feeds to each

other. In particular, for coverage and timing, we combine all of our feeds into one

aggregate super-feed, taking it as our ideal. For proportionality, we measure the

relative frequency of spam domains in incoming mail seen by a large Web mail

provider, allowing us to compare the relative frequencies of domains in a spam

feed to their frequencies in a representative e-mail feed.

In the remainder of this section, we evaluate the spam domain feeds avail-

able to us with respect to the qualities described above.

4.3.1 Purity

The purity of a feed is a measure of how much of the feed is actually spam,

rather than benign or non-existent domains. Very simply, purity is the fraction

of the feed that are spam domains. We refer to these spam domains appearing in

41

Table 4.2: Positive and negative indicators of feed purity. See Section 4.3.1 for

discussion.

Feed DNS HTTP Tagged ODP Alexa

Hu 88% 55% 6% 1% 1%
dbl 100% 72% 11% <1% <1%
uribl 100% 85% 22% 2% 2%
mx1 96% 83% 20% 9% 8%
mx2 6% 5% <1% <1% <1%
mx3 97% 83% 16% 9% 7%
Ac1 95% 82% 20% 8% 5%
Ac2 96% 88% 33% 10% 11%
Bot <1% <1% <1% <1% <1%
Hyb 64% 51% 2% 12% 10%

the feed as true positives, and non-spam domains appearing in the feed as false

positives. Purity is thus akin to precision in Information Retrieval or positive

predictive value in Statistics.

The importance of purity varies from application to application. If the

feed is used to directly filter spam (by marking any message containing a domain

appearing in the feed as spam), then purity is of paramount importance. On the

other hand, for a measurement study, where spam domains are visited and further

analyzed, low purity may tax the measurement system, but generally has little

impact on the results once filtered.

Operationally, the nature of the false positives matters as well. While non-

existent domains appearing in the feed are merely a nuisance, benign domains can

lead to highly undesirable false positives in the filtering context.

Table 4.2 shows several purity indicators for each feed. The first three

(DNS, HTTP, and Tagged) are positive indicators—larger numbers mean higher

purity. The last two (Alexa and ODP) are negative indicators, with larger numbers

meaning lower purity.

42

Non-existent Domains

The DNS column shows the proportion of domains in the feed that were

registered, based on several major TLDs. Specifically, we checked the DNS zone

files for the com, net, org, biz, us, aero, and info top-level domains between

April 2009 and March 2012, which bracket the measurement period by 16 months

before and 16 months after. Together these TLDs covered between 63% and 100%

of each feed. We report the number of domains in these TLDs that appeared in

the zone file.

Blacklists, seeded honey accounts, and two of the three MX honeypot feeds

consisted largely of real domains (over 95%). Human-identified spam and the

hybrid feed were lower, at 88% and 64%, levels at which non-registered domains

pose little harm operationally or experimentally.

Two feeds—Bot and mx2—exhibit unusually low registration levels, how-

ever. Most of these relate to a single phenomenon, a period of several weeks during

which the Rustock botnet was sending randomly-generated domains [47, 89]. Such

bogus domains cost spammers nearly nothing to generate, while costing spam filter

maintainers and spam researchers considerably more in dealing with them.

The HTTP column shows the fraction of domains in the feed that responded

to an HTTP request (with a code 200 reply) made to any of the URLs received

from the feed during the measurement period. Like the DNS registration measure,

HTTP responses indicate that a feed contains live URLs (whether spam or not).

Some amount of HTTP failures are inevitable, and we see success rates in the 51%

to 88% range for most feeds, with the exception of the same two feeds—Bot and

mx2—discussed above.

Known Spam

An HTTP response still does not mean that a domain is not a benign do-

main accidentally included in the list. To get at the true spam domains, we turn

to the Web content tagging carried out in Chapter 3. Recall from Section 3.1 that

these are domains that lead to storefronts associated with known online pharma-

cies, replica stores, or software stores.

43

Such domains constituted 11–33% of domains in high-purity feeds. Note

that while these domains are less than a third of all domains in a feed, they cover

the bulk of the spam by volume.

Benign Domains

Finally, the ODP and Alexa columns indicate the number of domains in

the feed that appeared in Open Directory Project [65] listings and the Alexa top

1 million Web sites [5] list. We expect that nearly all of these domains are benign,

and their appearance in a feed is erroneous.2

There are at least three reasons why a benign domain might appear in spam.

Benign domains may be included in a message by the spammer. A phishing e-mail,

for example, may contain some legitimate links to the service being phished. In

some cases, a legitimate e-mail may be inadvertently sent to a honeypot or honey

account. For example, if an MX honeypot uses an abandoned, previously-used

domain, it may still receive legitimate traffic from its former life. A third cause

of benign domains appearing in spam are legitimate services being used by the

spammer as a redirection mechanism. By using a URL shortening service, for

example, the spammer can evade domain blacklists by hiding behind an established

domain.

Using spam domain feeds to drive a production spam filtering system thus

runs the risk of false positives. Because blacklists are intended specifically for this

task, they have the fewest false positives: only 2% of domains in the uribl feed,

and less than 1% of dbl domains, intersected the ODP and Alexa lists.

Removing Impurities

In the analysis ahead of us, these impurities skew the results and thus

obscure the picture. To better understand the useful contributions of each feed,

we remove all non-responsive domains and all domains we believe are likely benign.

2While nothing prohibits a spam domain from appearing on the Alexa list or in the Open
Directory listings, these domains are usually short-lived because their utility, and therefore use,
is reduced with domain blacklisting. We expect both lists to be overwhelmingly composed of
domains incompatible with spam advertising.

44

Specifically, for each feed, we take only the set of domains for which we receive at

least one successful HTTP response and from this set remove all domains appearing

on the Open Directory and Alexa list. (These are the domains listed in the HTTP

column of Table 4.2 less those counted in the ODP and Alexa columns.) We call

these live domains.

In several instances, data collected by the Web crawler (Chapter 3) allows

us to see deeper into the nature of domain, namely into the affiliate programs and

affiliates behind each domain. For this analysis, however, we are limited to the set

of tagged domains. We remove Alexa and ODP domains from this set as well.

Table 4.3 shows the number of distinct domains of each type in the feed. In the

remainder of the chapter, we state explicitly whether a measurement uses live or

tagged domains.

We have chosen to explicitly remove Alexa-listed and ODP-listed domains

from the set of live and tagged domains used in the remainder of the chapter. As

discussed in Section 4.3.1, live and even tagged domains may contain domains in

the Alexa and ODP listings. An otherwise benign domain may be tagged if it is

abused by a spammer as a redirection mechanism, as noted above. Unfortunately,

the stakes are high when it comes to such false positives. These same Alexa and

ODP domains—comprising less than 2% of the domains in a blacklist—are dispro-

portionately more popular than spam domains. Figure 4.3 shows the fraction of

spam messages containing such domains. In many feeds, these handful of benign

domains comprise as much as 90% of live domain volume. Working at the gran-

ularity of registered domains, even a single URL redirecting to a spam site can

affect the standing of an entire domain.

Practitioners must take great care in choosing which domains to blacklist

and whether to blacklist each instance at the registered name or finer granularity.

It is not the purpose of this dissertation, however, to design the perfect blacklist

or blacklisting mechanism, and so we leave the question of how best to deal with

potential false positives without a full and satisfactory resolution. For our analysis,

we take the conservative approach and remove such suspect domains.

45

Table 4.3: Feed domain coverage showing total number of distinct domains (Total

column) and number of domains exclusive to a feed (Excl. column).

All Domains Live Domains Tagged Domains

Feed Total Excl. Total Excl. Total Excl.

Hu 1,051,211 534,060 564,946 191,997 64,116 11,356
dbl 413,355 0 298,685 0 46,058 0
uribl 144,721 0 119,417 0 30,891 0
mx1 100,631 4,523 72,634 1,434 19,482 29
mx2 2,127,164 1,975,081 93,638 6,511 18,055 4
mx3 67,856 6,870 49,659 2,747 10,349 2
Ac1 79,040 3,106 58,002 798 15,242 2
Ac2 35,506 3,049 26,567 972 11,244 31
Bot 13,588,727 13,540,855 21,265 3,728 2,448 0
Hyb 1,315,292 1,069,074 496,893 322,215 25,993 1,285

4.3.2 Coverage

Roughly speaking, coverage is a measure of how many spam domains a

feed contains. In an operational context, greater coverage—more spam domains—

means more spam filtered. For a measurement study or system evaluation, more

spam domains means more comprehensive results. In this section, we consider how

coverage varies across our ten spam domain feeds. But domains do not exist in a

vacuum: they are a projection of external entities into the domain name system,

and it is often these entities that are the object of our interest. In the world of

spam, these take the form of affiliate programs and affiliates. In Section 4.3.2 we

compare feeds on the visibility they provide into that world.

Domains

Table 4.3 shows the number of live and tagged domains in each feed in the

Total column. Recall that live domains are those that resulted in at least one

successful Web visit to a URL containing the domain, while tagged domains are

those for which the final Web site is a known storefront (Section 3.1).

In absolute terms, whether one considers live domains or tagged domains,

the largest contributor of unique instances is the human-identified spam domain

46

feed Hu, despite also being the smallest feed in terms of absolute volume (see Ta-

ble 4.1). The reason for this coverage is undoubtedly that this particular provider

has hundreds of millions of accounts and thus their customers are likely to be tar-

gets of virtually any spam campaign. In turn, we believe that the reason this feed

has low volume is that as users identify e-mails as “spammy” the included domains

are used to filter subsequent inbound messages. Thus, high-volume campaigns are

unlikely to have high representation in such a feed.

Clearly, if one had to choose only one feed to provide maximum coverage,

it would be that feed. Unfortunately, outside large mail providers, such data is

not widely available to the research community. Instead, the readily-available

blacklists—dbl and uribl—are an excellent alternative, providing more tagged

domains than any other feed besides Hu.

Exclusive domains So far, we have been comparing feeds in terms of their

absolute coverage: the total number of spam domains contributed. Given a choice

of one feed, one may well pick the largest one by this measure. A feed’s value,

however, may be in its differential contribution, that is, in the domains it provides

that are in no other feed. We term domains that occur in exactly one feed exclusive

domains. Across our feeds, 60% of all live domains and 19% of all tagged domains

were exclusive to a single feed.

Table 4.3 shows number of exclusive domains provided by each feed in the

Excl. column. The relationship between the numbers of distinct domains in a feed

and the number of exclusive domains is also shown graphically in Figure 4.1; the left

plot shows this relationship for live domains, and the right plot shows it for tagged

domains. In both plots, the x axis denotes to the number of distinct domains on

a logarithmic scale, while the y axis denotes number of exclusive domains in each

feed on a logarithmic scale. Dotted lines denote fixed exclusive domain proportions.

For example, the Hyb feed lies just under the 100% line, indicating that most of

its live domains—just over 65%—are exclusive.

Figure 4.1 makes apparent that the Hu and Hyb feeds make the greatest

contribution in terms of the distinct number of domains they contribute as well

as the number of domains exclusive to each feed. The number of tagged domains

47

Ac1
MX1

MX2

Ac2

MX3

Hyb
Hu

Bot

Live domains

4 5 6
0

1

2

3

4

5

6

Distinct (log10)

E
x
c
lu

s
iv

e
 (

lo
g
1
0
)

Ac1

MX1

MX2

Ac2

MX3

Hyb

Hu

Tagged domains

4 5 6
0

1

2

3

4

5

6

Distinct (log10)

E
x
c
lu

s
iv

e
 (

lo
g

1
0
)

Figure 4.1: Relationship between the total number of domains contributed by

each feed and the number of domains exclusive to each.

48

is about an order of magnitude less in each feed than the number of live do-

mains, suggesting that spam belonging to the categories represented by the tagged

domains—online pharmacies, replica shops, and counterfeit software stores—is a

small fraction of all spam. This is not so, however. As we will see in Section 4.3.3,

these domains dominate the feeds in volume.

Figure 4.1 and Table 4.3 put the Bot feed in perspective. Although ex-

tremely valuable in identifying which domains are being spammed by which bot-

net, its contribution to the big picture is more limited. None of its tagged domains

were exclusive, not a surprising fact given that bots are renowned for indiscrimi-

nate high-volume spamming. The roughly 3,700 exclusive live domains in the Bot

feed are likely the result of the domain poisoning described earlier (Section 4.3.1),

as fewer than 1% of all domains were legitimate (Table 4.2).

Pairwise comparison In the preceding discussion of exclusive contribution, we

were implicitly asking which feed, if it were excluded, would be missed the most.

Next we consider the question of each feed’s differential contribution with respect

to another feed. Equivalently, we are asking how many domains from one feed

are also in another. (Removing non-responsive and benign domains is particularly

important for a meaningful comparison here.)

Figure 4.2 shows pairwise domain overlap as a matrix, with live domains

plotted on the left and tagged domains on the right. For two feeds A and B, the

cell in row A column B shows how many domains (percent) from feed B are in

feed A, as well as the absolute number of such domains. Formally, the top and

bottom numbers show

|A ∩B|/|B| and |A ∩B|.

For example, in the left-hand matrix, the cell in row Ac1 column mx1 indicates

that Ac1 and mx1 have approximately 47,000 live domains in common, and that

this number is 65% of the mx1 feed. Note that these same 47,000 live domains

constitute 81% of the Ac1 feed (row mx1 column Ac1). In addition, the right-most

column, labeled All contains the union of all domains across all feeds. The numbers

49

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu All

Bot

Hyb

Ac2

Ac1

MX3

MX2

MX1

URIBL

DBL

Hu

68%
14K

6%
1K

69%
15K

69%
15K

80%
17K

70%
15K

27%
6K

13%
3K

30%
6K

3%
14K

4%
20K

10%
49K

8%
42K

15%
76K

12%
61K

14%
69K

12%
59K

23%
114K

4%
1K

75%
20K

35%
9K

22%
6K

47%
12K

49%
13K

72%
19K

66%
18K

82%
22K

25%
15K

85%
49K

16%
9K

60%
35K

88%
51K

81%
47K

44%
26K

28%
16K

48%
28K

29%
15K

84%
42K

12%
6K

70%
35K

86%
43K

75%
37K

38%
19K

22%
11K

42%
21K

18%
17K

82%
76K

13%
12K

55%
51K

46%
43K

61%
57K

36%
34K

24%
22K

41%
38K

21%
15K

84%
61K

18%
13K

65%
47K

51%
37K

79%
57K

49%
36K

33%
24K

54%
39K

5%
6K

58%
69K

16%
19K

22%
26K

16%
19K

28%
34K

30%
36K

61%
73K

 98%
117K

0.9%
3K

20%
59K

6%
18K

5%
16K

4%
11K

7%
22K

8%
24K

24%
73K

100%
297K

1%
6K

20%
114K

4%
22K

5%
28K

4%
21K

7%
38K

7%
39K

21%
117K

53%
297K

2%
21K

51%
497K

3%
27K

6%
58K

5%
50K

10%
94K

8%
73K

12%
119K

31%
299K

58%
565K

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu All

Bot

Hyb

Ac2

Ac1

MX3

MX2

MX1

URIBL

DBL

Hu

22%
541

32%
773

84%
2K

87%
2K

 99%
2K

 96%
2K

100%
2K

100%
2K

89%
2K

2%
541

33%
9K

37%
10K

26%
7K

46%
12K

50%
13K

79%
21K

68%
18K

93%
24K

7%
773

77%
9K

64%
7K

38%
4K

78%
9K

84%
9K

 95%
11K

88%
10K

 96%
11K

13%
2K

63%
10K

47%
7K

56%
9K

 95%
15K

 98%
15K

 98%
15K

76%
12K

 96%
15K

21%
2K

65%
7K

41%
4K

82%
9K

 96%
10K

94%
10K

 98%
10K

78%
8K

95%
10K

13%
2K

67%
12K

48%
9K

80%
15K

55%
10K

93%
17K

 97%
17K

76%
14K

 96%
17K

12%
2K

67%
13K

48%
9K

77%
15K

50%
10K

86%
17K

 97%
19K

75%
15K

 96%
19K

8%
2K

67%
21K

35%
11K

48%
15K

33%
10K

57%
17K

61%
19K

79%
24K

 97%
30K

5%
2K

38%
18K

21%
10K

25%
12K

18%
8K

30%
14K

32%
15K

53%
24K

 99%
45K

3%
2K

38%
24K

17%
11K

23%
15K

15%
10K

27%
17K

29%
19K

47%
30K

71%
45K

4%
2K

39%
26K

17%
11K

23%
15K

16%
10K

27%
18K

29%
19K

46%
31K

69%
46K

 96%
64K

Figure 4.2: Pairwise feed domain intersection, shown for live (top) and tagged

domains (bottom).

50

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu
0

10

20

30

40

50

60

70

80

90

100

Alexa+ODP

Live
S

p
a

m
 v

o
lu

m
e

 %

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu
0

10

20

30

40

50

60

70

80

90

100

Alexa+ODP

Tagged

S
p

a
m

 v
o

lu
m

e
 %

Figure 4.3: Feed volume coverage shown for live (top) and tagged domains (bot-

tom).

51

in the All column thus indicate what proportion of all spam domains (the union

of all feeds) is covered by a given feed.

Figure 4.2 once again highlights the coverage of the Hu and Hyb feeds. The

Hyb feed covers 51% of all live domains (the union of all non-blacklist feeds), while

the Hu feed covers 58%; the two feeds together covering 98% (not shown in matrix)

of all live domains. When restricted to tagged domains only (Figure 4.2 right),

the coverage of the Hu feed is an astounding 96%, while the contribution of Hyb

drops to 39%. In fact, restricting the domains to tagged only (right-hand matrix)

excludes many of the benign domains appearing in Hyb from the All column,

improving the coverage of most feeds with respect to All.

Figure 4.2 also reveals that most feeds—especially Ac1, mx1, mx2, and

mx3—are quite effective at capturing bot-generated spam domains. These feeds

range from 12% to 21% bot-generated (tagged domains), although the true number

is likely higher given the limited set of bots included in the Bot feed. In turn, uribl

is quite effective at capturing these honeypot feeds (mx1, mx2, mx3, Ac1, and Ac2),

and both blacklists considerably overlap each other. Moreover, blacklists have a

non-trivial overlap with the Hu feed. Despite these higher numbers, though, a gap

still exists, as blacklists cannot replace the human identified dataset. Overall, this

is a strong indicator of the strength of human-identified feeds, while also stressing

the significance of blacklists.

Volume

While there are millions of URLs and thousands of domains spammed daily,

the number of messages in which each appears can vary dramatically. We call the

number of messages advertising a domain the volume of that domain. Here we

consider the coverage of each feed with respect to the relative volume of spam it

covers. To estimate this quantity, we solicited the help of a large Web mail provider

to measure the volume of spam domains at their incoming mail servers.

The incoming mail oracle We refer to this data source as our incoming mail

oracle. For this measurement, we collected all live domains seen across all feeds,

52

and submitted them to the cooperating mail provider. The provider reported back

to us the number of messages (normalized) containing each spam domain, as seen

by their incoming mail servers over five days during the measurement period. This

provider handles mail for hundreds of millions of users. Although the measurement

collected is not a perfectly uniform sample of all spam globally, we believe it to be

a reasonable representative. Given the limited duration of the measurement—five

days versus three months of feed data—these results should be interpreted with

caution.

Figure 4.3 shows the volume of spam covered by the live and tagged domains

in each feed. Recall that both live and tagged domains specifically exclude domains

listed in the Alexa 1 million and domains appearing in the Open Directory Project

listings (Section 4.3.1). In the figure, we have included the volume due to these

Alexa and ODP domains occurring in each feed, shown stacked on top of the live

and tagged volume bars. Before removing Alexa and ODP domains, the volume

of live domains is dominated by these potential false positives. Among tagged

domains, the volume attributed to Alexa and ODP domains (before exclusion) is

much lower. These are domains which may have been used by the spammer as a

redirection mechanism, either by abusing a legitimate service or via compromise.

Of the feeds, the blacklists show the highest purity, as noted in Section 4.3.1.

With the Alexa and ODP domains excluded from the set of tagged domains,

the uribl blacklist provides the greatest coverage, followed by the Hu feed and

dbl blacklist. At the opposite end, the Hyb feed provides only about a sixth of the

coverage (by tagged domain volume) compared to uribl, dbl, and Hu. Although

it has nearly an order of magnitude more domains, its spam volume coverage is

less than the Bot feed. One possibility is that this feed contains spam domains not

derived from e-mail spam.

Affiliate Programs

Up to this point, our focus has been the domains occurring in feeds, with the

implicit understanding that domains represent a spam campaign. The relationship

between a campaign and the domains it uses can be complex: a domain may

53

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu All

Bot

Hyb

Ac2

Ac1

MX3

MX2

MX1

URIBL

DBL

Hu

100%
15

93%
14

100%
15

93%
14

100%
15

100%
15

100%
15

100%
15

100%
15

37%
15

85%
35

85%
35

68%
28

 95%
39

90%
37

93%
38

 98%
40

100%
41

38%
14

95%
35

89%
33

68%
25

 97%
36

 97%
36

100%
37

100%
37

100%
37

42%
15

 97%
35

92%
33

72%
26

100%
36

100%
36

 97%
35

100%
36

100%
36

50%
14

100%
28

89%
25

93%
26

100%
28

 96%
27

100%
28

100%
28

100%
28

37%
15

 95%
39

88%
36

88%
36

68%
28

 95%
39

 95%
39

100%
41

100%
41

38%
15

95%
37

92%
36

92%
36

69%
27

100%
39

 97%
38

100%
39

100%
39

36%
15

90%
38

88%
37

83%
35

67%
28

93%
39

90%
38

100%
42

100%
42

34%
15

91%
40

84%
37

82%
36

64%
28

93%
41

89%
39

 95%
42

100%
44

33%
15

91%
41

82%
37

80%
36

62%
28

91%
41

87%
39

93%
42

 98%
44

33%
15

91%
41

82%
37

80%
36

62%
28

91%
41

87%
39

93%
42

 98%
44

100%
45

Figure 4.4: Pairwise feed similarity with respect to covered affiliate programs.

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu All

Bot

Hyb

Ac2

Ac1

MX3

MX2

MX1

URIBL

DBL

Hu

33%
1

67%
2

67%
2

67%
2

67%
2

67%
2

67%
2

100%
3

100%
3

2%
1

35%
15

42%
18

12%
5

33%
14

47%
20

86%
37

 98%
42

 98%
42

11%
2

79%
15

58%
11

21%
4

74%
14

79%
15

100%
19

100%
19

100%
19

10%
2

90%
18

55%
11

35%
7

80%
16

 95%
19

100%
20

100%
20

100%
20

29%
2

71%
5

57%
4

100%
7

100%
7

100%
7

100%
7

100%
7

100%
7

10%
2

70%
14

70%
14

80%
16

35%
7

90%
18

100%
20

100%
20

100%
20

8%
2

77%
20

58%
15

73%
19

27%
7

69%
18

 96%
25

100%
26

100%
26

3%
2

58%
37

30%
19

31%
20

11%
7

31%
20

39%
25

100%
64

100%
64

0.6%
3

8%
42

4%
19

4%
20

1%
7

4%
20

5%
26

13%
64

100%
499

0.4%
3

5%
42

2%
19

2%
20

0.8%
7

2%
20

3%
26

8%
64

59%
499

0.4%
3

5%
43

2%
19

2%
20

0.8%
7

2%
20

3%
26

8%
64

59%
499

100%
844

Figure 4.5: Pairwise feed similarity with respect to covered RX-Promotion affili-

ate identifiers.

54

be used in multiple campaigns, and a campaign may continuously cycle through

several domains.

In fact, there is another level of structure beyond domains and campaigns:

affiliate programs. Today, spammers operate primarily as advertisers, working

with an affiliate program and earning a commission (typically 30–50%). The affil-

iate program handles Web site design, payment processing, customer service and

fulfillment [76].

The prior Web crawling effort (Chapter 3) identified 45 leading affiliate

programs specializing in pharmaceutical sales, replica luxury goods, and “OEM”

software (this classification includes all the major players in each category that

advertise via spam). We use the classification results of this project to define the

tagged domains (Section 4.3.1). Here, we explore the tags themselves, that is, the

affiliate programs associated with domains. Specifically, we consider the coverage

of each feed with respect to affiliate programs.

Figure 4.4 shows the proportion of programs covered by each feed, relative

to other feeds and all feeds combined. The representation is the same as Figure 4.2:

each cell indicates the number of programs represented by the two feeds given by

the row and column labels, and the top number of each cell expresses this intersec-

tion relative to the second program (identified by the column). For example, the

cell in row mx1 column Hyb indicates that 37 affiliate programs are seen in both

feeds, and that these 37 programs represent approximately 90% of the 41 programs

appearing in the Hyb feed.

Generally, most feeds do a good job covering all programs. The mx3 feed has

the second worst coverage, covering only 62% of all programs. Not surprisingly,

the Bot feed has the worst coverage: only 15 programs. This poor coverage is

partly because botnet operators frequently act as affiliates themselves and thus

only advertise for a modest number of programs where they have spent the time

to establish themselves. Even a botnet for rent will have a modest number of users

and thus any given botnet will typically spam for a small number of programs in

a given time.

55

RX-Promotion

In the affiliate marketing model for spam-advertised goods, the store site

is usually hosted by the affiliate program itself, and not the spammer. For the

affiliate program to determine which affiliate should receive credit for a sale, the

URL itself must uniquely identify the affiliate. The most common mechanism is to

assign each (major) affiliate a handful of dedicated domains.3 Any sales generated

via those domains are automatically credited to the appropriate affiliate.

One program, RX-Promotion, embeds an affiliate identifier in the page

source of the storefront itself. This embedding allowed us to extract affiliate iden-

tifiers and map them to domains. In total, we were able to identify 846 distinct

affiliate identifiers.

Affiliate coverage Figure 4.5 shows the pairwise feed comparison matrix for

RX-Promotion affiliate identifier coverage. Similar to affiliate program coverage,

the human-identified feed Hu contributes the largest number of distinct affiliates.

In this case, however, the difference between Hu and other feeds is more pro-

nounced, with more than 40% of the affiliates found exclusively in Hu. The remain-

ing feeds follow the same pattern as before. The MX honeypots (especially mx1

and mx2) continue to offer slightly greater coverage than seeded honey accounts

(Ac1 and Ac2). Most striking is the paucity of affiliate IDs in the botnet feeds,

confirming our earlier suspicion that botnet-originated affiliate program spam is

associated with a single individual (the botnet operator).

Revenue coverage The ultimate measure of an affiliate’s success is the revenue

he generates for the program. By this measure, a feed’s value lies not in how many

affiliates it covers, but in how much revenue it covers.

In a recent dispute between rival pharmacy affiliate programs, a number

of RX-Promotion documents were leaked to the public [55]. One such document

available to us lists annual revenue generated by each RX-Promotion affiliate in

2010. Using these revenue statistics, we calculate affiliate coverage weighted by

3New domains must be constantly registered and assigned, as domains quickly become inef-
fective because of blacklisting.

56

Bot Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu
0

1

2

3

4

5

6

7

T
o

ta
l
re

ve
n
u

e
 (

in
 m

ill
io

n
s
 U

S
D

)

Figure 4.6: RX-Promotion affiliate coverage of each feed weighted by each affili-

ate’s 2010 revenue.

affiliate revenue. Figure 4.6 shows the revenue-weighted affiliate coverage of each

feed.

The domains advertised in the smaller campaigns only found in Hu and dbl

generate an order of magnitude more revenue than the sites advertised by bots and

typically five times more than those sites seen in MX and honey account feeds.

Overall, the results generally follow the affiliate coverage shown in Figure 4.5,

although the revenue-weighted results indicate a bias toward higher-revenue affil-

iates. While dbl covers only 59% of Hu affiliates, these affiliates represent over

78% of revenue covered by Hu.

4.3.3 Proportionality

An anti-spam system seeks to identify as many spam messages as possible,

and in this context volume is a natural measure of a domain’s importance. A

blacklist that identifies the top 100 spammed domains by volume will identify

more spam than a list of the same size consisting of infrequent domains. Similarly,

domain take-downs are best prioritized to target high-volume domains first. To

57

make these judgments, a spam domain feed must contain not only the domains

themselves, but also their observed volume.

It happens that some of our feeds do provide volume information: each

domain is listed with the number of times a domain was seen in spam, allowing

relative domain volume and rank to be estimated. This section considers only feeds

with volume information; the Hyb feed, Hu feed and both blacklist feeds (dbl and

uribl) have no associated volume information and are thus excluded from this

analysis.

Empirical domain distribution and rank The volumes associated with each

domain define an empirical distribution on domains. That is, if a domain i has

reported volume ci in a feed, then the empirical domain probability distribution is

ci/m, where m is the total volume of the feed (i.e., m =
∑

i ci).

Variation distance Variation distance (also called “statistical difference” in

some areas of Computer Science) is a straightforward metric frequently used to

compare distributions. Formally, given two probability distributions (feeds) P and

Q, let pi be the empirical probability of domain i in P , and qi the probability of the

same domain in Q. (If a domain does not occur in a feed, its empirical probability

is 0.) The variation distance is given by:

δ =
1

2

∑
i

|pi − qi|.

Variation distance takes on values between 0 and 1, where δ = 0 if and only if

P = Q (domains have the same probability in both), and δ = 1 if P and Q are

disjoint (no domains in common). Figure 4.7 shows pairwise measures of variation

distance of tagged domains. (Because we round values to two decimal places, a

variational distance of 1 in the figure may still allow for some domain overlap.)

Kendall rank correlation coefficient Variation distance places more weight

on more frequently occurring domains. In some cases, only the relative ranks of

domains are of interest, and not the magnitudes of the empirical probabilities.

The Kendall rank correlation coefficient (also called Kendall’s tau-b) allows us to

58

Bot Ac2 Ac1 MX3 MX2 MX1 Mail

Bot

Ac2

Ac1

MX3

MX2

MX1

Mail

0 1

0

0.68

0.97

0

0.4

1

0.6

0

0.56

0.96

0.38

0.42

0

0.63

0.97

0.4

0.49

0.19

0

0.8

0.93

0.75

0.79

0.73

0.78

0

Figure 4.7: Pairwise variational distance of tagged domains frequency across all

feeds. Shading is inverted (larger values are darker).

compare the relative ranking of domains between two distributions. In the case

where all probabilities are distinct,

τ =
1

n(n− 1)

∑
i 6=j

sgn
[
(pi − pj)(qi − qj)

]
.

where sgn(x) is the familiar signum function. The sum is over all domains common

to both feeds being compared, and n is the number of such domains. The Kendall

rank correlation coefficient takes on values between −1 and 1, with 0 indicating

no correlation, 1 indicating perfect positive correlation, and −1 indicating perfect

negative correlation. If there are ties, i.e., pi = pj or qi = qj for some i 6= j, the

denominator n(n − 1) must be adjusted to keep the full range between −1 to 1;

we refer the reader to an appropriate Statistics textbook for details.

Figure 4.8 shows the pairwise tagged domain Kendall rank correlation co-

efficient between all feed pairs.

Pairwise comparison Figures 4.7 and 4.8 show how well each pair of feeds

agree in domain volume and rank. (The Mail column will be described shortly.)

Qualitatively, both variation distance and Kendall rank correlation coefficient show

59

similar results. The MX honeypot feeds and the Ac1 honey account feeds exhibit

similar domain distributions; these four also have many domains in common as

seen in Figure 4.2.

The Bot feed brings a small number of domains, many of which also occur

in the MX honeypot feeds and the Ac1 feed (Figure 4.2). The volume of these

domains, however, is significant; so much so, that in terms of domain proportions,

the mx3 feed is more like the Bot feed than any other feed, including the remaining

MX honeypots.

The similarity in coverage and empirical domain probability distributions

indicates that, roughly speaking, one MX honeypot feed is as good as another.

By their nature, MX honeypots are targets of high-volume spammers who spam

randomly-generated names at all registered domains. By this process, it is just as

easy to stumble upon one MX honeypot as another.

Comparison to real mail In Section 4.3.2 we reported on the fraction of in-

coming spam—as seen by a major Web mail provider—covered by each feed. Here

we use the same incoming mail oracle to determine the real-world relative volumes

of spam domains, and compare those numbers to the relative domain volumes re-

ported by each feed. We use only tagged domains appearing in at least one spam

feed in the comparison: in the calculation of δ and τ , we set pi = 0 for any domain

i not appearing in the union of all spam feeds.

The Mail column in Figures 4.7 and 4.8 shows these results. The mx2 feed

comes closest to approximating the domain volume distribution of live mail, with

Ac1 coming close behind. As with coverage, the Ac2 feed stands out as being most

unlike the rest.

4.3.4 Timing

For both sides of the spam conflict, time is of the essence. For a spammer,

the clock starts ticking as soon as a domain is advertised. It is only a matter

of time before the domain is blacklisted, drastically reducing the deliverability of

spam. While a domain is still clean, the spammer must maximize the number of

60

Bot Ac2 Ac1 MX3 MX2 MX1 Mail

Bot

Ac2

Ac1

MX3

MX2

MX1

Mail

1 0.1

1

0.02

−0.1

1

0.1

−0.3

0.4

1

0.2

0.04

0.5

0.7

1

0.2

0.06

0.5

0.5

0.7

1

−0.2

−0.009

0.08

0.1

0.07

0.02

1

Figure 4.8: Pairwise Kendall rank correlation coefficient of tagged domain fre-

quency across all feed pairs.

messages delivered to potential customers. On the other side, blacklist maintainers

strive to identify and blacklist spam domains as quickly as possible to maximize

the volume of spam captured.

In this section we consider how well each spam feed captures the timing

of spam campaigns. Specifically, we identify how quickly each feed lists spam

domains, and, for feeds driven by live mail, how accurately they identify the end

of a spam campaign. Unless noted otherwise, we restrict our analysis to tagged

domains because we have the most confidence in their provenance.

Ideally, we would like to compare the time a domain first appears in spam

with the time it first appears in a spam feed. Lacking such perfect knowledge about

the start of each spam campaign, we instead take the earliest appearance time of

a domain across all feeds as the campaign start time, and the last appearance time

of a domain in live mail-based feeds as the campaign end time. For this analysis,

we exclude the Bot feed because its domains have little overlap with the other

feeds. As a result, including them greatly diminishes the number of domains that

61

Hyb Ac2 Ac1 MX3 MX2 MX1 URIBL DBL Hu

0

1

2

3

4

5

D
a
y
s

Figure 4.9: Relative first appearance time of domains in each feed. Campaign

start time calculated from all feeds except Bot. Solid lines are medians; boxes

range from the 25th to the 75th percentile.

appear in the intersection of the feeds, and hence the number of domains that we

can consider.

Taking the campaign start time and end time as described above, we define

the relative first appearance time for a domain in a particular feed to the time

between campaign start and its first appearance in the feed. In other words, we

take campaign start time as “time zero” and calculate the relative first appearance

time relative to this time. Put another way, the relative first appearance time is

thus the latency of a feed with respect to a domain.

First Appearance Time

Figure 4.9 shows the distribution of relative first appearance times of do-

mains in each feed. The bottom of the box corresponds to the 25th percentile,

the top denotes the 75th percentile, and the solid bar inside the box denotes the

median.

62

Ac2 Ac1 MX3 MX2 MX1

0

1

2

3

4

5

6

7

8

9

10

11

12

H
o

u
rs

Figure 4.10: Relative first appearance time of domains in each feed. Campaign

start time calculated from MX honeypot and honey account feeds only. Solid lines

are medians; boxes range from the 25th to the 75th percentile.

Both Hu and dbl are excellent early warnings of spam campaigns since

they see most domains soon after they are used. The Hu feed sees over 75% of the

domains within a day after they appear in any feed, and 95% within three days; dbl

is delayed even less, with over 95% appearing on the blacklist within a day. Once

again, the nature of these feeds lends themselves to observing wide-spread spam

activity quickly: Hu has an enormous net for capturing spam, while dbl combines

domain information from many sources. In contrast, the other feeds have much

later first appearance times: they do not see roughly half of the domains until two

days have passed, 75% until after four days, and 95% after ten. Operationally, by

the time many of the domains appear in these feeds, spammers have already had

multiple days to monetize their campaigns.

Of course, these results depend on both the set of domains that we consider

and the sets of feeds we use to define campaign start times. When performing the

same analysis on the larger set of live domains that appear in the same set of feeds,

the first appearance times remain very similar to Figure 4.9: even for the broader

63

set of domains, Hu and dbl see the domains multiple days earlier than the other

feeds.

However, changing the set of feeds we consider does change relative first

appearance times. Figure 4.10 shows similar results as Figure 4.9, but with the

Hu, Hyb, and blacklist feeds removed. (We chose these feeds because, as discussed

further below, they all contain domains reported by users, which affects the last

appearance times of domains.) Restricting the feeds we use to determine campaign

start times reduces the total set of domains, but also increases the likelihood that a

domain appears in all traces. When we focus on just the MX honeypot and account

traces in this way, we see that relative to just each other they continue to have

consistent first appearance times with each other, but the relative first appearance

times are now very short (roughly less than a day). As with other metrics, these

results show that timing estimates are quite relative and fundamentally depend on

the feeds being considered.

Last Appearance Time

Last appearance times are often used to estimate when spam campaigns

end. Figure 4.11 shows the time between the last appearance of a domain in a feed

and the domain’s campaign end time. As with Figure 4.10 we focus on only a subset

of the feeds where the last appearance of a domain likely corresponds to when a

spammer stopped sending messages using the domain: the MX honeypots and

honeypot account feeds. Feeds like Hu, Hyb, and the blacklists all have domains

reported by users. Since user reports fundamentally depend on when users read

their mail and report spam, they may report spam long after a spammer has sent

it.

Consistent with the first appearance times for the honeypot feeds, the feeds

are similar to each other for last appearance times as well. The difference with

the baseline are relatively short (a day or less), but have longer tails (the 95th

percentiles for most are over a week).

64

Ac2 Ac1 MX3 MX2 MX1

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

H
o

u
rs

Figure 4.11: Distribution of differences between the last appearance of a domain

in a particular and the domain campaign end calculated from an aggregate of the

same five feeds. Solid lines are medians; boxes range from the 25th to the 75th

percentile.

Duration

Another common metric for spam campaigns is their duration: how long

spammers advertise domains to attract customers. Figure 4.12 shows the differ-

ences in time durations of domains advertised in spam as observed by each feed

relative to estimated campaign duration (campaign end time minus campaign start

time). For each feed we calculate the lifetime of a domain in the feed using the

first and last appearance of a domain just in that feed. Then we compute the

difference between the domain lifetime in a feed and the estimated campaign du-

ration. (Campaign duration is computed from the same five feeds and is always

at least as long as the domain lifetime in any feed.) The box plots in the graph

summarize the distributions of these differences across all domains in each feed.

The differences in duration estimates for the honeypot feeds are also con-

sistent with their first and last appearance time estimates. The duration estimates

across feeds are similar to each other, the duration estimates differ from the base-

65

Ac2 Ac1 MX3 MX2 MX1

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

H
o

u
rs

Figure 4.12: Distribution of differences between domain lifetime estimated using

each feed and the domain campaign duration computed from an aggregate of those

same five feeds. Solid lines are medians; boxes range from the 25th to the 75th

percentile.

line by less than a day for half of the domains and roughly a day for 75% of the

domains. The distribution tails are longer, though, with outliers underestimating

durations by multiple weeks.

4.4 Summary

Most measurement studies focus on using data to infer new facts about the

world. This goal is why we measure things—to put truth on an empirical footing.

However, occasionally it is necessary to perform introspective studies such as this

one to understand the limits of what we can conclude from available data.

While our analysis is not comprehensive, we have found significant variation

among the ten feeds we did study. Based on these findings we recommend that

researchers consider four different challenges whenever using spam data:

66

• Limited purity. Even the best spam feeds include benign domains and these

domains should be anticipated in analyses. We should identify the “kinds”

of benign domains that appear in a dataset and determine if their existence

will bias results—in particular when spam feed data will be correlated with

other data sources.

• Coverage limitations. MX and honey account spam sources are inherently

biased towards loud broad campaigns. If we desire a broader view of what

is advertised via spam and are unable to strike an arrangement with a large

e-mail provider, operational domain blacklists are the next best source of

such information.

• Temporal uncertainty. Studies of spam campaign timing should recognize

how timing error can be introduced via different feeds. Botnet-based feeds

are among the best for timing information, but naturally coverage is limited.

Other feeds provide highly accurate “onset” information (e.g., blacklists and

human-identified feeds) but may not provide a correspondingly accurate end-

ing timestamp. This area is one where combining the features of different

feeds may be appropriate.

• Lack of proportionality. It is tempting to measure the prevalence of one kind

of spam in a feed and extrapolate to the entire world—“25% of all spam

advertises eBooks!” or “My spam filter can block 99.99% of all spam”. How-

ever, the significant differences in the makeup of the feeds we have studied

suggests that any such conclusion is risky. For example, spam filter re-

sults trained on botnet output may have little relevance to a large Web mail

provider. In general, we advise making such claims based on knowledge of

the source data set. For example, MX-based honeypots may be appropri-

ate for characterizing relative prevalence among distinct high volume spam

campaigns.

While it is important to be aware of the limitations and challenges of spam

feeds, an even more interesting question is what feeds one should use for related

studies. The clear answer, as shown by our results, is that there is no perfect

67

feed. Instead, the choice should be closely related to the questions we are trying to

answer. It is still possible, though, to provide some general guidelines that would

apply for most cases:

• Human identified feeds, which are provided by large mail providers, will

usually be the best choice for most studies. They provide a clear advantage

when it comes to coverage, due to their wide exposure, and allow for visibility

inside low-volume campaigns. They do so with reasonable purity, but due to

the presence of the human factor, filtering is required. On the other hand,

we should avoid human identified feeds when we are interested in timing,

and especially last appearance information.

• If it is not possible to get access to human identified feeds, due to their

limited availability, high-quality blacklist feeds offer very good coverage and

first appearance information. They also offer the best purity since they

are usually commercially maintained, and have low false positives as their

primary goal. Similar to human identified feeds, they are less useful for

studies that rely on last appearance or duration information.

• When working with multiple feeds, the priority should be to obtain a set

that is as diverse as possible. Additional feeds of the same type offer reduced

added value, and this situation is especially true in the case of MX honeypot

feeds.

• It is very challenging to obtain accurate information regarding volume and

provide conclusions that apply to the entirety of the spam problem. Given

our limited view into the global spam output, all results are inherently tied

to their respective input datasets.

In a sense, the spam research community is blessed by having so many

different kinds of data sources available to it. In many other measurement regimes

the problem of bias is just as great, but the number of data sources on hand is

far fewer. However, with great data diversity comes great responsibility. It is

no longer reasonable to take a single spam feed and extrapolate blindly without

68

validation. This dissertation provides a basic understanding of the limitations of

existing feeds and provides a blueprint for refining this understanding further.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings

of the ACM Internet Measurement Conference 2012. Pitsillidis, Andreas; Kanich,

Chris; Voelker, Geoffrey M.; Levchenko, Kirill; Savage, Stefan. The dissertation

author was the primary investigator and author of this paper.

Chapter 5

Botnet Judo: Fighting Spam with

Itself

The first component of the spam value chain is advertising. This is es-

sentially the sending of spam e-mails to users, in an effort to attract potential

customers to the advertised Web sites. Botnets are considered to be today’s pri-

mary source of e-mail spam in terms of volume [52]. We have described botnets

in Chapter 3 and analyzed the properties of feeds generated by botnet spam in

Chapter 4. Stopping spammers from delivering e-mail messages to users has tradi-

tionally been considered the primary approach for defending against spam. In this

chapter, we describe a filtering system which focuses primarily on botnet spam,

and evaluate the feasibility of disrupting the spam value chain at the advertising

level.

5.1 Introduction

Reactive defenses, in virtually any domain, depend on the currency of their

intelligence. How much do you know about your opponent’s next move and how

quickly can you act on it? Maximizing the time advantage of such information

is what drives governments to launch spy satellites and professional sports teams

to employ lip readers. By the same token, a broad range of competitors, from

commodities traders to on-line gamers, all seek to exploit small time advantages

69

70

to deliver large overall gains. As Benjamin Franklin famously wrote, “Time is

money.”

Today’s spammers operate within this same regime. Receivers install filters

to block spam. Spammers in turn modify their messages to evade these filters for a

time, until the receiver can react to the change and create a new filter rule in turn.

This pattern, common to spam, anti-virus and intrusion detection alike, dictates

that the window of vulnerability for new spam depends on how quickly it takes

the receiver to adapt.

We advocate shrinking this time window by changing the vantage point

from which we fight spam. In particular, it is widely documented that all but

a small fraction of today’s spam e-mail is transmitted by just a handful of dis-

tributed botnets [31, 52], and these, in turn, use template-based macro languages

to specify how individual e-mail messages should be generated [37, 81]. Since these

templates describe precisely the range of polymorphism that a spam campaign is

using at a given point in time, a filter derived from these templates has the poten-

tial to identify such e-mails perfectly (i.e., never generating false positives or false

negatives).

In this chapter we describe Judo, a system that realizes just such an

approach—quickly producing precise mail filters essentially equivalent to the very

templates being used to create the spam. However, while spam templates can be

taken directly from the underlying botnet “command and control” channel, this

approach can require significant manual effort to reverse engineer each unique pro-

tocol [33, 37]. Instead, we use a black-box approach, in which individual botnet

instances are executed in a controlled environment and the spam messages they

attempt to send are analyzed on-line. We show that using only this stream of mes-

sages we can quickly and efficiently produce a comprehensive regular expression

that captures all messages generated from a template while avoiding extraneous

matches. For example, in tests against live botnet spam, we find that by exam-

ining roughly 1,000 samples from a botnet (under a minute for a single energetic

bot, and still less time if multiple bots are monitored) we can infer precise filters

that produce zero false positives against non-spam mail, while matching virtually

71

all subsequent spam based on the same template. While template inference is by

no means foolproof (and accordingly we examine the anticipated arms race), we

believe that this approach, like Bayesian filtering, IP blacklisting and sender repu-

tation systems, offers a significant new tool for combating spam while being cheap

and practical to deploy within existing anti-spam infrastructure.

In particular, we believe our work in this chapter offers three contributions.

First, we produce a general approach for inferring e-mail generation templates

in their entirety, subsuming prior work focused on particular features (e.g., mail

header anomalies, subject lines, URLs). Second, we describe a concrete algorithm

that can perform this inference task in near real-time (only a few seconds to gener-

ate an initial high-quality regular expression, and fractions of a second to update

and refine it in response to subsequent samples), thereby making this approach fea-

sible for deployment. Finally, we test this approach empirically against live botnet

spam, demonstrate its effectiveness, and identify the requirements for practical

use.

5.2 Template-based Spam

Spam templates are akin to form letters, consisting of text interspersed

with substitution macros that are instantiated differently in each generated mes-

sage. Unlike form letters, spam templates use macros more aggressively, not only

to personalize each message but also to avoid spam filtering based on message

content. Figure 5.1 shows a typical template from the Storm botnet (circa Feb.

2008) together with an instance of spam created from the template and a Judo

regular expression signature generated from 1,000 message instances (Section 5.3

below describes our algorithm for generating such signatures). Note that this reg-

ular expression was created by observing the messages sent by the botnet, and

without any prior knowledge of the underlying template (we show the template for

reference only).

Template Elements. We can divide the bulk of macros used in templates into

two types: noise macros that produce a sequence of random characters from a

72

Received: from %^C0%^P%^R2-6^%:qwertyuiopasdfghjklzxcvbnm^%.%^P%^R2-6^%: .

qwertyuiopasdfghjklzxcvbnm^%^% ([%^C6%^I^%.%^I^%.%^I^%.%^I^%^%]) .

by %^A^% with Microsoft SMTPSVC(%^Fsvcver^%); %^D^%

Message-ID: <%^Z^%.%^R1-9^%0%^R0-9^%0%^R0-9^%0%^R0-9^%@%^C1%^Fdomains^%^%>

Date: %^D^%

From: <%^Fnames^%@%^V1^%>

User-Agent: Thunderbird %^Ftrunver^%

MIME-Version: 1.0

To: %^0^%

Subject: %^Fstormline^%

Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Content-Transfer-Encoding: 7bit

%^G%^Fstormline^% http://%^Fstormlink2^%/^%

Received: from auz.xwzww ([132.233.197.74]) by dsl-189-188-79-63.prod- .

infinitum.com.mx with Microsoft SMTPSVC(5.0.2195.6713); Wed, 6 Feb .

2008 16:33:44 -0800

Message-ID: <id012345.99066044044@experimentalist.org>

Date: Wed, 6 Feb 2008 16:33:44 -0800

From: <katiera@experimentalist.org>

User-Agent: Thunderbird 2.0.0.14 (Windows/20080421)

MIME-Version: 1.0

To: victim@spam-target.com

Subject: Get Facebook’s FBI Files

Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Content-Transfer-Encoding: 7bit

FBI may strike Facebook http://GoodNewsGames.com/

From: <.+@.+\..+>

User-Agent: Thunderbird 2\.0\.0\.14 \(Windows/200(80421\)|70728\))

MIME-Version: 1\.0

To: .+@.+\..+

Subject: (Get Facebook’s FBI Files|...|The F\.B\.I\. has a new way of .

tracking Facebook)

Content-Transfer-Encoding: 7bit

(FBI may strike Facebook|FBI wants instant access to Facebook|...|The .

F\.B\.I\. has a new way of tracking Facebook) http://(GoodNewsGames|...| .

StockLowNews)\.com/

Figure 5.1: Fragment of a template from the Storm template corpus, together

with a typical instantiation, and the regular expression produced by the template

inference algorithm from 1,000 instances. The subject line and body were captured

as dictionaries (complete dictionaries omitted to save space). This signature was

generated without any prior knowledge of the underlying template.

73

specified character alphabet, and dictionary macros that choose a random phrase

from a list given in a separate “dictionary” included with the template. For exam-

ple, in the Storm template shown in Figure 5.1, the “%^P . . . ^%” macro generates

a string of a given length using a given set of characters, while the “%^F . . . ^%”

macro inserts a string from a list in the specified dictionary. Similar functionality

exists in other template languages (e.g., the rndabc and rndsyn macros in Reactor

Mailer [81]). In general, noise macros are used to randomize strings for which

there are few semantic rules (e.g., message-ids), while dictionary macros are used

for content that must be semantically appropriate in context (e.g., subject lines,

sender e-mail addresses, etc.). In addition to these two classes, there are also spe-

cial macros for dates, sender IP addresses, and the like. We deal with such macros

specially (Section 5.3.2).

Thus, to a first approximation, our model assumes that a message generated

from a template will consist of three types of strings: invariant text, noise macros

producing random characters as described above, and dictionary macros producing

a text fragment from a fixed list (the dictionary).

Real-time Filtering. The nature of template systems documented by our earlier

work [37] as well as Stern [81] suggests that templates can be used to identify—

and thus filter—any mail instances generated from a template. It is relatively

straightforward to convert a Storm template, for example, into a regular expression

by converting macros to corresponding regular expressions: noise macros become

repeated character classes, and dictionary macros become a disjunction of the

dictionary elements. Such a regular expression signature will then match all spam

generated from the template. Unfortunately, obtaining these templates requires

reverse-engineering the botnet “command and control” channel—a highly time-

consuming task. Instead, our template inference algorithm, described in the next

section, creates such signatures by observing multiple instances of the spam from

the same template.

Figure 5.2 shows a diagram of a Judo spam filtering system. The system

consists of three components: a “bot farm” running instances of spamming botnets

in a contained environment; the signature generator; and the spam filter. The

74

Figure 5.2: Automatic template inference makes it possible to deploy template

signatures as soon as they appear “in the wild:” bots (¶) running in a contained

environment generate spam processed by the Judo system (·); signatures (¸) are

generated in real time and disseminated to mail filtering appliances (¹).

system intercepts all spam sent by bots and provides the specimens to a signature

generator. The signature generator maintains a set of regular expression signatures

for spam sent by each botnet, updating the set in real time if necessary. We can

then immediately disseminate new signatures to spam filters.

System Assumptions. Our proposed spam filtering system operates on a num-

ber of assumptions. First and foremost, of course, we assume that bots compose

spam using a template system as described above. We also rely on spam campaigns

employing a small number of templates at any point in time. Thus, we can use

templates inferred from one or a few bot instances to produce filters effective at

matching the spam being sent by all other bot instances. This assumption appears

to hold for the Storm botnet [38]; in Section 5.4.3 we empirically validate this as-

sumption for other botnets. Finally, as a simplification, our system assumes that

the first few messages of a new template do not appear intermixed with messages

from other new templates. Since we infer template content from spam output,

rather than extracting it directly from botnet command and control messages,

interleaved messages from several new templates will cause us to infer an amal-

gamated template—the product of multiple templates—which is consequently less

75

precise than ideal. This assumption could be relaxed by more sophisticated spam

pre-clustering, but we do not explore doing so in this work.

5.3 The Signature Generator

In this section we describe the Judo system, which processes spam generated

by bots and produces regular expression signatures. The system operates in real

time, updating the set of signatures immediately in response to new messages. We

begin with a description of the template inference algorithm—the heart of Judo—

which, given a set of messages, generates a matching regular expression signature.

We then describe how we incorporate domain knowledge, such as the header-body

structure of e-mail messages, into the basic algorithm. Finally, we show how we

use the template inference algorithm to maintain a set of signatures matching all

messages seen up to a given point in time.

5.3.1 Template Inference

The template inference algorithm produces a regular expression signature

from a set of messages assumed to be generated from the same spam template.

As described in Section 5.2, a template consists of invariant text and macros of

two types: noise macros which generate a sequence of random characters, and

dictionary macros which choose a phrase at random from a list (the dictionary).

Proceeding from this model, the algorithm identifies these elements in the text of

the input messages, and then generates a matching regular expression. Throughout

this section, we use the simple example in Figure 5.3 to illustrate the steps of our

algorithm.

Anchors

The first step of the algorithm is to identify invariant text in a template,

that is, fragments of text that appear in every message. We call such fragments

anchors (because they “anchor” macro-generated portions of a message). Invariant

text like “Best prices!” and “http://” in Figure 5.3 are examples of anchors.

76

Best prices! gucci http://qwes.nuserro.com 60% off

Best prices! chanel http://zcvx.fenallies.com 60% off

Best prices! gucci http://teac.nuserro.com 60% off

Best prices! prada http://kjts.fenallies.com 60% off

Anchors

Character class Micro-anchor

Best prices! .* .*http:// \.com 60% off

Macros chanel | gucci | prada

Dictionary

.* fenallies | nuserro

Dictionary

[[:lower:]]{4} \.

Best prices! (chanel|gucci|prada) http://[[:lower:]]{4}\.(fenallies|nuserro)\.com 60% off

Figure 5.3: Template inference algorithm example showing excerpts from

template-based spam messages, the invariant text and macros inferred from the

spam, and the resulting regular expression signature.

We start by extracting the longest ordered set of substrings having length at

least q that are common to every message. Parameter q determines the minimum

length of an anchor. Setting q = 1 would simply produce the longest common

subsequence of the input messages, which, in addition to the anchors, would con-

tain common characters, such as spaces, which do not serve as useful anchors.

Large minimum anchor lengths, on the other hand, may exclude some useful short

anchors. In our experiments with a variety of spamming botnets, we found that

q = 6 produces good results, with slightly smaller or larger values also working

well.

We note that finding this ordered set of substrings is equivalent to com-

puting the longest common subsequence (LCS) over the q-gram sequence of the

input, i.e., the sequence of substrings obtained by sliding a length-q window over

each message. Unfortunately, the classic dynamic programming LCS algorithm is

quadratic in the length of its inputs.

As an optimization we first identify all substrings of length at least q that

are common to all input messages (using a suffix tree constructed for these mes-

77

sages). We then find longest common subsequence of substrings (i.e., treating each

substring as a single “character”) using the classic dynamic programming algo-

rithm. Typical messages thus collapse from several thousand bytes to fewer than

ten common substrings, resulting in essentially linear-time input processing.

Macros

Following anchor identification, the next step is to classify the variant text

found between anchors. In the simplest case this text corresponds to a single macro,

but it may also be the back-to-back concatenation of several macros. In general,

our algorithm does not distinguish between a single macro and the concatenation

of two or more macros, unless the macros are joined by “special” characters —

non-alphanumeric printing characters such as “@” and punctuation. We call these

special characters micro-anchors and treat them as normal anchors. Our next step,

then, is to decide whether text between a pair of anchors is a dictionary macro,

a noise macro, or a micro-anchor expression, itself consisting of a combination of

dictionary and noise macros separated by micro-anchor characters.

Dictionary Macros. In a template, a dictionary macro is instantiated by choos-

ing a random string from a list. In Figure 5.3, for instance, the brand names

“gucci”, “prada”, and “chanel” would be generated using such a macro. Given a

set of strings found between a pair of anchors, we start by determining whether

we should represent these instances using a dictionary macro or a noise macro.

Formally speaking, every macro can be represented as a dictionary, in the sense

that it is a set of strings. However, if we have not seen every possible instance of

a dictionary, a dictionary representation will be necessarily incomplete, leading to

false positives. Thus we would like to determine whether what we have observed is

the entirety of a dictionary or not. We formulate the problem as a hypothesis test:

the null hypothesis is that there is an unobserved dictionary element. We take the

probability of such an unobserved element to be at least the empirical probability

of the least-frequent observed element. Formally, let n be the number of distinct

strings in m samples, and let fn be the empirical probability of the least-frequent

element (i.e., the number of times it occurs in the sample, divided by m). Then

78

the probability of observing fewer than n distinct strings in m samples drawn from

a dictionary containing n+1 elements is at most (1−fn/(1+fn))m. For the brand

strings in Figure 5.3, this value is at most (1− 0.25/1.25)4 ≈ 0.41. In practice, we

use a 99% confidence threshold; for the sake of example, however, we will assume

the confidence threshold is much lower. If the dictionary representation is cho-

sen, we group the distinct strings α1, . . . , αn into a disjunction regular expression

(α1| . . . |αn) to match the variant text. Otherwise, we check whether it might be

a micro-anchor expression.

Micro-Anchors. A micro-anchor is a substring that consists of non-

alphanumeric printing characters too short to be a full anchor. Intuitively, such

strings are more likely to delimit macros than ordinary alphanumeric characters,

and are thus allowed to be much shorter than the minimum anchor length q.

We again use the LCS algorithm to identify micro-anchors, but allow only non-

alphanumeric printing characters to match. In Figure 5.3, the domain names in

the URLs are split into smaller substrings around the “.” micro-anchor. Once

micro-anchors partition the text, the algorithm performs the dictionary test on

each set of strings delimited by the micro-anchors. Failing this, we represent these

strings as a noise macro.

Noise Macros. If a set of strings between a pair of anchors or micro-anchors fails

the dictionary test, we consider those strings to be generated by a noise macro (a

macro that generates random characters from some character set). In Figure 5.3,

the host names in the URLs fail the dictionary test and are treated as a noise macro.

The algorithm chooses the smallest character set that matches the data from the

set of POSIX character classes [:alnum:], [:alpha:], etc., or a combination

thereof. If all strings have the same length, the character class expression repeats

as many times as the length of the string, i.e., the regular expression matches on

both character class and length. Otherwise, we allow arbitrary repetition using

the “∗” or “+” operators.1

1We also experimented with the alternative of allowing a range of lengths, but found such an
approach too restrictive in practice.

79

When generating each signature, we also add the constraint that it must

contain at least one anchor or dictionary node. If this constraint is violated, we

consider the signature as unsafe and discard it.

5.3.2 Leveraging Domain Knowledge

As designed, the template inference algorithm works on arbitrary text. By

exploiting the structure and semantics of e-mail messages, however, we can “con-

dition” the input to greatly improve the performance of the algorithm. We do two

kinds of “conditioning,” as described next.

Header Filtering. The most important pre-processing element of the Judo sys-

tem concerns headers. We ignore all but the following headers: “MIME-Version,”

“Mail-Followup-To,” “Mail-Reply-To,” “User-Agent,” “X-MSMail-Priority,” “X-

Priority,” “References,” “Language,” “Content-Language,” “Content-Transfer-

Encoding,” and “Subject.” We specifically exclude headers typically added by

a mail transfer agent. This is to avoid including elements of the spam collection

environment, such as the IP address of the mail server, in signatures. We also

exclude “To” and “From” headers; if the botnet uses a list of e-mail addresses in

alphabetical order to instantiate the “To” and “From” headers, portions of the

e-mail address may be incorrectly identified as anchors.

The resulting headers are then processed individually by running the tem-

plate inference algorithm on each header separately. A message must match all

headers for a signature to be considered a match.

Special Tokens. In addition to dictionary and noise macros, bots use a small

class of macros for non-random variable text. These macros generate dates, IP

addresses, and the like. If the output of a date macro, for example, were run

through the template inference algorithm, it would infer that the year, month,

day, and possibly hour are anchors, and the minutes and seconds are macros. The

resulting signature would, in effect, “expire” shortly after it was generated. To cope

with this class of macros, we perform the following pre- and post-processing steps.

On input, we replace certain well-known tokens (currently: dates, IP addresses,

and multi-part message delimiters) with special fixed strings that the template

80

inference algorithm treats as anchors. After the algorithm produces a regular

expression signature, it replaces these fixed strings with regular expressions that

capture all instances of the macro.

5.3.3 Signature Update

The Judo system processes e-mail messages generated by a botnet, creating

a set of signatures that match those messages. The need for a signature set, rather

than a single signature, arises because several templates may be in use at the

same time. Recall that the template inference algorithm relies heavily on anchors

(common text) to locate macros. If the template inference algorithm were given

messages generated from different templates, only strings common to all templates

would be identified as anchors, leading the algorithm to produce a signature that

is too general. Ideally, then, we would like to maintain one signature per template.

Unfortunately, because we do not know which template was used to generate

a given message, we cannot simply group messages by template and apply the

template inference algorithm separately to each. The situation is not as dire as

it seems, however. If we already have a good signature for a template, we can,

by definition, easily identify messages generated by the template. Thus, if new

templates are deployed incrementally, we can use the template inference algorithm

only on those messages which do not already match an existing signature.

On receiving a new message, the algorithm first checks if the message

matches any of its existing signatures for the botnet in question. If it does, it

ignores the message, as there is already a signature for it. Otherwise, it places

the message into a training buffer. When the training buffer fills up, it sends the

message to the template inference algorithm to produce a new signature. The

size of the training buffer is controlled by a parameter k, which determines the

trade-off between signature selectivity and training time. If the training buffer is

too small, some dictionaries may be incomplete—the template inference algorithm

will emit a noise macro instead. On the other hand, a very large training buffer

means waiting longer for a usable signature. A very large training buffer increases

the chances of mixing messages from two different templates, decreasing signature

81

1

2

bluedoes.com

3

Figure 5.4: The second chance mechanism allows the updating of signatures:

when a new message fails to match an existing signature (¶), it is checked again

only against the anchor nodes (·); if a match is found, the signature is updated

accordingly (¸).

accuracy. Thus we would like to use a training buffer as small as necessary to

generate good signatures.

In experimenting with the signature generator, we found that no single

value of k gave satisfactory results. The Storm botnet, for example, tended to

use large dictionaries requiring many message instances to classify, while in the

extreme case of a completely invariant template (containing no macros), signature

generation would be delayed unnecessarily, even though the first few messages are

sufficient to produce a perfect signature. We developed two additional mechanisms

to handle such extreme cases more gracefully: the second chance mechanism and

pre-clustering.

Second Chance Mechanism. In many cases, a good signature can be pro-

duced from a small number of messages, even though many more are required to

fully capture dictionaries. Furthermore, the dictionary statistical test is rather

conservative (to avoid false negatives). To combine the advantage of fast signa-

ture deployment with the eventual benefits of dictionaries, we developed a “second

chance” mechanism allowing a signature to be updated after it has been produced.

When a new message fails to match an existing signature, we check if it would

match any existing signatures consisting of anchors only. Such anchor signatures

are simply ordinary regular expression signatures (called full signatures) with the

macro-based portions replaced by the “.∗” regular expression. If the match suc-

ceeds, the message is added to the training buffer of the signature and the signature

is updated. This update is performed incrementally without needing to rerun a

new instance of the inference algorithm.

82

Pre-Clustering. Whereas the second chance mechanism helps mitigate the ef-

fects of a small training buffer, pre-clustering helps mitigate the effects of a large

training buffer. Specifically, a large training buffer may intermix messages from

different templates, resulting in an amalgamated signature. With pre-clustering,

unclassified messages are clustered using skeleton signatures. A skeleton signature

is akin to an anchor signature used in the second chance mechanism, but is built

with a larger minimum anchor size q, and as such is more permissive. In our

experiments, we set q = 6 for anchor signatures and q = 14 for skeleton signa-

tures. Further evaluation indicated that slight variations of these values only have

a minimal impact on the overall performance.

The pre-clustering mechanism works as follows. Each skeleton signature

has an associated training buffer. When a message fails to match a full signature

or an anchor signature (per the second chance mechanism), we attempt to assign

it to a training buffer using a skeleton signature. Failing that, it is added to

the unclassified message buffer. When this buffer has sufficient samples (we use

10), we generate a skeleton regular expression from them and assign them to the

skeleton’s training buffer. When a training buffer reaches k messages (k = 100

works well), a full signature is generated. The signature and its training buffer

are moved to the signature set, and the signature is ready for use in a production

anti-spam appliance. In effect, the pre-clustering mechanism mirrors the basic

signature update procedure (with skeleton signatures instead of full and anchor

signatures).

As noted in Section 5.2, our system does not currently support a complete

mechanism for pre-clustering messages into different campaigns. Instead, our cur-

rent mechanism relies on the earlier assumption that the first few messages of a

new template do not appear intermixed with messages from other new templates—

hence our decision to group together every 10 new unclassified messages and treat

them as a new cluster. Note that it is perfectly acceptable if these first 10 messages

from a new template are interleaved with the messages of a template for which we

already have generated a signature. In this case, the messages of the latter will

be filtered out using the existing regular expression, and only the messages of the

83

former will enter the unclassified message buffer. From our experience, this choice

has provided us with very good results, although a more sophisticated clustering

method could be a possible future direction.

5.3.4 Execution Time

Currently the execution time of the template inference algorithm observed

empirically is linear in the size of the input. Based on our experience, the length

of messages generated by different botnets varies significantly. The largest average

length we have observed among all botnets was close to 6,000 characters. The

selected training buffer size k (introduced in Section 5.3.3), along with the average

length of e-mails, determine the total size of the input. Under this worst-case

scenario, the algorithm requires 2 seconds for k = 50 and 10 seconds for k = 500,

on a modest desktop system. Signature updates execute much faster, as they

are performed incrementally. The execution time in this case depends on a wide

range of factors, but an average estimate is between 50 − 100 ms. The focus of

our implementation has always been accuracy rather than execution time, thus we

expect several optimizations to be possible.

5.4 Evaluation

The principal requirements of a spam filtering system are that it should be

both safe and effective, meaning that it does not classify legitimate mail as spam,

and it correctly recognizes the targeted class of spam. Our goal is to experimentally

demonstrate that Judo is indeed safe and effective for filtering botnet-originated

spam.

Our evaluation consists of three sets of experiments. In the first, we es-

tablish the effectiveness of the template inference algorithm on spam generated

synthetically from actual templates used by the Storm botnet. Next, we run the

Judo system on actual spam sent by four different bots, measuring its effectiveness

against spam generated by the same bot. In our last set of experiments, we execute

84

Table 5.1: Legitimate mail corpora used to assess signature safety throughout

the evaluation.

Corpus Messages

SpamAssassin 2003 [53] 4,150
TREC 2007[86] (non-spam only) 25,220
lists.gnu.org [2] (20 active lists) 479,413
Enron [34] 517,431

a real deployment scenario, training and testing on different instances of the same

bot. In all cases, Judo was able to generate effective signatures.

In each set of experiments, we also assess the safety of the Judo system.

Because Judo signatures are so specific, they are, by design, extremely safe; signa-

tures generated in most of our experiments generated no false positives. We start

by describing our methodology for evaluating signature safety.

5.4.1 Signature Safety Testing Methodology

By their nature, Judo signatures are highly specific, targeting a single ob-

served campaign. As such, we expect them to be extremely safe: Judo signatures

should never match legitimate mail. We consider this to be Judo’s most compelling

feature.

The accepted metric for safety is the false positive rate of a signature with

respect to a corpus of legitimate (non-spam) mail, i.e., the proportion of legitimate

messages incorrectly identified as spam. Throughout the evaluation we report

the false positive rate of the generated signatures; Section 5.4.5 presents a more

detailed analysis.

Corpora. We used four corpora of legitimate mail, together totaling over a

million messages, summarized in Table 5.1: the SpamAssassin “ham” corpus dated

February 2003 [53], the 2007 TREC Public Spam Corpus restricted to messages

labelled non-spam [86], 20 active mailing lists from lists.gnu.org spanning August

2000 to April 2009 [2], and the Enron corpus [34].

85

Age bias. Recall that Judo signatures consist of regular expressions for a mes-

sage’s header as well as the body. To avoid potential age bias, we tested our

signatures with all but the subject and body regular expressions removed. This

is to safeguard against age-sensitive headers like “User-Agent” causing matches to

fail on the older corpora. It is worth noting that using only subject and body is

a significant handicap because the remaining headers can act as additional highly

discriminating features.

5.4.2 Single Template Inference

The template inference algorithm is the heart of the Judo system. We be-

gin by evaluating this component in a straightforward experiment, running the

template inference algorithm directly on training sets generated from single tem-

plates. By varying the size of the training set, we can empirically determine how

much spam is necessary to achieve a desired level of signature effectiveness. Our

metric of effectiveness is the false negative rate with respect to instances of spam

generated from the same template. In other words, the false negative rate is the

proportion of spam test messages that do not match the signature. Because the

template is known, we can also (informally) compare it with the generated signa-

ture. Figure 5.1 from Section 5.2 shows an example.

Methodology

We generated spam from real templates and dictionaries, collected during

our 2008 study of Storm botnet campaign orchestration [38]. The templates cov-

ered three campaigns: a self-propagation campaign from August 1–2, 2008 (4,210

templates, 1,018 unique), a pharmaceutical campaign from the same time period

(4,994 templates, 1,271 unique), and several low-priced stock campaigns between

June and August 2008 (1,472 templates, all unique). Each one of these templates

86

Table 5.2: False negative rates for spam generated from Storm templates as a

function of the training buffer size k. Rows report statistics over templates. The

stock spam table also shows the number of templates s for which a signature was

generated (for self-propagation and pharmaceutical templates, a signature was

generated for every template); in cases where a signature was not generated, every

instance in the test set was counted as a false negative. At k = 1000, the false

positive rate for all signatures was zero.

(a) Self-propagation and pharmaceutical spam.

False Negative Rate

k 95% 99% Max Avg

1000 0% 0% 0% 0%
500 0% 0% 2.53% <0.01%
100 0% 0% 0% 0%
50 0% 0% 19.15% 0.06%
10 45.45% 58.77% 81.03% 14.16%

(b) Stock spam.

False Negative Rate

k s 95% 99% Max Avg

1000 99.8% 0% 0.22% 100% 0.21%
500 81.8% 100% 100% 100% 18.21%
100 55.0% 100% 100% 100% 45.04%
50 42.9% 100% 100% 100% 57.25%
10 40.9% 100% 100% 100% 62.13%

87

had its own unique set of dictionary files. Both the self-propagation and pharma-

ceutical templates contained URLs; the stock campaign templates did not.2

For convenience, we generated Storm spam directly from these templates

(rather than having to operate actual Storm bots) by implementing a Storm tem-

plate instantiation tool based on our earlier reverse-engineering work on this bot-

net [37]. For each of the 10,676 templates, we generated 1,000 training instances

and an additional 4,000 instances for testing.

We ran the template inference algorithm on the 1,000 training messages and

assessed the false negative rate of the resulting signature using the 4,000-message

test set.3 To better understand the performance of the Judo system, we then

pushed it to the “breaking point” by using smaller and smaller training sets to

generate a signature. We use k to denote the training set size.

Results

As expected, the template inference algorithm generated effective signa-

tures. Both self-propagation and pharmaceutical campaigns were captured per-

fectly, with no false negatives. For the stock campaign, 99% of the templates had

a false negative rate of 0.22% or lower.

Table 5.2 also shows Judo’s performance as we decrease the number of

training instances k. In effect, k is a measure of how “hard” a template is. We

separate results for templates with URLs (self-propagation and pharmaceutical)

and without (stock) to establish that our algorithm is effective for both types of

spam. Rows correspond to different numbers of training messages, and columns

to summary statistics of the range of the false negative rates. For example, when

training a regular expression on just k = 10 messages from a URL-based campaign

2Although less common in terms of Storm’s overall spam volume [38], we included non-URL
spam to determine how much of our system’s effectiveness stems from learning the domains of
URLs appearing in the spam, compared to other features.

3We choose 1,000 as the training set size in part because Storm generated roughly 1,000
messages for each requested work unit. We note that 1,000 messages represents a very small
training set compared with the amount of spam generated by bots from a given template: in our
2008 study of spam conversion rates [33] we observed almost 350 million spam messages for one
spam campaign generated from just 9 templates. Thus, we can generate potent signatures nearly
immediately after a new template is deployed, and use that signature for the duration of a large
spam campaign.

88

template, the signature yielded a false negative rate of 45.45% or less on 95% of

such templates, and a false negative rate of 81.03% for the template that produced

the worst false negative rate. Such high false negative rates are not surprising

given just 10 training instances; with just 50 training messages, it exhibits no false

negatives for 99% of such Storm templates.4

Column s in Table 5.2b also shows the number of templates for which a

signature was generated (all templates resulted in a signature for self-propagation

and pharmaceutical spam). Recall from Section 5.3 that we discard a signature

if it is found to be unsafe. This was the only case in our evaluation where this

occurred. For such templates for which we do not generate a signature, we calculate

a 100% false negative rate. For this test, our input was stock templates which did

not contain URLs. These messages were also very short and consisted entirely

of large dictionaries: characteristics that make messages particularly difficult to

characterize automatically from a small number of samples.

Signatures from the self-propagation and pharmaceutical templates pro-

duced no false positives in three of the four legitimate mail corpora, regardless of

the value of k. For the stock templates, the result was again zero for k = 1000.

We present a detailed breakdown of these results in Section 5.4.5.

5.4.3 Multiple Template Inference

In the previous section we examined the case of spam generated using a

single template. In practice, a bot may be switching between multiple templates

without any indication. In this part of the evaluation we test the algorithm on a

“live” stream of messages generated by a single bot, classifying each message as it

is produced.

4One peculiarity in Table 5.2a merits discussion: the 2.53% maximum false negative rate for
k = 500 arises due to a single template out of the 9,204 total; every other template had a false
negative rate of 0%. For this template, when transitioning from k = 100 to k = 500 training
samples the algorithm converted the “Subject” header from a character class to a dictionary. The
mismatches all come about from a single dictionary entry missing from the signature because it
did not appear in the 500 training messages.

89

Table 5.3: Cumulative false negative rate as a function of training buffer size k

and classification delay d for spam generated by a single bot instance. The “Sigs”

column shows the number of signatures generated during the experiment (500,000

training and 500,000 testing messages). All signatures produced zero false positives

with the only exception being the signatures for Rustock.

Cumulative False Negative Rate

Botnet
HH

HHHHk
d

0 50 100 500 Sigs

Mega-D 50 0.11% 0.09% 0.07% 0.05% 5
100 0.16% 0.13% 0.12% 0.08% 5
500 0.54% 0.52% 0.50% 0.34% 5

Pushdo 50 0.17% 0.13% 0.10% 0.05% 8
100 0.23% 0.20% 0.17% 0.08% 6
500 0.72% 0.69% 0.66% 0.45% 6

Rustock 50 0.19% 0.12% 0.06% 0.05% 9
100 0.28% 0.22% 0.15% 0.08% 9
500 1.01% 0.95% 0.88% 0.40% 9

Srizbi 50 0.22% 0.11% 0% 0% 11
100 0.33% 0.22% 0.11% 0% 11
500 1.21% 1.10% 1.05% 0.79% 11

90

Methodology

Our spam corpus consists of bot-generated spam collected by the Botlab [31]

project from the University of Washington. One instance each of the Mega-D,

Pushdo, Rustock, and Srizbi bots was executed and their output collected. We

split the first 1 million messages from each bot into a training and testing set by

sequentially assigning messages to each set in alternation. The Judo system was

then used to create signatures from the training data. In parallel with running the

Judo system, we processed the testing corpus in chronological order, classifying

each message using signatures generated up to that point. In other words, we

consider a test message matched (a true positive) if it matches some signature

generated chronologically before the test message; otherwise we count it as a false

negative. Our measure of effectiveness is the false negative rate over the testing

message set.

It is important to note that in practice one could employ some delay when

matching messages against the filters: either holding up messages for a short period

to wait for the generation of updated filters, or by retroactively testing messages

already accepted, but not yet presented to the receiving user, against any filter up-

dates. To simulate such a scenario, we buffered testing messages in a classification

buffer, allowing us to delay classification. We denote the length of the classification

buffer by d. The case d = 0 corresponds to no message buffering; in other words,

messages must be classified immediately upon being received. We also evaluated

signature performance with the classification delay d set to 50, 100 and 500. In a

real-world deployment, we can think of this buffer as a very short delay introduced

by e-mail providers before delivering incoming e-mails to inboxes.

Results

Our results confirm the effectiveness of the Judo system in this “live” setting

as well. Table 5.3 shows the cumulative results for each combination of k and d, as

well as the number of signatures generated for each botnet during the experiment.

Two trends are evident. First, the false negative rate decreases as the classification

delay d increases. This is not surprising, since the delay gives Judo time to build

91

0 100 200 300 400 500
Message Sequence (thousands)

0

1

2

3

4

5

Fa
ls

e
 N

e
g
a
ti

v
e
 R

a
te

 (
p
e
rc

e
n
t)

1000-msg avg

Cumulative avg

Signature Generated

(a) Mega-D

0 100 200 300 400 500
Message Sequence (thousands)

0

1

2

3

4

5

Fa
ls

e
 N

e
g
a
ti

v
e
 R

a
te

 (
p
e
rc

e
n
t)

1000-msg avg

Cumulative avg

Signature Generated

(b) Rustock

Figure 5.5: Classification effectiveness on Mega-D and Rustock spam generated

by a single bot, as a function of the testing message sequence. Experiment pa-

rameters: k = 100, d = 0 (that is, 100 training messages to generate each new

signature, and immediate classification of test messages rather than post facto).

92

0 100 200 300 400
Message Sequence (thousands)

0

1

2

3

4

5

Fa
ls

e
 N

e
g
a
ti

v
e
 R

a
te

 (
p
e
rc

e
n
t)

1000-msg avg

Cumulative avg

Signature Generated

(a) Pushdo

0 100 200 300 400 500
Message Sequence (thousands)

0

1

2

3

4

5

Fa
ls

e
 N

e
g
a
ti

v
e
 R

a
te

 (
p
e
rc

e
n
t)

1000-msg avg

Cumulative avg

Signature Generated

(b) Srizbi

Figure 5.6: Classification effectiveness on Pushdo, and Srizbi spam generated by

a single bot, as a function of the testing message sequence. Experiment parameters:

k = 100, d = 0 (that is, 100 training messages to generate each new signature, and

immediate classification of test messages rather than post facto).

93

a signature. The second trend, an increasing false negative rate as k increases,

may seem counterintuitive because in our previous experiment, increasing k led

to a decrease in the false negative rate. This increase occurs because all spam in

the testing set generated before Judo produces the signature is counted as a false

negative. Classification delay helps, but even with d = 500, a new signature is not

produced until we collect 500 messages that match no other signature.

Dynamic Behavior. We can better understand Judo by looking at its dynamic

behavior. Figure 5.5 and Figure 5.6 show the average and cumulative false negative

rate as a function of the testing messages. Dashed vertical lines indicate when Judo

generated a new signature. Looking at the Mega-D plot (Figure 5.5a), we see that

Judo is generating signatures during the first 20,000 messages in the testing set.

After the initial flurry of signature generation, the false negative rate hovers just

under 0.5%. After 100,000 testing messages, the false negative rate drops to nearly

zero as the signatures are refined.

There are also two interesting observations here. First, peaks sometimes

disappear from the graphs without the creation of a new signature. Normally we

would expect that mismatches would be eliminated by inferring a new, previously

missed underlying template. The effect in question here, though, is a result of

using the second chance mechanism. For example, missing entries from a dictionary

node can cause some false negative hits to occur until eventually the signature gets

updated. This is done incrementally without the need to deploy a new signature,

hence the absence of a dashed vertical line in the graph. The second observation is

similar and relates to the creation of new signatures without any peaks appearing

in the graph indicating the need for performing such an action. In this case, we

need to remember that the training and testing track operate independently of

each other. Thus it is sometimes the case that the training track observes a new

template slightly before the testing track, and of course immediately generates a

new signature. In this way, false negative hits are eliminated since the signature

is already available for use when messages from the new template appear on the

testing track.

94

We also observe that Pushdo exhibits different behavior in terms of the

number of generated signatures. One would expect that the number of such signa-

tures should be the same regardless of the parameters used. Although this holds

for the other botnets, it does not for Pushdo due to the dictionary statistical test.

Recall from Section 5.3 that we declare something as a dictionary only if Judo be-

lieves that it has seen every entry of it. This decision is based on the occurrences

of the least-frequently observed element in the set under question. Hence, in the

cases where we observe the same elements repeated over an extended number of

messages, we can sometimes mis-conclude that we have seen the dictionary in its

entirety. The use of a high threshold ensures that we keep such cases to a mini-

mum. While processing Pushdo, the algorithm mistakenly classified a node as a

dictionary before capturing all of its entries. As a result, Judo eventually gener-

ated multiple regular expressions for the same underlying template, with each one

including a different subset of the underlying dictionaries.

5.4.4 Real-world Deployment

The previous experiments tested regular expressions produced by the tem-

plate inference system against spam produced by a single bot instance. Doing

so illuminates how quickly and how well the system learns a new template, but

does not fully match how we would operationally deploy such filtering. We finish

our evaluation with an assessment using multiple bot instances, one to generate

the training data and the others to generate the test data. This configuration

tells us the degree to which signatures built using one bot’s spam are useful in

filtering spam from multiple other instances. It also tests to a certain degree our

assumption regarding the small number of templates actively used by botnets.

Methodology

We ran two instances of Xarvester and two of Mega-D in a contained envi-

ronment akin to Botlab [31]. One of the bots was arbitrarily selected to provide

the training corpus and the other the testing corpus. We also ran four instances

of Rustock and six instances of Gheg. In a similar manner, one of the bots was

95

Table 5.4: Number of training and testing messages used in the real-world de-

ployment experiment.

Bots Training Testing

Xarvester 184,948 178,944
Mega-D 174,772 171,877
Gheg 48,415 207,207
Rustock 252,474 680,000

Table 5.5: Cumulative false negative rate as a function of training buffer size k and

classification delay d for spam generated by a multiple bot instances, one generating

the training spam and the others the testing spam. The “Sig” column shows the

number of signatures generated during the experiment. Signatures generated in

this experiment produced no false positives on our corpora.

Cumulative False Negative Rate

Botnet
H
HHH

HHk
d

0 50 100 500 Sig

Xarvester 50 0.07% 0.04% 0.02% 0% 6
100 0.13% 0.06% 0.03% 0% 6
500 1.00% 0.89% 0.78% 0.02% 6

Mega-D 50 0.09% 0.06% 0.03% 0% 1
100 0.13% 0.10% 0.07% 0% 1
500 0.92% 0.90% 0.87% 0.64% 1

Gheg 50 0.88% 0.86% 0.84% 0.64% 3
100 1.13% 1.11% 1.08% 0.89% 3
500 3.56% 3.54% 3.51% 3.33% 3

Rustock 50 0.99% 0.97% 0.95% 0.75% 6
100 1.03% 1.01% 0.98% 0.78% 6
500 1.49% 1.47% 1.44% 1.20% 6

96

arbitrarily selected to provide the training message set, and the remaining bots,

combined, the testing set. Table 5.4 shows the number of messages generated by

each bot.

As in the previous experiment, we “played back” both message streams

chronologically, using the training data to generate a set of signatures incrementally

as described in Section 5.3.3. Again, our metric of effectiveness is the false negative

rate on the testing set. To maintain the accuracy of the results we preserved

the chronological order of messages in the testing track. This ordering was a

consideration for both Rustock and Gheg where we merged the output of multiple

bots, as described earlier.

Results

Our results show Judo performed extremely well in this experiment, achiev-

ing false negative rates under 1% in most cases and generating no false positives.

Table 5.5 shows the cumulative results for each combination of k and d, as well

as the number of signatures generated for each botnet during the experiment. Al-

though in all cases the training track was selected arbitrarily, in the case of Gheg

we executed the experiment six times. Each time we used a different bot as the

training track and the results show the worst false negative rate over these six

choices.

Figure 5.7 shows the dynamic behavior of the Xarvester and Rustock bots in

this experiment. Despite the fact of now using independent bots as the training and

testing tracks, we see that the behavior is quite similar to the previous experiment,

where only one bot was used. However, we observe slightly higher false negative

rates in the cases where the training track consists of multiple bots. The reason

for this higher rate is that the bots are not completely “synchronized”, i.e., they

do not switch to a new template or dictionary at the exact same time. What

is important to note is that in all cases, even after a slight delay, such a switch

does indeed occur across all hosts. Gheg exhibited similar behavior when we ran

six different instances of the botnet. Recall that for our evaluation, we run the

experiment six times and evaluated each one of the bots as being the provider of

97

0 50 100 150
Message Sequence (thousands)

0

1

2

3

4

5

Fa
ls

e
 N

e
g
a
ti

v
e
 R

a
te

 (
p
e
rc

e
n
t)

1000-msg avg

Cumulative avg

Signature Generated

(a) Xarvester

0 100 200 300 400 500 600
Message Sequence (thousands)

0

1

2

3

4

5

Fa
ls

e
 N

e
g
a
ti

v
e
 R

a
te

 (
p
e
rc

e
n
t)

1000-msg avg

Cumulative avg

Signature Generated

(b) Rustock

Figure 5.7: Classification effectiveness on Xarvester and Rustock spam with

multiple bots: one bot was used to generate training data for the Judo system and

the remaining bots to generate the testing data (1 other for Xarvester, 3 others for

Rustock). Experiment parameters: k = 100, d = 0 (that is, 100 training messages

to generate each new signature, and immediate classification of test messages rather

than post facto).

98

the training set. Even when taking into consideration the results from the worst

run, as presented in Table 5.5, we can still see that monitoring just a single bot

suffices for capturing the output of multiple other spamming hosts. Ultimately,

the only reason for the differences in these executions was the precise ordering of

the messages, and how early Judo was able to deploy a new signature each time.

Our real-world experience verifies to a certain extent our original assumption that

spam campaigns use only a small number of templates at any point in time in

current practice. Of course, spammers could modify their behavior in response;

we discuss this issue further in Section 5.5.

5.4.5 False Positives

One of the most important features of Judo is the unusual safety that the

generated signatures offer. When dealing with spam filtering, the biggest concern

has always been falsely identifying legitimate messages as spam. Messages that fall

under this category are known as false positives. In this section, we try to verify

our claims and validate the safety of the signatures.

There are two main factors that affect the false positive rate of our system.

The first is the fact that the generated signatures include information for both

the headers and the body of the messages. In contrast to more naive methods

of simply using URLs or subject lines for identifying spam e-mails, we use the

additional information for minimizing the possibility of accidental matches. For

the purpose of the current evaluation though, every header besides “Subject” was

removed from the signatures. We made this choice for two reasons. First, we want

to examine the system under a worst-case scenario, since it is straightforward to see

that the presence of additional headers can only improve our false positive rates.

Second, we want to remove any possible temporal bias that would pollute our

results. Such bias might be the result of age-sensitive headers like “User Agent”.

The second factor which contributes to the system’s strong false positive

results is the existence of anchor and dictionary nodes. Recall that dictionary nodes

are only created when Judo estimates that it has observed every single dictionary

entry. As described in Section 5.3, these nodes impose strong limitations as to

99

what messages a signature can match. Hence we add the constraint that all final

signatures must contain at least one anchor or dictionary node. If this constraint is

violated, we consider the signature unsafe and discard it. Although this heuristic

can potentially hinder the false negative rates, it also makes sure that false positives

remain very small. We confirmed that all signatures used in our evaluation were

safe. There was only one case where it became necessary to discard signatures, as

described in Section 5.4.2.

We first look at the Storm templates. Based on our dataset description

in Section 5.4.2, we split this analysis into URL and non-URL (stock) templates.

For the former category, which included signatures from the self-propagation and

pharmaceutical templates, we had no false positives in three of the four legitimate

mail corpora. In the lists.gnu.org corpus, signatures produced from 100 or fewer

training messages resulted in a false positive rate of 1 in 50,000. This rate arose

from a small number of cases in which dictionaries were not constructed until

k = 500. For the remaining values of k the result was again zero matches.

Storm templates that did not contain a URL proved to be a harder workload

for our system, and the only scenario where unsafe signatures were generated and

discarded. Although URLs are not a requirement for producing good signatures,

the problem was amplified in this case due to the very small length of messages

generated by the Storm botnet. Hence it is sometimes the case that the system

cannot obtain enough information for smaller numbers of training messages. This

issue, though, is eliminated when moving to higher values of k.

For these stock templates, the 99th percentile false positive rate for k ≤ 100

was under 0.1% across all templates, and with a maximum false positive rate

of 0.4% at k = 10. For k ≥ 500, the maximum false positive rate was 1 in

50,000 on the Enron corpus, and zero for the remaining three corpora. We em-

phasize again that we are using stripped down versions of the signatures (sub-

ject and body patterns only); including additional headers (“MIME-Version” and

“Content-Transfer-Encoding”) eliminated all false positives. We further validated

these numbers by making sure that these additional headers were indeed included

in the messages of our legitimate mail corpora. Hence we confirmed that all mis-

100

matches arose due to the corresponding header regular expressions failing to match,

and not due to bias of our specific dataset.

The Botlab workload (Section 5.4.3) produced zero matches against all

corpora for the MegaD, Pushdo and Srizbi botnets. The only exception was the

signatures generated for Rustock. We had zero matches against the TREC 2007

corpus. When testing against the remaining corpora, signatures for this botnet

produced an average false positive rate between 0.00021% to 0.01%. The 99th

percentile false positive rate was at most 0.24% and 95th percentile at most 0.04%.

When looking into this issue further we identified the source of the problem as the

inability of these signatures to produce all possible dictionaries. One reason was

the very high threshold used for allowing the conversion of a character class to a

dictionary node. We are currently looking into this particular problem for further

improvement. Once again, though, we note that incorporating additional headers

gives a worst-case false positive rate of 1 in 12,500 due to signature mismatches

and not because of the absence of these headers in our corpora.

For all other signatures generated from messages captured in our sandbox

environment, the result was zero false positive matches across all corpora for all

botnets. Note that these results correspond to our real-world deployment experi-

ment, with signatures being generated for the very latest spam messages sent by

the botnets. The structure of these messages allowed for the creation of very pre-

cise regular expressions, such as the example presented in Figure 5.8 for the MegaD

botnet.

5.4.6 Response Time

One reasonable concern can be the time Judo requires for generating a new

signature. Since we aim to shrink the window between the time a new campaign

starts and the time we deploy a filter, being able to quickly infer the underlying

template is crucial. As already shown in Section 5.3.4, execution time is not a

concern for the system, as it takes under 10 seconds in almost all cases to run the

algorithm. Thus the only question left to answer is how long it takes to build up

the required training sets.

101

Subject ^(RE: Message|new mail|Return mail|Return Mail|Re: Order .

status|no-reply|Your order|Delivery Status Notification| .

Delivery Status Notification \(Failure\))$

^<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML><HEAD>

<META http-equiv=Content-Type content="text/html; charset=(us-ascii| .

iso-8859-2|iso-8859-1|windows-1250|Windows-1252)">

</HEAD>

<BODY><a href="http://(talklucid|samefield|famousfall|bluedoes| .

meekclaim).com/" target="_blank">

<img src="http://(talklucid|samefield|famousfall|bluedoes| .

meekclaim).com/dyuwqlk.jpg" border="0" alt="Show picture and go to .

site now!"></BODY></HTML>$

Figure 5.8: Fragment of a template generated for the Mega-D botnet on August

26, 2009. Only the subject and body are displayed with full dictionaries, exactly

as they were captured. Recall that templates are inferred from only the output

of bots, without any access to the C&C channel and without any information

regarding the underlying mechanisms used.

Obviously such a metric is dependent on the spamming rate of botnets. It

is also possible that messages from multiple campaigns might be interleaved in a

corpus, further complicating the exact time it takes to create the training set for

each one. Despite this, knowing the spamming rate at which bots operate can give

us a good high-level estimate of the time requirements imposed by Judo. Focusing

on the datasets used in our real-world deployment scenario, we identified that the

six Gheg bots took less than 6 hours to send all 255,622 e-mails. This translates to

about 118 messages per minute, for each bot. In a similar way, the four Rustock

bots we had deployed required only 20 hours to send 932,474 messages, which gives

us a spamming rate of 194 messages per minute, for each bot. Considering that

for modern botnets, Judo showed excellent performance for any values of k ≤ 500,

we conclude that the system requires only a few minutes for the deployment of

102

a new signature. In fact, the time it takes to do so directly affects all results of

our evaluation in Section 5.4.3 and Section 5.4.4. Recall that while the system is

creating the required training set for a campaign, any mismatches on the testing

tracks are registered as false negatives. Despite this fact, we can see that Judo is

still able to maintain excellent performance, hence satisfying our initial goal of a

fast response time.

5.4.7 Other Content-Based Approaches

The efficacy of Judo rests on two essential characteristics: its unique vantage

point at the source of the spam, and the template inference algorithm for creating

signatures from this spam. Regarding the latter, one may naturally ask if a simpler

mechanism suffices. In short, we believe the answer is “No.” To our knowledge

two such simple approaches have been advanced: subject-line blacklisting and URL

domain blacklisting. We consider these in turn.

Subject-line Blacklisting. Filtering based on message subject is one of the

earliest spam filtering mechanisms in deployment. Most recently, it was used by

the Botlab project [31] to attribute spam to specific botnets.5 Unfortunately, it

is very easy (and in some cases desirable for the spammer) to use subject lines

appearing in legitimate mail. One of the Mega-D templates found in our previous

experiment used a subject-line dictionary containing “RE: Message,” “Re: Order

status,”, “Return mail,” and so on, and can be seen in Figure 5.8. Such a template

cannot be effectively characterized using the message subject alone.

URL Domain Blacklisting. URL domain blacklists (e.g. [3, 4]) are lists of

domains appearing in spammed URLs. In our experience, domain names appearing

in spam do indeed provide a strong signal. However, there are at least two cases

where domain names alone are not sufficient. The first case, spam not containing

URLs (stock spam for example), simply cannot be filtered using URL domain

signatures. (Section 5.4.2 shows that Judo is effective against this type of spam).

5Note that John et al. do not suggest that subject lines alone should be used for identifying
spam, but for “classifying spam messages as being sent by a particular botnet” after being
classified as spam.

103

The second type of spam uses “laundered” domains, that is, reputable ser-

vices which are used to redirect to the advertised site. Most recently, for example,

spam sent by the Gheg botnet was using groups.yahoo.com and google.com do-

mains in URLs. We suspect this trend will continue as URL domain blacklisting

becomes more widely adopted.

“Focused” Bayesian Signatures. An intriguing possibility is using a Bayesian

classifier to train on a single campaign or even the output of a single bot, rather

than a large universal corpus of spam as is conventional. Our cursory evaluation

using SpamAssassin’s [78] Bayesian classifier showed promise; however, in addition

to a formal evaluation, a number of technical issues still need to be addressed (the

larger size of Bayesian signatures, for example).

We also trained SpamAssassin’s Bayesian filter on a generic spam corpus

of over one thousand recent messages along with the SpamAssassin 2003 “ham”

corpus. It fared poorly: from a sample of 5,180 messages from the Waledac botnet,

96% received a score of 0 (meaning “not spam”) due to the complete absence of

tokens seen in the generic spam corpus; none were given a score above 50 out

of 100.

Enterprise Spam Filtering Appliances. We ran a subset of the spam corpora

from the Gheg, MegaD, Rustock, and Waledac botnets through a major spam fil-

tering appliance deployed on our university network. Spam from the Waledac and

Rustock botnets was completely filtered based upon the URLs appearing in the

message bodies, and Mega-D spam was correctly filtered via a generic “pharma-

ceutical spam” rule. However, only 7.5% of the spam from the Gheg botnet was

correctly identified as such; these messages were German language pharmaceutical

advertisements laundering URL reputation through google.com via its RSS reader

application.

5.5 Discussion

There are four questions invariably asked about any new anti-spam system:

how well does it filter spam, how often does it misclassify good e-mail in turn, how

104

easy or expensive is it to deploy and how will the spammers defeat it? We discuss

each of these points briefly here.

As we have seen, template inference can be highly effective in producing

filters that precisely match spam from a given botnet. Even in our preliminary

prototype we have been able to produce filters that are effectively perfect for

individual campaigns after only 1,000 samples. To a certain extent this result

is unsurprising: if our underlying assumptions hold, then we will quickly learn the

regular language describing the template. Even in less than ideal circumstances

we produce filters that are very good at matching subsequent spam. The catch, of

course, is that each of our filters is over-constrained to only match the spam arising

from one particular botnet and thus they will be completely ineffective against any

other spam.

The hidden benefit of this seeming drawback is that filters arising from

template inference are unusually safe. Their high degree of specialization makes

them extremely unlikely to match any legitimate mail and thus false positive rates

are typically zero or extremely close thereto. To further validate this hypothesis,

we provided the regular expressions corresponding to the data for Xarvester to a

leading commercial provider of enterprise anti-spam appliances. They evaluated

these filters against their own “ham” corpus and found no matches. Given this

evidence, together with our own results, we argue that template inference can be

safely used as a pre-filter on any subsequent anti-spam algorithm and will generally

only improve its overall accuracy.

There are three aspects to the “cost” of deploying a system such as ours.

The first is the complexity of capturing, executing and monitoring the output of

spam bots. As more bot instances can be maintained in a contained environment,

new filters can be generated more quickly. While this is by no means trivial, it

is routinely done in both academia and industry and there is a broad base of

tools and technology being developed to support this activity. The second issue

concerns the efficiency of the template inference process itself. Here we believe

the concern is moot since the algorithm is linear time and our untuned template

extraction algorithm is able to generate regular expressions from 1000 messages in

105

under 10 seconds, and update the expression in 50-100 ms. Next, there is the issue

of integration complexity since it is challenging to mandate the creation of new

software systems and interfaces. However, since our approach generates standard

regular expressions—already in common use in virtually all anti-spam systems—

the integration cost should be minimal in practice.

Finally, we recognize that spam is fundamentally an adversarial activity,

and successful deployment of our system would force spammers to react in turn

to evade it. We consider the likely path of such evolution here. There are three

obvious ways that spammers might attempt to stymie the template inference ap-

proach.

First, they can use technical means to complicate the execution of bots

within controlled environments. A number of bots already implement extensive

anti-analysis actions such as the detection of virtual machine environments and

the specialization of bot instances to individual hosts (to complicate the sharing

of malware samples). Moreover, some botnets require positive proof of a bot’s

ability to send external spam e-mail before providing spam template data. While

this aspect of the botnet arms race seems likely to continue, it also constitutes the

weakest technical strategy against template inference since there is no fundamental

test to distinguish a host whose activity is monitored from one whose is not.

A more daunting countermeasure would be the adoption of more complex

spam generation languages. For example, multi-pass directives (e.g., shuffling word

order after the initial body is generated) could easily confound the algorithm we

have described. While there is no doubt that our inference approach could be

improved in turn, for complex languages the general learning problem is unten-

able. However, there are drawbacks in pursuing such complexity for spammers

as well. Template languages emerged slightly over 5 years ago as a way to by-

pass distributed spam hash databases [74] and they have not changed significantly

over that time. Part of the reason is that they are easy for spammers to use

and reason about; a new spam campaign does not require significant testing and

analysis. However, a more important reason is that there are limits to how much

polymorphism can be encoded effectively in a spam message while still preserving

106

the underlying goal. To be effective, pitches and subject lines must be roughly

grammatical, URLs must be properly specified, and so on. Randomizing the let-

ters across such words would defeat template inference but also would likely reduce

the underlying conversion rate significantly.

Finally, spammers might manage the distribution of templates in a more

adversarial fashion. In particular, were each bot instance given templates with

unique features then the regular expressions learned from the output of one bot

would suffer from overtraining; they would be unable to generalize to spam issued

from another bot in the same botnet. Depending precisely on how such features

were generated, this could add significant complexity to the underlying inference

problem at relatively low cost to spammers, and without significantly changing

the overall “look and feel” of such messages to potential customers. We leave the

challenge of joint learning across bot instances to future work should the spam

ecosystem evolve in this manner.

5.6 Summary

In starting this chapter we observed that strong defenses benefit from ob-

taining current and high quality intelligence. This point is hardly lost on the

anti-spam community and over time there have been many efforts to share infor-

mation among sites, precisely to shrink the window of vulnerability between when

a new kind of spam appears and a corresponding e-mail filter is installed. His-

torically, these efforts have been successful when the information gathering itself

can be centralized and have floundered when they require bilateral sharing of mail

samples (even in a statistical sense). Thus, IP-based blacklists constitute intelli-

gence that, upon being learned, is shared quickly and widely, while content-based

filter rules continue to be learned independently by each defender.

To put it another way, the receiver-oriented learning approach makes it

challenging to automatically share new spam intelligence (for reasons of privacy,

logistics, scale, etc.). However, given that a small number of botnets generate

most spam today, this problem can be neatly sidestepped. We have shown that it

107

is practical to generate high-quality spam content signatures simply by observing

the output of bot instances and inferring the likely content of their underlying

template. Moreover, this approach is particularly attractive since the resulting

regular expressions are highly specialized and thus produce virtually no false pos-

itives. Finally, while we recognize that there are a range of countermeasures that

an adversary might take in response, we argue that they are not trivial for the

attacker and thus that the template inference approach is likely to have value for

at least a modest period of time.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings

of the Network and Distributed System Security Symposium 2010. Pitsillidis,

Andreas; Levchenko, Kirill; Kreibich, Christian; Kanich, Chris; Voelker, Geoffrey

M.; Paxson, Vern; Weaver, Nicholas; Savage, Stefan. The dissertation author was

the primary investigator and author of this paper.

Chapter 6

Click Trajectories: End-to-End

Analysis of the Spam Value Chain

We intuitively tend to only think about the e-mail sending aspect of the

spam problem. As we have emphasized numerous times throughout this disser-

tation though, spam e-mails are primarily used as an advertising medium. As in

any advertising business, generating revenue is an essential requirement for the

viability of the whole operation. In this chapter we focus on the click support

component of the spam value chain, which we define as the mechanism responsible

for monetizing spam-advertised URLs.

6.1 Introduction

We may think of e-mail spam as a scourge—jamming our collective inboxes

with tens of billions of unwanted messages each day—but to its perpetrators it

is a potent marketing channel that taps latent demand for a variety of products

and services. While most attention focuses on the problem of spam delivery, the

e-mail vector itself comprises only the visible portion of a large, multi-faceted

business enterprise. Each click on a spam-advertised link is in fact just the start

of a long and complex trajectory, spanning a range of both technical and business

components that together provide the necessary infrastructure needed to monetize

a customer’s visit. Botnet services must be secured, domains registered, name

108

109

servers provisioned, and hosting or proxy services acquired. All of these, in addition

to payment processing, merchant bank accounts, customer service, and fulfillment,

reflect necessary elements in the spam value chain.

While elements of this chain have received study in isolation (e.g., dynamics

of botnets [31], DNS fast-flux networks [26, 69], Web site hosting [6, 35]), the rela-

tionship between them is far less well understood. Yet it is these very relationships

that capture the structural dependencies—and hence the potential weaknesses—

within the spam ecosystem’s business processes. Indeed, each distinct path through

this chain—registrar, name server, hosting, affiliate program, payment processing,

fulfillment—directly reflects an “entrepreneurial activity” by which the perpetra-

tors muster capital investments and business relationships to create value. Today

we lack insight into even the most basic characteristics of this activity. How many

organizations are complicit in the spam ecosystem? Which points in their value

chains do they share and which operate independently? How “wide” is the bot-

tleneck at each stage of the value chain—do miscreants find alternatives plentiful

and cheap, or scarce, requiring careful husbanding?

The desire to address these kinds of questions empirically—and thus guide

decisions about the most effective mechanisms for addressing the spam problem—

forms the core motivation of our work. In this chapter we focus on the end-to-end

resource dependencies (“Click Trajectories”) behind individual spam campaigns

and then analyze the relationships among them, using the data presented in Chap-

ter 3. We characterize the resource footprint at each step in the spam value chain,

the extent of sharing between spam organizations and, most importantly, the rela-

tive prospects for interrupting spam monetization at different stages of the process.

6.2 Analysis

A major goal of this dissertation is to identify any “bottlenecks” in the

spam value chain: opportunities for disrupting monetization at a stage where the

fewest alternatives are available to spammers (and ideally for which switching cost

is high as well). Thus, in this chapter we focus directly on analyzing the degree

110

to which affiliate programs share infrastructure, by considering the click support

(i.e., domain registration, name service and Web hosting service) phase of the

spam value chain. We explore all components involved and consider the potential

effectiveness of interventions for each.

6.2.1 Click Support

As described in Chapter 3 we crawl a broad range of domains—covering

the domains found in over 98% of our spam feed URLs—and use clustering and

tagging to associate the resulting Web sites with particular affiliate programs. This

data, in combination with our DNS crawler and domain WHOIS data, allows us to

associate each such domain with an affiliate program and its various click support

resources (registrar, set of name server IP addresses and set of Web hosting IP

addresses). However, before we proceed with our analysis, we first highlight the

subtleties that result from the use of Web site redirection.

Redirection

As we mentioned, some Web sites will redirect the visitor from the initial

domain found in a spam message to one or more additional sites, ultimately re-

solving the final Web page (we call the domain for this page the “final domain”).

Thus, for such cases one could choose to measure the infrastructure around the

“initial domains” or the “final domains”.

To explain further, 32% of crawled URLs in our data redirected at least once

and of such URLs, roughly 6% did so through public URL shorteners (e.g., bit.ly),

9% through well-known “free hosting” services (e.g., angelfire.com), and 40%

were to a URL ending in .html (typically indicating a redirect page installed

on a compromised Web server). In our data, we identified over 130 shortener

services in use, over 160 free hosting services and over 8,000 likely-compromised

Web servers. Of the remainder, the other common pattern is the use of low-quality

“throw away” domains, the idea being to advertise a new set of domains, typically

registered using random letters or combinations of words, whenever the previous

set’s traffic-drawing potential is reduced due to blacklisting [38].

111

Affiliate programs

#
 R

e
g
is

tr
a
rs

 /
 #

 A
S

e
s

1

4

16

64

256

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l ll lllll

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l l l l l l

l

l

l

l

l l

l l

l l l

l

l

l

l l

l

l

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Entity

lll Web server

lll DNS server
lll Registrar

Figure 6.1: Sharing of network infrastructure among affiliate programs. Only a

small number of registrars host domains for many affiliate programs, and similarly

only a small number of ASes host name and Web servers for many programs. (Note

y-axis is log scale.)

Given this, we choose to focus entirely on the final domains precisely be-

cause these represent the more valuable infrastructure most clearly operated by an

affiliate.

Returning to our key question, we next examine the set of resources used

by sites for each affiliate program. In particular, we consider this data in terms of

the service organization who is responsible for the resource and how many affiliate

programs make use of their service.

Network infrastructure sharing

A spam-advertised site typically has a domain name that must be resolved

to access the site.1 This name must in turn be allocated via a registrar, who has

the authority to shutdown or even take back a domain in the event of abuse [48].

In addition, to resolve and access each site, spammers must also provision servers

1Fewer than half a percent use raw IP addresses in our study.

112

to provide DNS and Web services. These servers receive network access from

individual ISPs who have the authority to disconnect clients who violate terms of

service policies or in response to complaints.

Figure 6.1 shows that network infrastructure sharing among affiliate

programs—when it occurs—is concentrated in a small number of registrars and

Autonomous Systems (ASes). We use the AS number as a proxy for ISP. Many

registrars and ASes host infrastructure for just one or two affiliate programs, only

a small number host infrastructure for many affiliate programs, and no single reg-

istrar or AS hosts infrastructure for a substantial fraction of the programs overall.

(As we will see in Section 6.2.2 however, this situation can change drastically

when we weight by the volume of spam advertising each domain.) Specifically,

Figure 6.1 shows the number of registrars (y-axis) that serve registered domains

for a given number of affiliate programs (x-axis). Over 80 registrars, for instance,

serve domains for a single affiliate program, while just two registrars (NauNet and

China Springboard) serve domains for over 20 programs. For name servers and

Web servers, it shows the number of ASes hosting servers for a given number of

affiliate programs. Over 350 and 450 ASes host DNS and Web servers, respec-

tively, for a single affiliate program; yet, just two and nine ASes host DNS and

Web servers, respectively, for over 20 programs (including Hanaro Telecom, China

Communication, and ChinaNet).

Although most registrars and ASes host infrastructure for just one affiliate

program, each program could still engage many such registrars to serve their do-

mains and many such ASes to host their DNS and Web servers. Figure 6.2 shows,

though, that programs do not in general distribute their infrastructure across a

large set of registrars or ASes: for most programs, each of them uses only a small

fraction of registrars and ASes found in our data set. Specifically, Figure 6.2 shows

the cumulative distribution of the fraction of registrars and ASes in our data set

used by affiliate programs. For 50% of the affiliate programs, their domains, name

servers, and Web servers are distributed over just 8% or fewer of the registrars and

ASes, respectively; and 80% of the affiliate programs have their infrastructure dis-

tributed over 20% or fewer of the registrars and ASes. Only a handful of programs,

113

% Registrars / % ASes

%
 A

ff
ili

a
te

 p
ro

g
ra

m
s

0

20

40

60

80

100

0 20 40 60 80 100

Entity
Web server
DNS server
Registrar

Figure 6.2: Distribution of infrastructure among affiliate programs. Only a small

percentage of programs distribute their registered domain, name server, and Web

server infrastructure among many registrars and ASes, respectively.

such as EvaPharmacy, Pharmacy Express, and RX Partners, have infrastructure

distributed over a large percentage (50% or more) of registrars and ASes.

To summarize, there are a broad range of registrars and ISPs who are used

to support spam-advertised sites, but there is only limited amounts of organized

sharing and different programs appear to use different subsets of available resource

providers. We did find some evidence of clear inter-program sharing in the form of

several large groups of DNS servers willing to authoritatively resolve collections of

EvaPharmacy, Mailien and OEM Soft Store domains for which they were outside

the DNS hierarchy (i.e., the name servers were never referred by the TLD). This

overlap could reflect a particular affiliate advertising for multiple distinct programs

and sharing resources internally or it could represent a shared service provider used

by distinct affiliates.

114

6.2.2 Intervention analysis

Finally, we now reconsider these different resources in the spam moneti-

zation pipeline, but this time explicitly from the standpoint of the defender. In

particular, for any given registered domain used in spam, the defender may choose

to intervene by either blocking its advertising (e.g., filtering spam) or disrupting its

click support (e.g., takedowns for name servers of hosting sites). In each case, it is

typically possible to employ either a “takedown” approach (removing the resource

comprehensively) or cheaper “blacklisting” approach at more limited scope (disal-

lowing access to the resource for a subset of users), but for simplicity we model the

interventions in the takedown style. More importantly, we are interested in which

of these interventions will have the most impact.

Ideally, we believe that such anti-spam interventions need to be evaluated

in terms of two factors: their overhead to implement and their business impact

on the spam value chain. In turn, this business impact is the sum of both the

replacement cost (to acquire new resources equivalent to the ones disrupted) and

the opportunity cost (revenue forgone while the resource is being replaced). While,

at this point in time, we are unable to precisely quantify all of these values, we

believe our data illustrates gross differences in scale that are likely to dominate

any remaining factors.

To reason about the effects of these interventions, we consider the registered

domains for the affiliate programs and storefront brands in our study and calculate

their relative volume in our spam feeds (we particularly subtract the botnet feeds

when doing this calculation as their inherent bias would skew the calculation in

favor of certain programs). We then calculate the fraction of these domain trajec-

tories that could be completely blocked (if only temporarily) through a given level

of intervention at several resource tiers:

Registrar. Here we examine the effect if individual registrars were to

suspend their domains which are known to be used in advertising or hosting the

sites in our study.

Hosting. We use the same analysis, but instead look at the number of

distinct ASs that would need to be contacted (who would then need to agree to

115

Registrar

%
 o

f
s
p

a
m

0

20

40

60

80

100

 −NauNet (RU)

 −Beijing Innovative (CN)

 −Bizcn.com (CN)

 −China Springboard (CN)

 −eNom (US)

1 2 5 10 20 50 100

AS serving Web/DNS

0

20

40

60

80

100

 −
C

h
in

a
n
e
t
(C

N
)

 −
E

vo
lv

a
 (
R

O
)

 −Evolva (RO)

 −VLineTelecom (UA)

1 2 5 10 20 50 100 500

Target
DNS server
Web server

Figure 6.3: Takedown effectiveness when considering domain registrars (left) and

DNS/Web hosters (right).

shut down all associated hosts in their address space) in order to interrupt a given

volume of spam domain trajectories. We consider both name server and Web

hosting, but in each case there may be multiple IP addresses recorded providing

service for the domain. We adopt a “worst case” model that all such resources must

be eliminated (i.e., every IP seen hosting a particular domain) for that domain’s

trajectory to be disrupted.

Figure 6.3 plots this data as CDFs of the spam volume in our feeds that

would be disrupted using these approaches. For both registrars and hosters there

are significant concentrations among the top few providers and thus takedowns

would seem to be an effective strategy. For example, almost 40% of spam-

advertised domains in our feeds were registered by NauNet, while a single Ro-

manian provider, Evolva Telecom, hosts almost 9% of name servers for spam-

advertised domains and over 10% of the Web servers hosting their content; in

turn, over 60% of these had payments handled via a single acquirer, Azerigazbank.

However, these numbers do not tell the entire story. Another key issue is

the availability of alternatives and their switching cost.

116

For example, while only a small number of individual IP addresses were

used to support spam-advertised sites, the supply of hosting resources is vast,

with thousands of hosting providers and millions of compromised hosts. Note

that spam hosting statistics can be heavily impacted by the differences in spam

volume produced by different affiliates/spammers. For example, while we find

that over 80% of all spam received in this study leads to sites hosted by just 100

distinct IP addresses, there are another 2336 addresses used to host the remaining

20% of spam-advertised sites, many belonging to the same affiliate programs but

advertising with lower volumes of spam e-mail. The switching cost is also low and

new hosts can be provisioned on demand and for low cost. The cost of compromised

proxies is driven by the market price for compromised hosts via Pay-Per-Install

enterprises, which today are roughly $200/1000 for Western hosts and $5–10/1000

for Asian hosts [82]. Dedicated bulletproof hosting is more expensive, but we have

seen prices as low as $30/month for virtual hosting (up to several hundred dollars

for dedicated hosting).

By contrast, the situation with registrars appears more promising. The sup-

ply of registrars is smaller (roughly 900 gTLD registrars are accredited by ICANN

as of this writing) and there is evidence that not all registrars are equally per-

missive of spam-based advertising [43]. Moreover, there have also been individual

successful efforts to address malicious use of domain names, both by registries (e.g.,

CNNIC) and when working with individual registrars (e.g., eNom [40]). Unfortu-

nately, these efforts have been slow, ongoing, and fraught with politics since they

require global cooperation to be effective (only individual registrars or registries

can take these actions). Indeed, a recent study has empirically evaluated the ef-

ficacy of past registrar-level interventions and found that spammers show great

agility in working around such actions [47]. Ultimately, the low cost of a domain

name (many can be had for under $1 in bulk) and ease of switching registrars

makes such interventions difficult.

117

6.3 Summary

In this chapter we have described a large-scale empirical study to mea-

sure the spam value chain in an end-to-end fashion. We have described a frame-

work for conceptualizing resource requirements for spam monetization and, using

this model, we have characterized the use of key infrastructure—registrars and

hosting—for a wide array of spam-advertised business interests. Finally, we have

used this data to provide a normative analysis of spam intervention approaches

and to offer evidence that the potential for impact with defensive interventions

at the click support tier of the spam value chain, is limited. This limited impact

potential is especially true when we also consider the availability of alternatives

at each level, and their switching cost. Coincidentally, the network level is where

most of the efforts of the computer security community are focused on nowadays,

for disrupting click support. Instead of the current approach, we suggest exploring

alternative non-technical means of intervention that can offer a greater potential

for success. Along these lines, a follow-up study that builds upon the findings of

this dissertation has identified payments to be the weakest link, by far, in the spam

value chain [46]. In this work, the authors have demonstrated that the payment

tier is the most concentrated and valuable asset in the spam ecosystem, with a

potential for a truly effective intervention through public policy action in Western

countries. The details of this are outside the scope of our dissertation.

Chapter 6, in part, is a reprint of the material as it appears in Proceed-

ings of the IEEE Symposium on Security and Privacy 2011. Levchenko, Kirill;

Pitsillidis, Andreas; Chachra, Neha; Enright, Brandon; Felegyhzi, Mark; Grier,

Chris; Halvorson, Tristan; Kanich, Chris; Kreibich, Christian; Liu, He; McCoy,

Damon; Weaver, Nicholas; Paxson, Vern; Voelker, Geoffrey M.; Savage, Stefan.

The dissertation author was one of the primary investigators and authors of this

paper.

Chapter 7

Conclusion

We live in an era where advancements in the field of computer science

happen at an extremely rapid pace. On a daily basis we see new technologies,

services, and products appearing, all of which introduce a new set of challenges.

Unavoidably, computer security has become an integral part of this new era, and

the need to quickly respond to new threats is now more important than ever. Due

to this rapid pace, efficiency is extremely important nowadays since more often

than not, we are faced with the problem of limited resources. This is true even

for the largest organizations, thus choosing how to invest those resources more

effectively has become a necessity.

At the same time, today we have an unmatched ability to gather, process

and analyze data concerning Internet activity. This opens up tremendous oppor-

tunities for computer security research, by allowing us to better understand the

adversary, the vulnerable users, and the efficacy of our defenses. This is important

since as researchers, we often tend to solely focus on the technical challenges of the

problem at hand, while ignoring other factors surrounding it. The comprehensive

understanding of a problem though, often enables more effective solutions that also

take into consideration factors such as the availability of alternatives for attackers

and the accompanying costs.

In this dissertation we focus on the spam problem and its surrounding

ecosystem. Ultimately, our goal is the disruption of the mechanism responsible for

monetizing spam e-mails, which we define as the spam value chain. We do so by

118

119

first gaining a thorough understanding of all the available data sources which guide

our research. We document significant differences across different data feeds by

exploring assumptions that are commonly used by the research community, and

demonstrate that the differences we find can translate into analysis limitations.

We then focus on advertising and click support, the two primary stages of the

spam value chain, and evaluate the potential for intervention at each. First, we

target advertising through the development of a spam filtering algorithm that

targets botnets, and we demonstrate its effectiveness using live data. Finally,

we shift our focus to click support, where we document and quantify the end-to-

end resource dependencies in use by spam campaigns today. We characterize the

footprint of the different resources involved, analyze the prospects for disrupting

spam monetization at the different possible levels, and show that the availability

of cheap alternatives for the attackers makes defensive intervention at the network

level an enormous challenge. Instead, we propose focusing as a community on

seeking alternative non-technical ways for efficiently disrupting click support.

7.1 Future Directions

Given our findings regarding interventions at the click support level of the

spam value chain, a first next step is exploring other potential weak points in the

chain. We have already shown that targeting the problem at the network level

is challenging, and the question is whether we can improve upon this situation.

Based on our research, future work has already demonstrated that more efficient

intervention mechanisms do exist, which target the payment part of the spam value

chain. The first results of this effort are very promising and offer a rare advantage

to defenders, in terms of the cost imposed for circumventing this type of protection.

At the same time, our methodology can be applied to evaluating the effec-

tiveness of other defensive mechanisms as well. For example, domain blacklists are

one such popular mechanism within the computer security community. Potential

use cases include blocking access to spam-advertised domains, or to domains that

host malicious content and executables. Although there have been many studies

120

that have evaluated the effectiveness of these blacklists in terms of their coverage

(i.e., how many malicious domains do they block at any given time), we are not

aware of any studies that do so in correlation to timing. In particular, we want to

explore the effectiveness of these blacklists in combination with the visit patterns

that users exhibit in relation to such domains. Is it, for example, the case that

user visits drop dramatically enough after a certain time interval, that blacklisting

is essentially not needed beyond that time threshold? Today we have the data for

exploring this kind of question, and this type of timing analysis based on real-world

visit patterns can be extended to other defensive mechanisms as well.

7.2 Final Thoughts

We expect that in the foreseeable future, the spam problem will remain a

constant struggle between attackers and defenders. This dissertation has focused

on e-mail which is the most popular spam vector today. Eventually, as anti-spam

defenses become more sophisticated, it is expected that miscreants will shift their

focus to other, more easily targeted vectors. We believe though that our data-

driven approach, and the ability to challenge existing assumptions by leveraging

the vast amount of data we have available today, can be applied equally successfully

to future threats as well. By targeting each problem at its core and focusing on its

weak points, we can ensure maximum impact for both current and future defensive

mechanisms.

Bibliography

[1] jwSpamSpy Spam Domain Blacklist. http://www.joewein.net/spam/spam-bl.
htm.

[2] lists.gnu.org. ftp://lists.gnu.org.

[3] SURBL. http://www.surbl.org.

[4] URIBL – Realtime URI Blacklist. http://www.uribl.com.

[5] Alexa. Alexa top 500 global sites. http://www.alexa.com/topsites, June 2011.

[6] David S. Anderson, Chris Fleizach, Stefan Savage, and Geoffrey M. Voelker.
Spamscatter: Characterizing Internet Scam Hosting Infrastructure. In Proc.
of 16th USENIX Security, 2007.

[7] Ion Androutsopoulos, John Koutsias, Konstantinos Chandrinos, Georgios
Paliouras, and Constantine D. Spyropoulos. An Evaluation of Naive Bayesian
Anti-Spam Filtering. In Proc. of 1st MLNIA, 2000.

[8] Jart Armin, James McQuaid, and Matt Jonkman. Atrivo — Cyber Crime
USA. http://fserror.com/pdf/Atrivo.pdf, 2008.

[9] Behind Online Pharma. From Mumbai to Riga to New York: Our Investigative
Class Follows the Trail of Illegal Pharma. http://behindonlinepharma.com,
2009.

[10] Robert Beverly and Karen Sollins. Exploiting Transport-Level Characteristics
of Spam. In Proc. of 5th CEAS, 2008.

[11] Xavier Carreras and Lúıs Màrquez. Boosting Trees for Anti-Spam Email
Filtering. In Proc. of RANLP-2001, 2001.

[12] Claude Castelluccia, Mohamed Ali Kaafar, Pere Manils, and Daniele Perito.
Geolocalization of Proxied Services and its Application to Fast-Flux Hidden
Servers. In Proc. of 9th IMC, 2009.

121

http://www.joewein.net/spam/spam-bl.htm
http://www.joewein.net/spam/spam-bl.htm
ftp://lists.gnu.org
http://www.surbl.org
http://www.uribl.com
http://www.alexa.com/topsites
http://fserror.com/pdf/Atrivo.pdf
http://behindonlinepharma.com

122

[13] Richard Clayton. How much did shutting down McColo help? In Proc. of 6th
CEAS, 2009.

[14] Gordon V. Cormack and Thomas R. Lynam. On-line Supervised Spam Filter
Evaluation. ACM Trans. Inf. Syst., 25(3), July 2007.

[15] Dancho Danchev’s Blog — Mind Streams of Information Security Knowledge.
The Avalanche Botnet and the TROYAK-AS Connection. http://ddanchev.
blogspot.com/2010/05/avalanche-botnet-and-troyak-as.html, 2010.

[16] Harris Drucker, Donghui Wu, and Vladimir N. Vapnik. Support Vector Ma-
chines for Spam Categorization. In Proc. of IEEE Transactions on Neural
Networks, 1999.

[17] Federal Trade Commission. FTC Shuts Down, Freezes Assets of Vast Interna-
tional Spam E-Mail Network. http://ftc.gov/opa/2008/10/herbalkings.shtm,
2008.

[18] Wu-chang Feng and Ed Kaiser. kaPoW Webmail: Effective Disincentives
Against Spam. In Proc. of 7th CEAS, 2010.

[19] Garrett Gee and Peter Kim. Doppleganger Domains. http://www.wired.com/
images blogs/threatlevel/2011/09/Doppelganger.Domains.pdf, 2011.

[20] Jan Göbel, Thorsten Holz, and Philipp Trinius. Towards Proactive Spam
Filtering. In Proc. of 6th DIMVA, 2009.

[21] Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. @spam: The
Underground on 140 Characters or Less. In Proc. of 17th ACM CCS, 2010.

[22] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting Botnet Com-
mand and Control Channels in Network Traffic. In Proc. of 15th NDSS, 2008.

[23] Pedro H. Calais Guerra, Dorgival Guedes, Wagner Meira Jr., Cristine Hoepers,
Marcelo H. P. C. Chaves, and Klaus Steding-Jessen. Spamming Chains: A
New Way of Understanding Spammer Behavior. In Proc. of 6th CEAS, 2009.

[24] Pedro H. Calais Guerra, Dorgival Guedes, Wagner Meira Jr., Cristine Hoepers,
Marcelo H. P. C. Chaves, and Klaus Steding-Jessen. Exploring the Spam Arms
Race to Characterize Spam Evolution. In Proc. of 7th CEAS, 2010.

[25] S. Hao, N. Feamster, A. Gray, N. Syed, and S. Krasser. Detecting Spam-
mers with SNARE: Spatio-Temporal Network-Level Automated Reputation
Engine. In Proc. of 18th USENIX Security, 2009.

[26] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Mea-
suring and Detecting Fast-Flux Service Networks. In Proc. of 15th NDSS,
2008.

http://ddanchev.blogspot.com/2010/05/avalanche-botnet-and-troyak-as.html
http://ddanchev.blogspot.com/2010/05/avalanche-botnet-and-troyak-as.html
http://ftc.gov/opa/2008/10/herbalkings.shtm
http://www.wired.com/images_blogs/threatlevel/2011/09/Doppelganger.Domains.pdf
http://www.wired.com/images_blogs/threatlevel/2011/09/Doppelganger.Domains.pdf

123

[27] Xin Hu, Matthew Knysz, and Kang G. Shin. RB-Seeker: Auto-detection of
Redirection Botnets. In Proc. of 16th NDSS, 2009.

[28] Geoff Hulten, Anthony Penta, Gopalakrishnan Seshadrinathan, and Manav
Mishra. Trends in Spam Products and Methods. In Proc. of 1st CEAS, 2004.

[29] D. Irani, S. Webb, J. Giffin, and C. Pu. Evolutionary Study of Phishing. In
eCrime Researchers Summit, pages 1–10, 2008.

[30] Andreas GK Janecek, Wilfried N. Gansterer, and K. Ashwin Kumar. Multi-
Level Reputation-Based Greylisting. In Proc. of 3rd ARES, pages 10–17,
2008.

[31] John P. John, Alexander Moshchuk, Steven D. Gribble, and Arvind Krishna-
murthy. Studying Spamming Botnets Using Botlab. In Proc. of 6th NSDI,
2009.

[32] Jaeyeon Jung and Emil Sit. An Empirical Study of Clustering Behavior of
Spammers and Group-based Anti-Spam Strategies. In Proc. of 4th IMC, pages
370–375, New York, NY, USA, 2004. ACM Press.

[33] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Geof-
frey M. Voelker, Vern Paxson, and Stefan Savage. Spamalytics: An Empirical
Analysis of Spam Marketing Conversion. In Proc. of 15th ACM CCS, 2008.

[34] Bryan Klimt and Yiming Yang. Introducing the Enron Corpus. In Proc. of
1st CEAS, 2004.

[35] Maria Konte, Nick Feamster, and Jaeyeon Jung. Dynamics of Online Scam
Hosting Infrastructure. In Proc. of 10th PAM, 2009.

[36] Krebs on Security. Body Armor for Bad Web Sites. http://krebsonsecurity.
com/2010/11/body-armor-for-bad-web-sites/, 2010.

[37] Christian Kreibich, Chris Kanich, Kirill Levchenko, Brandon Enright, Geof-
frey M. Voelker, Vern Paxson, and Stefan Savage. On the Spam Campaign
Trail. In Proc. of 1st USENIX LEET, pages 1:1–1:9, Berkeley, CA, USA,
2008. USENIX Association.

[38] Christian Kreibich, Chris Kanich, Kirill Levchenko, Brandon Enright, Geof-
frey M. Voelker, Vern Paxson, and Stefan Savage. Spamcraft: An Inside Look
at Spam Campaign Orchestration. In Proc. of 2nd USENIX LEET, 2009.

[39] Martin Lee. Why My Email Went. http://www.symantec.com/connect/
blogs/why-my-email-went, 2011.

[40] LegitScript and eNom. LegitScript Welcomes Agreement with eNom (De-
mandMedia). http://www.legitscript.com/blog/142, 2010.

http://krebsonsecurity.com/2010/11/body-armor-for-bad-web-sites/
http://krebsonsecurity.com/2010/11/body-armor-for-bad-web-sites/
http://www.symantec.com/connect/blogs/why-my-email-went
http://www.symantec.com/connect/blogs/why-my-email-went
http://www.legitscript.com/blog/142

124

[41] LegitScript and KnujOn. No Prescription Required: Bing.com Prescription
Drug Ads. http://www.legitscript.com/download/BingRxReport.pdf, 2009.

[42] LegitScript and KnujOn. Yahoo! Internet Pharmacy Advertisements. http:
//www.legitscript.com/download/YahooRxAnalysis.pdf, 2009.

[43] LegitScript and KnujOn. Rogues and Registrars: Are some Domain Name
Registrars safe havens for Internet drug rings? http://www.legitscript.com/
download/Rogues-and-Registrars-Report.pdf, 2010.

[44] Barry Leiba and Jim Fenton. DomainKeys Identified Mail (DKIM): Using
Digital Signatures for Domain Verification. In Proc. of 4th CEAS, 2007.

[45] Nektarios Leontiadis, Tyler Moore, and Nicolas Christin. Measuring and
Analyzing Search-Redirection Attacks in the Illicit Online Prescription Drug
Trade. In Proc. of USENIX Security, 2011.

[46] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Márk
Félegyházi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich,
He Liu, Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker,
and Stefan Savage. Click Trajectories: End-to-End Analysis of the Spam
Value Chain. In Proc. of IEEE Symposium on Security and Privacy, 2011.

[47] He Liu, Kirill Levchenko, Márk Félegyházi, Christian Kreibich, Gregor Maier,
Geoffrey M. Voelker, and Stefan Savage. On the Effects of Registrar-level
Intervention. In Proc. of 4th USENIX LEET, 2011.

[48] Brian Livingston. Web registrars may take back your domain name. http:
//news.cnet.com/2010-1071-281311.html, 2000.

[49] Daniel Lowd and Christopher Meek. Good Word Attacks on Statistical Spam
Filters. In Proc. of 2nd CEAS, 2005.

[50] M86 Security Labs. Top Spam Affiliate Programs. http://www.m86security.
com/labs/traceitem.asp?article=1070, 2009.

[51] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Iden-
tifying Suspicious URLs: An Application of Large-Scale Online Learning. In
Proc. of 26th ICML, 2009.

[52] Marshal8e6 TRACELabs. Marshal8e6 Security Threats: Email and Web
Threats. http://www.marshal.com/newsimages/trace/Marshal8e6 TRACE
Report Jan2009.pdf, 2009.

[53] Justin Mason. SpamAssassin public corpus. http://spamassassin.apache.org/
publiccorpus, 2003.

http://www.legitscript.com/download/BingRxReport.pdf
http://www.legitscript.com/download/YahooRxAnalysis.pdf
http://www.legitscript.com/download/YahooRxAnalysis.pdf
http://www.legitscript.com/download/Rogues-and-Registrars-Report.pdf
http://www.legitscript.com/download/Rogues-and-Registrars-Report.pdf
http://news.cnet.com/2010-1071-281311.html
http://news.cnet.com/2010-1071-281311.html
http://www.m86security.com/labs/traceitem.asp?article=1070
http://www.m86security.com/labs/traceitem.asp?article=1070
http://www.marshal.com/newsimages/trace/Marshal8e6_TRACE_Report_Jan2009.pdf
http://www.marshal.com/newsimages/trace/Marshal8e6_TRACE_Report_Jan2009.pdf
http://spamassassin.apache.org/publiccorpus
http://spamassassin.apache.org/publiccorpus

125

[54] Mohammad M Masud, Latifur Khan, and Bhavani Thuraisingham. Feature
Based Techniques for Auto-Detection of Novel Email Worms. In Proc. of 11th
PACKDDD, 2007.

[55] Damon McCoy, Andreas Pitsillidis, Grant Jordan, Nicholas Weaver, Chris-
tian Kreibich, Brian Krebs, Geoffrey M. Voelker, Stefan Savage, and Kirill
Levchenko. PharmaLeaks: Understanding the Business of Online Pharma-
ceutical Affiliate Programs. In Proc. of the USENIX Security Symposium,
2012.

[56] D. Kevin McGrath and Minaxi Gupta. Behind Phishing: An Examination of
Phisher Modi Operandi. In Proc. of 1st USENIX LEET, 2008.

[57] Robert McMillan. What will stop spam?, December 1997.

[58] Brain S. McWilliams. Spam Kings: The Real Story Behind the High-Rolling
Hucksters Pushing Porn, Pills and @*#?% Enlargements. O’Reilly Media,
September 2004.

[59] Tony A. Meyer and Brendon Whateley. SpamBayes: Effective open-source,
Bayesian based, email classification system. In Proc. of 1st CEAS, 2004.

[60] Tyler Moore and Richard Clayton. Examining the Impact of Website Take-
down on Phishing. In Proc. of 2nd eCrime Researchers Summit. ACM, 2007.

[61] Andy Mutton. Screengrab! http://www.screengrab.org/, 2010.

[62] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Ben-
jamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, and Kai
Xia. Exploiting Machine Learning to Subvert Your Spam Filter. In Proc. of
1st USENIX LEET, 2008.

[63] Yuan Niu, Yi-Min Wang, Hao Chen, Ming Ma, and Francis Hsu. A Quanti-
tative Study of Forum Spamming Using Context-based Analysis. In Proc. of
14th NDSS, 2007.

[64] Chris Nunnery, Greg Sinclair, and Brent ByungHoon Kang. Tumbling Down
the Rabbit Hole: Exploring the Idiosyncrasies of Botmaster Systems in a
Multi-Tier Botnet Infrastructure. In Proc. of 3rd USENIX LEET, 2010.

[65] ODP – Open Directory Project. http://www.dmoz.org, September 2011.

[66] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Br-
uschi. FluXOR: Detecting and Monitoring Fast-Flux Service Networks. In
Proc. of 5th DIMVA, 2008.

[67] Abhinav Pathak, Y. Charlie Hu, and Z. Morley Mao. Peeking into Spammer
Behavior from a Unique Vantage Point. In Proc. of 1st USENIX LEET, 2008.

http://www.screengrab.org/
http://www.dmoz.org

126

[68] Abhinav Pathak, Feng Qian, Y. Charlie Hu, Z. Morley Mao, and Suprana-
maya Ranjan. Botnet Spam Campaigns Can Be Long Lasting: Evidence,
Implications, and Analysis. In Proc. of 9th ACM SIGMETRICS, 2009.

[69] Roberto Perdisci, Igino Corona, David Dagon, and Wenke Lee. Detecting
Malicious Flux Service Networks through Passive Analysis of Recursive DNS
Traces. In Proc. of 25th ACSAC, 2009.

[70] Zhiyun Qian, Zhuoqing Mao, Yinglian Xie, and Fang Yu. On Network-level
Clusters for Spam Detection. In Proc. of 17th NDSS, 2010.

[71] Anirudh Ramachandran, David Dagon, and Nick Feamster. Can DNSBLs
Keep Up with Bots? In Proc. of 3rd CEAS, 2006.

[72] Anirudh Ramachandran and Nick Feamster. Understanding the Network-
Level Behavior of Spammers. In Proc. of ACM SIGCOMM, 2006.

[73] Anirudh Ramachandran, Nick Feamster, and Santosh Vempala. Filtering
Spam with Behavioral Blacklisting. In Proc. of 14th ACM CCS, 2007.

[74] Rhyolite Corporation. Distributed checksum clearinghouse, 2000.

[75] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A
Bayesian Approach to Filtering Junk E-Mail. In Learning for Text Catego-
rization: Papers from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI
Technical Report WS-98-05.

[76] Dmitry Samosseiko. The Partnerka — What is it, and why should you care?
In Proc. of Virus Bulletin Conference, 2009.

[77] Fernando Sanchez, Zhenhai Duan, and Yingfei Dong. Understanding Forgery
Properties of Spam Delivery Paths. In Proc. of 7th CEAS, 2010.

[78] Matt Sergeant. Internet Level Spam Detection and SpamAssassin 2.50. In
MIT Spam Conference, 2003.

[79] Sushant Sinha, Michael Bailey, and Farnam Jahanian. Shades of Grey: On
the effectiveness of reputation-based blacklists. In Proc. of 3rd MALWARE,
2008.

[80] Sushant Sinha, Michael Bailey, and Farnam Jahanian. Improving SPAM
Blacklisting through Dynamic Thresholding and Speculative Aggregation. In
Proc. of 17th NDSS, 2010.

[81] Henry Stern. A Survey of Modern Spam Tools. In Proc. of 5th CEAS, 2008.

[82] Kevin Stevens. The Underground Economy of the Pay-Per-Install (PPI) Busi-
ness. http://www.secureworks.com/research/threats/ppi, 2009.

http://www.secureworks.com/research/threats/ppi

127

[83] Brett Stone-Gross, Christopher Kruegel, Kevin Almeroth, Andreas Moser,
and Engin Kirda. FIRE: FInding Rogue nEtworks. In Proc. of 25th ACSAC,
2009.

[84] Bradley Taylor. Sender Reputation in a Large Webmail Service. In Proc. of
3rd CEAS, 2006.

[85] Olivier Thonnard and Marc Dacier. A Strategic Analysis of Spam Botnets
Operations. In Proc. of 8th CEAS, 2011.

[86] 2007 TREC Public Spam Corpus. http://plg.uwaterloo.ca/∼gvcormac/
treccorpus07, 2007.

[87] Trustwave. Spam Statistics – Week ending Sep 2, 2012. https://www.
trustwave.com/support/labs/spam statistics.asp, September 2012.

[88] Yi-Min Wang, M. Ma, Y. Niu, and H. Chen. Spam Double-Funnel: Connect-
ing Web Spammers with Advertisers. In Proc. of 16th WWW, 2007.

[89] Gary Warner. Random Pseudo-URLs Try to Confuse Anti-
Spam Solutions. http://garwarner.blogspot.com/2010/09/
random-pseudo-urls-try-to-confuse-anti.html, September 2010.

[90] Chun Wei, Alan Sprague, Gary Warner, and Anthony Skjellum. Identifying
New Spam Domains by Hosting IPs: Improving Domain Blacklisting. In Proc.
of 7th CEAS, 2010.

[91] Andrew G. West, Adam J. Aviv, Jian Chang, and Insup Lee. Spam Mitigation
Using Spatio-temporal Reputations From Blacklist History. In Proc of 26th.
ACSAC, 2010.

[92] John Whissell and Charles Clarke. Clustering for Semi-Supervised Spam Fil-
tering. In Proc. of 8th CEAS, 2011.

[93] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-Scale Automatic
Classification of Phishing Pages. In Proc. of 17th NDSS, 2010.

[94] Meng Weng Wong. Sender Authentication: What To Do, 2004.

[95] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and
Ivan Osipkov. Spamming Botnets: Signatures and Characteristics. In Proc.
of ACM SIGCOMM, pages 171–182, 2008.

[96] Le Zhang, Jingbo Zhu, and Tianshun Yao. An evaluation of statistical spam
filtering techniques. ACM Transactions on Asian Language Information Pro-
cessing (TALIP), 3(4):243–269, December 2004.

http://plg.uwaterloo.ca/~gvcormac/treccorpus07
http://plg.uwaterloo.ca/~gvcormac/treccorpus07
https://www.trustwave.com/support/labs/spam_statistics.asp
https://www.trustwave.com/support/labs/spam_statistics.asp
http://garwarner.blogspot.com/2010/09/random-pseudo-urls-try-to-confuse-anti.html
http://garwarner.blogspot.com/2010/09/random-pseudo-urls-try-to-confuse-anti.html

128

[97] Yao Zhao, Yinglian Xie, Fang Yu, Qifa Ke, Yuan Yu, Yan Chen, and Eliot
Gillum. BotGraph: Large-Scale Spamming Botnet Detection. In Proc. of 6th
NSDI, 2009.

[98] Li Zhuang, John Dunagan, Daniel R. Simon, Helen J. Wang, Ivan Osipkov,
Geoff Hulten, and J.D. Tygar. Characterizing Botnets from Email Spam
Records. In Proc. of 1st USENIX LEET, 2008.

[99] Jonathan Zittrain and Laura Frieder. Spam Works: Evidence from Stock
Touts and Corresponding Market Activity. Social Science Research Network,
March 2007.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Contributions
	Organization

	Background and Related Work
	E-mail Spam Feeds
	Spamming Botnets
	Current Anti-spam Approaches
	Spam Value Chain
	How Modern Spam Works
	Pharmacy Express: An Example

	Meet the Data
	Collecting Spam-Advertised URLs
	Types of Spam Domain Sources
	False Positives

	Crawler Data
	Content Clustering and Tagging

	Taster's Choice: A Comparative Analysis of Spam Feeds
	Introduction
	Data and Methodology
	Analysis
	Purity
	Coverage
	Proportionality
	Timing

	Summary

	Botnet Judo: Fighting Spam with Itself
	Introduction
	Template-based Spam
	The Signature Generator
	Template Inference
	Leveraging Domain Knowledge
	Signature Update
	Execution Time

	Evaluation
	Signature Safety Testing Methodology
	Single Template Inference
	Multiple Template Inference
	Real-world Deployment
	False Positives
	Response Time
	Other Content-Based Approaches

	Discussion
	Summary

	Click Trajectories: End-to-End Analysis of the Spam Value Chain
	Introduction
	Analysis
	Click Support
	Intervention analysis

	Summary

	Conclusion
	Future Directions
	Final Thoughts

	Bibliography

